25458fa4753dc10ddb56c5a9be61c2aa224c0d5f
[firefly-linux-kernel-4.4.55.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         unsigned int single_wait:1;
57         unsigned int single_done:1;
58         enum wb_reason reason;          /* why was writeback initiated? */
59
60         struct list_head list;          /* pending work list */
61         struct wb_completion *done;     /* set if the caller waits */
62 };
63
64 /*
65  * If one wants to wait for one or more wb_writeback_works, each work's
66  * ->done should be set to a wb_completion defined using the following
67  * macro.  Once all work items are issued with wb_queue_work(), the caller
68  * can wait for the completion of all using wb_wait_for_completion().  Work
69  * items which are waited upon aren't freed automatically on completion.
70  */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
72         struct wb_completion cmpl = {                                   \
73                 .cnt            = ATOMIC_INIT(1),                       \
74         }
75
76
77 /*
78  * If an inode is constantly having its pages dirtied, but then the
79  * updates stop dirtytime_expire_interval seconds in the past, it's
80  * possible for the worst case time between when an inode has its
81  * timestamps updated and when they finally get written out to be two
82  * dirtytime_expire_intervals.  We set the default to 12 hours (in
83  * seconds), which means most of the time inodes will have their
84  * timestamps written to disk after 12 hours, but in the worst case a
85  * few inodes might not their timestamps updated for 24 hours.
86  */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91         return list_entry(head, struct inode, i_wb_list);
92 }
93
94 /*
95  * Include the creation of the trace points after defining the
96  * wb_writeback_work structure and inline functions so that the definition
97  * remains local to this file.
98  */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106         if (wb_has_dirty_io(wb)) {
107                 return false;
108         } else {
109                 set_bit(WB_has_dirty_io, &wb->state);
110                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
111                 atomic_long_add(wb->avg_write_bandwidth,
112                                 &wb->bdi->tot_write_bandwidth);
113                 return true;
114         }
115 }
116
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121                 clear_bit(WB_has_dirty_io, &wb->state);
122                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123                                         &wb->bdi->tot_write_bandwidth) < 0);
124         }
125 }
126
127 /**
128  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129  * @inode: inode to be moved
130  * @wb: target bdi_writeback
131  * @head: one of @wb->b_{dirty|io|more_io}
132  *
133  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134  * Returns %true if @inode is the first occupant of the !dirty_time IO
135  * lists; otherwise, %false.
136  */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138                                       struct bdi_writeback *wb,
139                                       struct list_head *head)
140 {
141         assert_spin_locked(&wb->list_lock);
142
143         list_move(&inode->i_wb_list, head);
144
145         /* dirty_time doesn't count as dirty_io until expiration */
146         if (head != &wb->b_dirty_time)
147                 return wb_io_lists_populated(wb);
148
149         wb_io_lists_depopulated(wb);
150         return false;
151 }
152
153 /**
154  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155  * @inode: inode to be removed
156  * @wb: bdi_writeback @inode is being removed from
157  *
158  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159  * clear %WB_has_dirty_io if all are empty afterwards.
160  */
161 static void inode_wb_list_del_locked(struct inode *inode,
162                                      struct bdi_writeback *wb)
163 {
164         assert_spin_locked(&wb->list_lock);
165
166         list_del_init(&inode->i_wb_list);
167         wb_io_lists_depopulated(wb);
168 }
169
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172         spin_lock_bh(&wb->work_lock);
173         if (test_bit(WB_registered, &wb->state))
174                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175         spin_unlock_bh(&wb->work_lock);
176 }
177
178 static void wb_queue_work(struct bdi_writeback *wb,
179                           struct wb_writeback_work *work)
180 {
181         trace_writeback_queue(wb->bdi, work);
182
183         spin_lock_bh(&wb->work_lock);
184         if (!test_bit(WB_registered, &wb->state)) {
185                 if (work->single_wait)
186                         work->single_done = 1;
187                 goto out_unlock;
188         }
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191         list_add_tail(&work->list, &wb->work_list);
192         mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194         spin_unlock_bh(&wb->work_lock);
195 }
196
197 /**
198  * wb_wait_for_completion - wait for completion of bdi_writeback_works
199  * @bdi: bdi work items were issued to
200  * @done: target wb_completion
201  *
202  * Wait for one or more work items issued to @bdi with their ->done field
203  * set to @done, which should have been defined with
204  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
205  * work items are completed.  Work items which are waited upon aren't freed
206  * automatically on completion.
207  */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209                                    struct wb_completion *done)
210 {
211         atomic_dec(&done->cnt);         /* put down the initial count */
212         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214
215 #ifdef CONFIG_CGROUP_WRITEBACK
216
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
222
223 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225                                         /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
227                                         /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229                                         /* one round can affect upto 5 slots */
230
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233         struct backing_dev_info *bdi = inode_to_bdi(inode);
234         struct bdi_writeback *wb = NULL;
235
236         if (inode_cgwb_enabled(inode)) {
237                 struct cgroup_subsys_state *memcg_css;
238
239                 if (page) {
240                         memcg_css = mem_cgroup_css_from_page(page);
241                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242                 } else {
243                         /* must pin memcg_css, see wb_get_create() */
244                         memcg_css = task_get_css(current, memory_cgrp_id);
245                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246                         css_put(memcg_css);
247                 }
248         }
249
250         if (!wb)
251                 wb = &bdi->wb;
252
253         /*
254          * There may be multiple instances of this function racing to
255          * update the same inode.  Use cmpxchg() to tell the winner.
256          */
257         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258                 wb_put(wb);
259 }
260
261 /**
262  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263  * @inode: inode of interest with i_lock held
264  *
265  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
266  * held on entry and is released on return.  The returned wb is guaranteed
267  * to stay @inode's associated wb until its list_lock is released.
268  */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271         __releases(&inode->i_lock)
272         __acquires(&wb->list_lock)
273 {
274         while (true) {
275                 struct bdi_writeback *wb = inode_to_wb(inode);
276
277                 /*
278                  * inode_to_wb() association is protected by both
279                  * @inode->i_lock and @wb->list_lock but list_lock nests
280                  * outside i_lock.  Drop i_lock and verify that the
281                  * association hasn't changed after acquiring list_lock.
282                  */
283                 wb_get(wb);
284                 spin_unlock(&inode->i_lock);
285                 spin_lock(&wb->list_lock);
286                 wb_put(wb);             /* not gonna deref it anymore */
287
288                 if (likely(wb == inode_to_wb(inode)))
289                         return wb;      /* @inode already has ref */
290
291                 spin_unlock(&wb->list_lock);
292                 cpu_relax();
293                 spin_lock(&inode->i_lock);
294         }
295 }
296
297 /**
298  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
299  * @inode: inode of interest
300  *
301  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
302  * on entry.
303  */
304 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
305         __acquires(&wb->list_lock)
306 {
307         spin_lock(&inode->i_lock);
308         return locked_inode_to_wb_and_lock_list(inode);
309 }
310
311 struct inode_switch_wbs_context {
312         struct inode            *inode;
313         struct bdi_writeback    *new_wb;
314
315         struct rcu_head         rcu_head;
316         struct work_struct      work;
317 };
318
319 static void inode_switch_wbs_work_fn(struct work_struct *work)
320 {
321         struct inode_switch_wbs_context *isw =
322                 container_of(work, struct inode_switch_wbs_context, work);
323         struct inode *inode = isw->inode;
324         struct bdi_writeback *new_wb = isw->new_wb;
325
326         /*
327          * By the time control reaches here, RCU grace period has passed
328          * since I_WB_SWITCH assertion and all wb stat update transactions
329          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
330          * synchronizing against mapping->tree_lock.
331          */
332         spin_lock(&inode->i_lock);
333
334         inode->i_wb_frn_winner = 0;
335         inode->i_wb_frn_avg_time = 0;
336         inode->i_wb_frn_history = 0;
337
338         /*
339          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
340          * ensures that the new wb is visible if they see !I_WB_SWITCH.
341          */
342         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
343
344         spin_unlock(&inode->i_lock);
345
346         iput(inode);
347         wb_put(new_wb);
348         kfree(isw);
349 }
350
351 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
352 {
353         struct inode_switch_wbs_context *isw = container_of(rcu_head,
354                                 struct inode_switch_wbs_context, rcu_head);
355
356         /* needs to grab bh-unsafe locks, bounce to work item */
357         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
358         schedule_work(&isw->work);
359 }
360
361 /**
362  * inode_switch_wbs - change the wb association of an inode
363  * @inode: target inode
364  * @new_wb_id: ID of the new wb
365  *
366  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
367  * switching is performed asynchronously and may fail silently.
368  */
369 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
370 {
371         struct backing_dev_info *bdi = inode_to_bdi(inode);
372         struct cgroup_subsys_state *memcg_css;
373         struct inode_switch_wbs_context *isw;
374
375         /* noop if seems to be already in progress */
376         if (inode->i_state & I_WB_SWITCH)
377                 return;
378
379         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
380         if (!isw)
381                 return;
382
383         /* find and pin the new wb */
384         rcu_read_lock();
385         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
386         if (memcg_css)
387                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
388         rcu_read_unlock();
389         if (!isw->new_wb)
390                 goto out_free;
391
392         /* while holding I_WB_SWITCH, no one else can update the association */
393         spin_lock(&inode->i_lock);
394         if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
395             inode_to_wb(inode) == isw->new_wb) {
396                 spin_unlock(&inode->i_lock);
397                 goto out_free;
398         }
399         inode->i_state |= I_WB_SWITCH;
400         spin_unlock(&inode->i_lock);
401
402         ihold(inode);
403         isw->inode = inode;
404
405         /*
406          * In addition to synchronizing among switchers, I_WB_SWITCH tells
407          * the RCU protected stat update paths to grab the mapping's
408          * tree_lock so that stat transfer can synchronize against them.
409          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
410          */
411         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
412         return;
413
414 out_free:
415         if (isw->new_wb)
416                 wb_put(isw->new_wb);
417         kfree(isw);
418 }
419
420 /**
421  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
422  * @wbc: writeback_control of interest
423  * @inode: target inode
424  *
425  * @inode is locked and about to be written back under the control of @wbc.
426  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
427  * writeback completion, wbc_detach_inode() should be called.  This is used
428  * to track the cgroup writeback context.
429  */
430 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
431                                  struct inode *inode)
432 {
433         wbc->wb = inode_to_wb(inode);
434         wbc->inode = inode;
435
436         wbc->wb_id = wbc->wb->memcg_css->id;
437         wbc->wb_lcand_id = inode->i_wb_frn_winner;
438         wbc->wb_tcand_id = 0;
439         wbc->wb_bytes = 0;
440         wbc->wb_lcand_bytes = 0;
441         wbc->wb_tcand_bytes = 0;
442
443         wb_get(wbc->wb);
444         spin_unlock(&inode->i_lock);
445 }
446
447 /**
448  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
449  * @wbc: writeback_control of the just finished writeback
450  *
451  * To be called after a writeback attempt of an inode finishes and undoes
452  * wbc_attach_and_unlock_inode().  Can be called under any context.
453  *
454  * As concurrent write sharing of an inode is expected to be very rare and
455  * memcg only tracks page ownership on first-use basis severely confining
456  * the usefulness of such sharing, cgroup writeback tracks ownership
457  * per-inode.  While the support for concurrent write sharing of an inode
458  * is deemed unnecessary, an inode being written to by different cgroups at
459  * different points in time is a lot more common, and, more importantly,
460  * charging only by first-use can too readily lead to grossly incorrect
461  * behaviors (single foreign page can lead to gigabytes of writeback to be
462  * incorrectly attributed).
463  *
464  * To resolve this issue, cgroup writeback detects the majority dirtier of
465  * an inode and transfers the ownership to it.  To avoid unnnecessary
466  * oscillation, the detection mechanism keeps track of history and gives
467  * out the switch verdict only if the foreign usage pattern is stable over
468  * a certain amount of time and/or writeback attempts.
469  *
470  * On each writeback attempt, @wbc tries to detect the majority writer
471  * using Boyer-Moore majority vote algorithm.  In addition to the byte
472  * count from the majority voting, it also counts the bytes written for the
473  * current wb and the last round's winner wb (max of last round's current
474  * wb, the winner from two rounds ago, and the last round's majority
475  * candidate).  Keeping track of the historical winner helps the algorithm
476  * to semi-reliably detect the most active writer even when it's not the
477  * absolute majority.
478  *
479  * Once the winner of the round is determined, whether the winner is
480  * foreign or not and how much IO time the round consumed is recorded in
481  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
482  * over a certain threshold, the switch verdict is given.
483  */
484 void wbc_detach_inode(struct writeback_control *wbc)
485 {
486         struct bdi_writeback *wb = wbc->wb;
487         struct inode *inode = wbc->inode;
488         u16 history = inode->i_wb_frn_history;
489         unsigned long avg_time = inode->i_wb_frn_avg_time;
490         unsigned long max_bytes, max_time;
491         int max_id;
492
493         /* pick the winner of this round */
494         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
495             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
496                 max_id = wbc->wb_id;
497                 max_bytes = wbc->wb_bytes;
498         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
499                 max_id = wbc->wb_lcand_id;
500                 max_bytes = wbc->wb_lcand_bytes;
501         } else {
502                 max_id = wbc->wb_tcand_id;
503                 max_bytes = wbc->wb_tcand_bytes;
504         }
505
506         /*
507          * Calculate the amount of IO time the winner consumed and fold it
508          * into the running average kept per inode.  If the consumed IO
509          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
510          * deciding whether to switch or not.  This is to prevent one-off
511          * small dirtiers from skewing the verdict.
512          */
513         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
514                                 wb->avg_write_bandwidth);
515         if (avg_time)
516                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
517                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
518         else
519                 avg_time = max_time;    /* immediate catch up on first run */
520
521         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
522                 int slots;
523
524                 /*
525                  * The switch verdict is reached if foreign wb's consume
526                  * more than a certain proportion of IO time in a
527                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
528                  * history mask where each bit represents one sixteenth of
529                  * the period.  Determine the number of slots to shift into
530                  * history from @max_time.
531                  */
532                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
533                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
534                 history <<= slots;
535                 if (wbc->wb_id != max_id)
536                         history |= (1U << slots) - 1;
537
538                 /*
539                  * Switch if the current wb isn't the consistent winner.
540                  * If there are multiple closely competing dirtiers, the
541                  * inode may switch across them repeatedly over time, which
542                  * is okay.  The main goal is avoiding keeping an inode on
543                  * the wrong wb for an extended period of time.
544                  */
545                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
546                         inode_switch_wbs(inode, max_id);
547         }
548
549         /*
550          * Multiple instances of this function may race to update the
551          * following fields but we don't mind occassional inaccuracies.
552          */
553         inode->i_wb_frn_winner = max_id;
554         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
555         inode->i_wb_frn_history = history;
556
557         wb_put(wbc->wb);
558         wbc->wb = NULL;
559 }
560
561 /**
562  * wbc_account_io - account IO issued during writeback
563  * @wbc: writeback_control of the writeback in progress
564  * @page: page being written out
565  * @bytes: number of bytes being written out
566  *
567  * @bytes from @page are about to written out during the writeback
568  * controlled by @wbc.  Keep the book for foreign inode detection.  See
569  * wbc_detach_inode().
570  */
571 void wbc_account_io(struct writeback_control *wbc, struct page *page,
572                     size_t bytes)
573 {
574         int id;
575
576         /*
577          * pageout() path doesn't attach @wbc to the inode being written
578          * out.  This is intentional as we don't want the function to block
579          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
580          * regular writeback instead of writing things out itself.
581          */
582         if (!wbc->wb)
583                 return;
584
585         rcu_read_lock();
586         id = mem_cgroup_css_from_page(page)->id;
587         rcu_read_unlock();
588
589         if (id == wbc->wb_id) {
590                 wbc->wb_bytes += bytes;
591                 return;
592         }
593
594         if (id == wbc->wb_lcand_id)
595                 wbc->wb_lcand_bytes += bytes;
596
597         /* Boyer-Moore majority vote algorithm */
598         if (!wbc->wb_tcand_bytes)
599                 wbc->wb_tcand_id = id;
600         if (id == wbc->wb_tcand_id)
601                 wbc->wb_tcand_bytes += bytes;
602         else
603                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
604 }
605
606 /**
607  * inode_congested - test whether an inode is congested
608  * @inode: inode to test for congestion
609  * @cong_bits: mask of WB_[a]sync_congested bits to test
610  *
611  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
612  * bits to test and the return value is the mask of set bits.
613  *
614  * If cgroup writeback is enabled for @inode, the congestion state is
615  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
616  * associated with @inode is congested; otherwise, the root wb's congestion
617  * state is used.
618  */
619 int inode_congested(struct inode *inode, int cong_bits)
620 {
621         /*
622          * Once set, ->i_wb never becomes NULL while the inode is alive.
623          * Start transaction iff ->i_wb is visible.
624          */
625         if (inode && inode_to_wb(inode)) {
626                 struct bdi_writeback *wb;
627                 bool locked, congested;
628
629                 wb = unlocked_inode_to_wb_begin(inode, &locked);
630                 congested = wb_congested(wb, cong_bits);
631                 unlocked_inode_to_wb_end(inode, locked);
632                 return congested;
633         }
634
635         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
636 }
637 EXPORT_SYMBOL_GPL(inode_congested);
638
639 /**
640  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
641  * @bdi: bdi the work item was issued to
642  * @work: work item to wait for
643  *
644  * Wait for the completion of @work which was issued to one of @bdi's
645  * bdi_writeback's.  The caller must have set @work->single_wait before
646  * issuing it.  This wait operates independently fo
647  * wb_wait_for_completion() and also disables automatic freeing of @work.
648  */
649 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
650                                     struct wb_writeback_work *work)
651 {
652         if (WARN_ON_ONCE(!work->single_wait))
653                 return;
654
655         wait_event(bdi->wb_waitq, work->single_done);
656
657         /*
658          * Paired with smp_wmb() in wb_do_writeback() and ensures that all
659          * modifications to @work prior to assertion of ->single_done is
660          * visible to the caller once this function returns.
661          */
662         smp_rmb();
663 }
664
665 /**
666  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
667  * @wb: target bdi_writeback to split @nr_pages to
668  * @nr_pages: number of pages to write for the whole bdi
669  *
670  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
671  * relation to the total write bandwidth of all wb's w/ dirty inodes on
672  * @wb->bdi.
673  */
674 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
675 {
676         unsigned long this_bw = wb->avg_write_bandwidth;
677         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
678
679         if (nr_pages == LONG_MAX)
680                 return LONG_MAX;
681
682         /*
683          * This may be called on clean wb's and proportional distribution
684          * may not make sense, just use the original @nr_pages in those
685          * cases.  In general, we wanna err on the side of writing more.
686          */
687         if (!tot_bw || this_bw >= tot_bw)
688                 return nr_pages;
689         else
690                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
691 }
692
693 /**
694  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
695  * @wb: target bdi_writeback
696  * @base_work: source wb_writeback_work
697  *
698  * Try to make a clone of @base_work and issue it to @wb.  If cloning
699  * succeeds, %true is returned; otherwise, @base_work is issued directly
700  * and %false is returned.  In the latter case, the caller is required to
701  * wait for @base_work's completion using wb_wait_for_single_work().
702  *
703  * A clone is auto-freed on completion.  @base_work never is.
704  */
705 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
706                                     struct wb_writeback_work *base_work)
707 {
708         struct wb_writeback_work *work;
709
710         work = kmalloc(sizeof(*work), GFP_ATOMIC);
711         if (work) {
712                 *work = *base_work;
713                 work->auto_free = 1;
714                 work->single_wait = 0;
715         } else {
716                 work = base_work;
717                 work->auto_free = 0;
718                 work->single_wait = 1;
719         }
720         work->single_done = 0;
721         wb_queue_work(wb, work);
722         return work != base_work;
723 }
724
725 /**
726  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
727  * @bdi: target backing_dev_info
728  * @base_work: wb_writeback_work to issue
729  * @skip_if_busy: skip wb's which already have writeback in progress
730  *
731  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
732  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
733  * distributed to the busy wbs according to each wb's proportion in the
734  * total active write bandwidth of @bdi.
735  */
736 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
737                                   struct wb_writeback_work *base_work,
738                                   bool skip_if_busy)
739 {
740         long nr_pages = base_work->nr_pages;
741         int next_blkcg_id = 0;
742         struct bdi_writeback *wb;
743         struct wb_iter iter;
744
745         might_sleep();
746
747         if (!bdi_has_dirty_io(bdi))
748                 return;
749 restart:
750         rcu_read_lock();
751         bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
752                 if (!wb_has_dirty_io(wb) ||
753                     (skip_if_busy && writeback_in_progress(wb)))
754                         continue;
755
756                 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
757                 if (!wb_clone_and_queue_work(wb, base_work)) {
758                         next_blkcg_id = wb->blkcg_css->id + 1;
759                         rcu_read_unlock();
760                         wb_wait_for_single_work(bdi, base_work);
761                         goto restart;
762                 }
763         }
764         rcu_read_unlock();
765 }
766
767 #else   /* CONFIG_CGROUP_WRITEBACK */
768
769 static struct bdi_writeback *
770 locked_inode_to_wb_and_lock_list(struct inode *inode)
771         __releases(&inode->i_lock)
772         __acquires(&wb->list_lock)
773 {
774         struct bdi_writeback *wb = inode_to_wb(inode);
775
776         spin_unlock(&inode->i_lock);
777         spin_lock(&wb->list_lock);
778         return wb;
779 }
780
781 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
782         __acquires(&wb->list_lock)
783 {
784         struct bdi_writeback *wb = inode_to_wb(inode);
785
786         spin_lock(&wb->list_lock);
787         return wb;
788 }
789
790 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
791 {
792         return nr_pages;
793 }
794
795 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
796                                   struct wb_writeback_work *base_work,
797                                   bool skip_if_busy)
798 {
799         might_sleep();
800
801         if (bdi_has_dirty_io(bdi) &&
802             (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
803                 base_work->auto_free = 0;
804                 base_work->single_wait = 0;
805                 base_work->single_done = 0;
806                 wb_queue_work(&bdi->wb, base_work);
807         }
808 }
809
810 #endif  /* CONFIG_CGROUP_WRITEBACK */
811
812 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
813                         bool range_cyclic, enum wb_reason reason)
814 {
815         struct wb_writeback_work *work;
816
817         if (!wb_has_dirty_io(wb))
818                 return;
819
820         /*
821          * This is WB_SYNC_NONE writeback, so if allocation fails just
822          * wakeup the thread for old dirty data writeback
823          */
824         work = kzalloc(sizeof(*work), GFP_ATOMIC);
825         if (!work) {
826                 trace_writeback_nowork(wb->bdi);
827                 wb_wakeup(wb);
828                 return;
829         }
830
831         work->sync_mode = WB_SYNC_NONE;
832         work->nr_pages  = nr_pages;
833         work->range_cyclic = range_cyclic;
834         work->reason    = reason;
835         work->auto_free = 1;
836
837         wb_queue_work(wb, work);
838 }
839
840 /**
841  * wb_start_background_writeback - start background writeback
842  * @wb: bdi_writback to write from
843  *
844  * Description:
845  *   This makes sure WB_SYNC_NONE background writeback happens. When
846  *   this function returns, it is only guaranteed that for given wb
847  *   some IO is happening if we are over background dirty threshold.
848  *   Caller need not hold sb s_umount semaphore.
849  */
850 void wb_start_background_writeback(struct bdi_writeback *wb)
851 {
852         /*
853          * We just wake up the flusher thread. It will perform background
854          * writeback as soon as there is no other work to do.
855          */
856         trace_writeback_wake_background(wb->bdi);
857         wb_wakeup(wb);
858 }
859
860 /*
861  * Remove the inode from the writeback list it is on.
862  */
863 void inode_wb_list_del(struct inode *inode)
864 {
865         struct bdi_writeback *wb;
866
867         wb = inode_to_wb_and_lock_list(inode);
868         inode_wb_list_del_locked(inode, wb);
869         spin_unlock(&wb->list_lock);
870 }
871
872 /*
873  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
874  * furthest end of its superblock's dirty-inode list.
875  *
876  * Before stamping the inode's ->dirtied_when, we check to see whether it is
877  * already the most-recently-dirtied inode on the b_dirty list.  If that is
878  * the case then the inode must have been redirtied while it was being written
879  * out and we don't reset its dirtied_when.
880  */
881 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
882 {
883         if (!list_empty(&wb->b_dirty)) {
884                 struct inode *tail;
885
886                 tail = wb_inode(wb->b_dirty.next);
887                 if (time_before(inode->dirtied_when, tail->dirtied_when))
888                         inode->dirtied_when = jiffies;
889         }
890         inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
891 }
892
893 /*
894  * requeue inode for re-scanning after bdi->b_io list is exhausted.
895  */
896 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
897 {
898         inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
899 }
900
901 static void inode_sync_complete(struct inode *inode)
902 {
903         inode->i_state &= ~I_SYNC;
904         /* If inode is clean an unused, put it into LRU now... */
905         inode_add_lru(inode);
906         /* Waiters must see I_SYNC cleared before being woken up */
907         smp_mb();
908         wake_up_bit(&inode->i_state, __I_SYNC);
909 }
910
911 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
912 {
913         bool ret = time_after(inode->dirtied_when, t);
914 #ifndef CONFIG_64BIT
915         /*
916          * For inodes being constantly redirtied, dirtied_when can get stuck.
917          * It _appears_ to be in the future, but is actually in distant past.
918          * This test is necessary to prevent such wrapped-around relative times
919          * from permanently stopping the whole bdi writeback.
920          */
921         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
922 #endif
923         return ret;
924 }
925
926 #define EXPIRE_DIRTY_ATIME 0x0001
927
928 /*
929  * Move expired (dirtied before work->older_than_this) dirty inodes from
930  * @delaying_queue to @dispatch_queue.
931  */
932 static int move_expired_inodes(struct list_head *delaying_queue,
933                                struct list_head *dispatch_queue,
934                                int flags,
935                                struct wb_writeback_work *work)
936 {
937         unsigned long *older_than_this = NULL;
938         unsigned long expire_time;
939         LIST_HEAD(tmp);
940         struct list_head *pos, *node;
941         struct super_block *sb = NULL;
942         struct inode *inode;
943         int do_sb_sort = 0;
944         int moved = 0;
945
946         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
947                 older_than_this = work->older_than_this;
948         else if (!work->for_sync) {
949                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
950                 older_than_this = &expire_time;
951         }
952         while (!list_empty(delaying_queue)) {
953                 inode = wb_inode(delaying_queue->prev);
954                 if (older_than_this &&
955                     inode_dirtied_after(inode, *older_than_this))
956                         break;
957                 list_move(&inode->i_wb_list, &tmp);
958                 moved++;
959                 if (flags & EXPIRE_DIRTY_ATIME)
960                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
961                 if (sb_is_blkdev_sb(inode->i_sb))
962                         continue;
963                 if (sb && sb != inode->i_sb)
964                         do_sb_sort = 1;
965                 sb = inode->i_sb;
966         }
967
968         /* just one sb in list, splice to dispatch_queue and we're done */
969         if (!do_sb_sort) {
970                 list_splice(&tmp, dispatch_queue);
971                 goto out;
972         }
973
974         /* Move inodes from one superblock together */
975         while (!list_empty(&tmp)) {
976                 sb = wb_inode(tmp.prev)->i_sb;
977                 list_for_each_prev_safe(pos, node, &tmp) {
978                         inode = wb_inode(pos);
979                         if (inode->i_sb == sb)
980                                 list_move(&inode->i_wb_list, dispatch_queue);
981                 }
982         }
983 out:
984         return moved;
985 }
986
987 /*
988  * Queue all expired dirty inodes for io, eldest first.
989  * Before
990  *         newly dirtied     b_dirty    b_io    b_more_io
991  *         =============>    gf         edc     BA
992  * After
993  *         newly dirtied     b_dirty    b_io    b_more_io
994  *         =============>    g          fBAedc
995  *                                           |
996  *                                           +--> dequeue for IO
997  */
998 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
999 {
1000         int moved;
1001
1002         assert_spin_locked(&wb->list_lock);
1003         list_splice_init(&wb->b_more_io, &wb->b_io);
1004         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1005         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1006                                      EXPIRE_DIRTY_ATIME, work);
1007         if (moved)
1008                 wb_io_lists_populated(wb);
1009         trace_writeback_queue_io(wb, work, moved);
1010 }
1011
1012 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1013 {
1014         int ret;
1015
1016         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1017                 trace_writeback_write_inode_start(inode, wbc);
1018                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1019                 trace_writeback_write_inode(inode, wbc);
1020                 return ret;
1021         }
1022         return 0;
1023 }
1024
1025 /*
1026  * Wait for writeback on an inode to complete. Called with i_lock held.
1027  * Caller must make sure inode cannot go away when we drop i_lock.
1028  */
1029 static void __inode_wait_for_writeback(struct inode *inode)
1030         __releases(inode->i_lock)
1031         __acquires(inode->i_lock)
1032 {
1033         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1034         wait_queue_head_t *wqh;
1035
1036         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1037         while (inode->i_state & I_SYNC) {
1038                 spin_unlock(&inode->i_lock);
1039                 __wait_on_bit(wqh, &wq, bit_wait,
1040                               TASK_UNINTERRUPTIBLE);
1041                 spin_lock(&inode->i_lock);
1042         }
1043 }
1044
1045 /*
1046  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1047  */
1048 void inode_wait_for_writeback(struct inode *inode)
1049 {
1050         spin_lock(&inode->i_lock);
1051         __inode_wait_for_writeback(inode);
1052         spin_unlock(&inode->i_lock);
1053 }
1054
1055 /*
1056  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1057  * held and drops it. It is aimed for callers not holding any inode reference
1058  * so once i_lock is dropped, inode can go away.
1059  */
1060 static void inode_sleep_on_writeback(struct inode *inode)
1061         __releases(inode->i_lock)
1062 {
1063         DEFINE_WAIT(wait);
1064         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1065         int sleep;
1066
1067         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1068         sleep = inode->i_state & I_SYNC;
1069         spin_unlock(&inode->i_lock);
1070         if (sleep)
1071                 schedule();
1072         finish_wait(wqh, &wait);
1073 }
1074
1075 /*
1076  * Find proper writeback list for the inode depending on its current state and
1077  * possibly also change of its state while we were doing writeback.  Here we
1078  * handle things such as livelock prevention or fairness of writeback among
1079  * inodes. This function can be called only by flusher thread - noone else
1080  * processes all inodes in writeback lists and requeueing inodes behind flusher
1081  * thread's back can have unexpected consequences.
1082  */
1083 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1084                           struct writeback_control *wbc)
1085 {
1086         if (inode->i_state & I_FREEING)
1087                 return;
1088
1089         /*
1090          * Sync livelock prevention. Each inode is tagged and synced in one
1091          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1092          * the dirty time to prevent enqueue and sync it again.
1093          */
1094         if ((inode->i_state & I_DIRTY) &&
1095             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1096                 inode->dirtied_when = jiffies;
1097
1098         if (wbc->pages_skipped) {
1099                 /*
1100                  * writeback is not making progress due to locked
1101                  * buffers. Skip this inode for now.
1102                  */
1103                 redirty_tail(inode, wb);
1104                 return;
1105         }
1106
1107         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1108                 /*
1109                  * We didn't write back all the pages.  nfs_writepages()
1110                  * sometimes bales out without doing anything.
1111                  */
1112                 if (wbc->nr_to_write <= 0) {
1113                         /* Slice used up. Queue for next turn. */
1114                         requeue_io(inode, wb);
1115                 } else {
1116                         /*
1117                          * Writeback blocked by something other than
1118                          * congestion. Delay the inode for some time to
1119                          * avoid spinning on the CPU (100% iowait)
1120                          * retrying writeback of the dirty page/inode
1121                          * that cannot be performed immediately.
1122                          */
1123                         redirty_tail(inode, wb);
1124                 }
1125         } else if (inode->i_state & I_DIRTY) {
1126                 /*
1127                  * Filesystems can dirty the inode during writeback operations,
1128                  * such as delayed allocation during submission or metadata
1129                  * updates after data IO completion.
1130                  */
1131                 redirty_tail(inode, wb);
1132         } else if (inode->i_state & I_DIRTY_TIME) {
1133                 inode->dirtied_when = jiffies;
1134                 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1135         } else {
1136                 /* The inode is clean. Remove from writeback lists. */
1137                 inode_wb_list_del_locked(inode, wb);
1138         }
1139 }
1140
1141 /*
1142  * Write out an inode and its dirty pages. Do not update the writeback list
1143  * linkage. That is left to the caller. The caller is also responsible for
1144  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1145  */
1146 static int
1147 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1148 {
1149         struct address_space *mapping = inode->i_mapping;
1150         long nr_to_write = wbc->nr_to_write;
1151         unsigned dirty;
1152         int ret;
1153
1154         WARN_ON(!(inode->i_state & I_SYNC));
1155
1156         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1157
1158         ret = do_writepages(mapping, wbc);
1159
1160         /*
1161          * Make sure to wait on the data before writing out the metadata.
1162          * This is important for filesystems that modify metadata on data
1163          * I/O completion. We don't do it for sync(2) writeback because it has a
1164          * separate, external IO completion path and ->sync_fs for guaranteeing
1165          * inode metadata is written back correctly.
1166          */
1167         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1168                 int err = filemap_fdatawait(mapping);
1169                 if (ret == 0)
1170                         ret = err;
1171         }
1172
1173         /*
1174          * Some filesystems may redirty the inode during the writeback
1175          * due to delalloc, clear dirty metadata flags right before
1176          * write_inode()
1177          */
1178         spin_lock(&inode->i_lock);
1179
1180         dirty = inode->i_state & I_DIRTY;
1181         if (inode->i_state & I_DIRTY_TIME) {
1182                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1183                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1184                     unlikely(time_after(jiffies,
1185                                         (inode->dirtied_time_when +
1186                                          dirtytime_expire_interval * HZ)))) {
1187                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1188                         trace_writeback_lazytime(inode);
1189                 }
1190         } else
1191                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1192         inode->i_state &= ~dirty;
1193
1194         /*
1195          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1196          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1197          * either they see the I_DIRTY bits cleared or we see the dirtied
1198          * inode.
1199          *
1200          * I_DIRTY_PAGES is always cleared together above even if @mapping
1201          * still has dirty pages.  The flag is reinstated after smp_mb() if
1202          * necessary.  This guarantees that either __mark_inode_dirty()
1203          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1204          */
1205         smp_mb();
1206
1207         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1208                 inode->i_state |= I_DIRTY_PAGES;
1209
1210         spin_unlock(&inode->i_lock);
1211
1212         if (dirty & I_DIRTY_TIME)
1213                 mark_inode_dirty_sync(inode);
1214         /* Don't write the inode if only I_DIRTY_PAGES was set */
1215         if (dirty & ~I_DIRTY_PAGES) {
1216                 int err = write_inode(inode, wbc);
1217                 if (ret == 0)
1218                         ret = err;
1219         }
1220         trace_writeback_single_inode(inode, wbc, nr_to_write);
1221         return ret;
1222 }
1223
1224 /*
1225  * Write out an inode's dirty pages. Either the caller has an active reference
1226  * on the inode or the inode has I_WILL_FREE set.
1227  *
1228  * This function is designed to be called for writing back one inode which
1229  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1230  * and does more profound writeback list handling in writeback_sb_inodes().
1231  */
1232 static int
1233 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1234                        struct writeback_control *wbc)
1235 {
1236         int ret = 0;
1237
1238         spin_lock(&inode->i_lock);
1239         if (!atomic_read(&inode->i_count))
1240                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1241         else
1242                 WARN_ON(inode->i_state & I_WILL_FREE);
1243
1244         if (inode->i_state & I_SYNC) {
1245                 if (wbc->sync_mode != WB_SYNC_ALL)
1246                         goto out;
1247                 /*
1248                  * It's a data-integrity sync. We must wait. Since callers hold
1249                  * inode reference or inode has I_WILL_FREE set, it cannot go
1250                  * away under us.
1251                  */
1252                 __inode_wait_for_writeback(inode);
1253         }
1254         WARN_ON(inode->i_state & I_SYNC);
1255         /*
1256          * Skip inode if it is clean and we have no outstanding writeback in
1257          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1258          * function since flusher thread may be doing for example sync in
1259          * parallel and if we move the inode, it could get skipped. So here we
1260          * make sure inode is on some writeback list and leave it there unless
1261          * we have completely cleaned the inode.
1262          */
1263         if (!(inode->i_state & I_DIRTY_ALL) &&
1264             (wbc->sync_mode != WB_SYNC_ALL ||
1265              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1266                 goto out;
1267         inode->i_state |= I_SYNC;
1268         wbc_attach_and_unlock_inode(wbc, inode);
1269
1270         ret = __writeback_single_inode(inode, wbc);
1271
1272         wbc_detach_inode(wbc);
1273         spin_lock(&wb->list_lock);
1274         spin_lock(&inode->i_lock);
1275         /*
1276          * If inode is clean, remove it from writeback lists. Otherwise don't
1277          * touch it. See comment above for explanation.
1278          */
1279         if (!(inode->i_state & I_DIRTY_ALL))
1280                 inode_wb_list_del_locked(inode, wb);
1281         spin_unlock(&wb->list_lock);
1282         inode_sync_complete(inode);
1283 out:
1284         spin_unlock(&inode->i_lock);
1285         return ret;
1286 }
1287
1288 static long writeback_chunk_size(struct bdi_writeback *wb,
1289                                  struct wb_writeback_work *work)
1290 {
1291         long pages;
1292
1293         /*
1294          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1295          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1296          * here avoids calling into writeback_inodes_wb() more than once.
1297          *
1298          * The intended call sequence for WB_SYNC_ALL writeback is:
1299          *
1300          *      wb_writeback()
1301          *          writeback_sb_inodes()       <== called only once
1302          *              write_cache_pages()     <== called once for each inode
1303          *                   (quickly) tag currently dirty pages
1304          *                   (maybe slowly) sync all tagged pages
1305          */
1306         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1307                 pages = LONG_MAX;
1308         else {
1309                 pages = min(wb->avg_write_bandwidth / 2,
1310                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1311                 pages = min(pages, work->nr_pages);
1312                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1313                                    MIN_WRITEBACK_PAGES);
1314         }
1315
1316         return pages;
1317 }
1318
1319 /*
1320  * Write a portion of b_io inodes which belong to @sb.
1321  *
1322  * Return the number of pages and/or inodes written.
1323  */
1324 static long writeback_sb_inodes(struct super_block *sb,
1325                                 struct bdi_writeback *wb,
1326                                 struct wb_writeback_work *work)
1327 {
1328         struct writeback_control wbc = {
1329                 .sync_mode              = work->sync_mode,
1330                 .tagged_writepages      = work->tagged_writepages,
1331                 .for_kupdate            = work->for_kupdate,
1332                 .for_background         = work->for_background,
1333                 .for_sync               = work->for_sync,
1334                 .range_cyclic           = work->range_cyclic,
1335                 .range_start            = 0,
1336                 .range_end              = LLONG_MAX,
1337         };
1338         unsigned long start_time = jiffies;
1339         long write_chunk;
1340         long wrote = 0;  /* count both pages and inodes */
1341
1342         while (!list_empty(&wb->b_io)) {
1343                 struct inode *inode = wb_inode(wb->b_io.prev);
1344
1345                 if (inode->i_sb != sb) {
1346                         if (work->sb) {
1347                                 /*
1348                                  * We only want to write back data for this
1349                                  * superblock, move all inodes not belonging
1350                                  * to it back onto the dirty list.
1351                                  */
1352                                 redirty_tail(inode, wb);
1353                                 continue;
1354                         }
1355
1356                         /*
1357                          * The inode belongs to a different superblock.
1358                          * Bounce back to the caller to unpin this and
1359                          * pin the next superblock.
1360                          */
1361                         break;
1362                 }
1363
1364                 /*
1365                  * Don't bother with new inodes or inodes being freed, first
1366                  * kind does not need periodic writeout yet, and for the latter
1367                  * kind writeout is handled by the freer.
1368                  */
1369                 spin_lock(&inode->i_lock);
1370                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1371                         spin_unlock(&inode->i_lock);
1372                         redirty_tail(inode, wb);
1373                         continue;
1374                 }
1375                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1376                         /*
1377                          * If this inode is locked for writeback and we are not
1378                          * doing writeback-for-data-integrity, move it to
1379                          * b_more_io so that writeback can proceed with the
1380                          * other inodes on s_io.
1381                          *
1382                          * We'll have another go at writing back this inode
1383                          * when we completed a full scan of b_io.
1384                          */
1385                         spin_unlock(&inode->i_lock);
1386                         requeue_io(inode, wb);
1387                         trace_writeback_sb_inodes_requeue(inode);
1388                         continue;
1389                 }
1390                 spin_unlock(&wb->list_lock);
1391
1392                 /*
1393                  * We already requeued the inode if it had I_SYNC set and we
1394                  * are doing WB_SYNC_NONE writeback. So this catches only the
1395                  * WB_SYNC_ALL case.
1396                  */
1397                 if (inode->i_state & I_SYNC) {
1398                         /* Wait for I_SYNC. This function drops i_lock... */
1399                         inode_sleep_on_writeback(inode);
1400                         /* Inode may be gone, start again */
1401                         spin_lock(&wb->list_lock);
1402                         continue;
1403                 }
1404                 inode->i_state |= I_SYNC;
1405                 wbc_attach_and_unlock_inode(&wbc, inode);
1406
1407                 write_chunk = writeback_chunk_size(wb, work);
1408                 wbc.nr_to_write = write_chunk;
1409                 wbc.pages_skipped = 0;
1410
1411                 /*
1412                  * We use I_SYNC to pin the inode in memory. While it is set
1413                  * evict_inode() will wait so the inode cannot be freed.
1414                  */
1415                 __writeback_single_inode(inode, &wbc);
1416
1417                 wbc_detach_inode(&wbc);
1418                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1419                 wrote += write_chunk - wbc.nr_to_write;
1420                 spin_lock(&wb->list_lock);
1421                 spin_lock(&inode->i_lock);
1422                 if (!(inode->i_state & I_DIRTY_ALL))
1423                         wrote++;
1424                 requeue_inode(inode, wb, &wbc);
1425                 inode_sync_complete(inode);
1426                 spin_unlock(&inode->i_lock);
1427                 cond_resched_lock(&wb->list_lock);
1428                 /*
1429                  * bail out to wb_writeback() often enough to check
1430                  * background threshold and other termination conditions.
1431                  */
1432                 if (wrote) {
1433                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1434                                 break;
1435                         if (work->nr_pages <= 0)
1436                                 break;
1437                 }
1438         }
1439         return wrote;
1440 }
1441
1442 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1443                                   struct wb_writeback_work *work)
1444 {
1445         unsigned long start_time = jiffies;
1446         long wrote = 0;
1447
1448         while (!list_empty(&wb->b_io)) {
1449                 struct inode *inode = wb_inode(wb->b_io.prev);
1450                 struct super_block *sb = inode->i_sb;
1451
1452                 if (!trylock_super(sb)) {
1453                         /*
1454                          * trylock_super() may fail consistently due to
1455                          * s_umount being grabbed by someone else. Don't use
1456                          * requeue_io() to avoid busy retrying the inode/sb.
1457                          */
1458                         redirty_tail(inode, wb);
1459                         continue;
1460                 }
1461                 wrote += writeback_sb_inodes(sb, wb, work);
1462                 up_read(&sb->s_umount);
1463
1464                 /* refer to the same tests at the end of writeback_sb_inodes */
1465                 if (wrote) {
1466                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1467                                 break;
1468                         if (work->nr_pages <= 0)
1469                                 break;
1470                 }
1471         }
1472         /* Leave any unwritten inodes on b_io */
1473         return wrote;
1474 }
1475
1476 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1477                                 enum wb_reason reason)
1478 {
1479         struct wb_writeback_work work = {
1480                 .nr_pages       = nr_pages,
1481                 .sync_mode      = WB_SYNC_NONE,
1482                 .range_cyclic   = 1,
1483                 .reason         = reason,
1484         };
1485
1486         spin_lock(&wb->list_lock);
1487         if (list_empty(&wb->b_io))
1488                 queue_io(wb, &work);
1489         __writeback_inodes_wb(wb, &work);
1490         spin_unlock(&wb->list_lock);
1491
1492         return nr_pages - work.nr_pages;
1493 }
1494
1495 /*
1496  * Explicit flushing or periodic writeback of "old" data.
1497  *
1498  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1499  * dirtying-time in the inode's address_space.  So this periodic writeback code
1500  * just walks the superblock inode list, writing back any inodes which are
1501  * older than a specific point in time.
1502  *
1503  * Try to run once per dirty_writeback_interval.  But if a writeback event
1504  * takes longer than a dirty_writeback_interval interval, then leave a
1505  * one-second gap.
1506  *
1507  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1508  * all dirty pages if they are all attached to "old" mappings.
1509  */
1510 static long wb_writeback(struct bdi_writeback *wb,
1511                          struct wb_writeback_work *work)
1512 {
1513         unsigned long wb_start = jiffies;
1514         long nr_pages = work->nr_pages;
1515         unsigned long oldest_jif;
1516         struct inode *inode;
1517         long progress;
1518
1519         oldest_jif = jiffies;
1520         work->older_than_this = &oldest_jif;
1521
1522         spin_lock(&wb->list_lock);
1523         for (;;) {
1524                 /*
1525                  * Stop writeback when nr_pages has been consumed
1526                  */
1527                 if (work->nr_pages <= 0)
1528                         break;
1529
1530                 /*
1531                  * Background writeout and kupdate-style writeback may
1532                  * run forever. Stop them if there is other work to do
1533                  * so that e.g. sync can proceed. They'll be restarted
1534                  * after the other works are all done.
1535                  */
1536                 if ((work->for_background || work->for_kupdate) &&
1537                     !list_empty(&wb->work_list))
1538                         break;
1539
1540                 /*
1541                  * For background writeout, stop when we are below the
1542                  * background dirty threshold
1543                  */
1544                 if (work->for_background && !wb_over_bg_thresh(wb))
1545                         break;
1546
1547                 /*
1548                  * Kupdate and background works are special and we want to
1549                  * include all inodes that need writing. Livelock avoidance is
1550                  * handled by these works yielding to any other work so we are
1551                  * safe.
1552                  */
1553                 if (work->for_kupdate) {
1554                         oldest_jif = jiffies -
1555                                 msecs_to_jiffies(dirty_expire_interval * 10);
1556                 } else if (work->for_background)
1557                         oldest_jif = jiffies;
1558
1559                 trace_writeback_start(wb->bdi, work);
1560                 if (list_empty(&wb->b_io))
1561                         queue_io(wb, work);
1562                 if (work->sb)
1563                         progress = writeback_sb_inodes(work->sb, wb, work);
1564                 else
1565                         progress = __writeback_inodes_wb(wb, work);
1566                 trace_writeback_written(wb->bdi, work);
1567
1568                 wb_update_bandwidth(wb, wb_start);
1569
1570                 /*
1571                  * Did we write something? Try for more
1572                  *
1573                  * Dirty inodes are moved to b_io for writeback in batches.
1574                  * The completion of the current batch does not necessarily
1575                  * mean the overall work is done. So we keep looping as long
1576                  * as made some progress on cleaning pages or inodes.
1577                  */
1578                 if (progress)
1579                         continue;
1580                 /*
1581                  * No more inodes for IO, bail
1582                  */
1583                 if (list_empty(&wb->b_more_io))
1584                         break;
1585                 /*
1586                  * Nothing written. Wait for some inode to
1587                  * become available for writeback. Otherwise
1588                  * we'll just busyloop.
1589                  */
1590                 if (!list_empty(&wb->b_more_io))  {
1591                         trace_writeback_wait(wb->bdi, work);
1592                         inode = wb_inode(wb->b_more_io.prev);
1593                         spin_lock(&inode->i_lock);
1594                         spin_unlock(&wb->list_lock);
1595                         /* This function drops i_lock... */
1596                         inode_sleep_on_writeback(inode);
1597                         spin_lock(&wb->list_lock);
1598                 }
1599         }
1600         spin_unlock(&wb->list_lock);
1601
1602         return nr_pages - work->nr_pages;
1603 }
1604
1605 /*
1606  * Return the next wb_writeback_work struct that hasn't been processed yet.
1607  */
1608 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1609 {
1610         struct wb_writeback_work *work = NULL;
1611
1612         spin_lock_bh(&wb->work_lock);
1613         if (!list_empty(&wb->work_list)) {
1614                 work = list_entry(wb->work_list.next,
1615                                   struct wb_writeback_work, list);
1616                 list_del_init(&work->list);
1617         }
1618         spin_unlock_bh(&wb->work_lock);
1619         return work;
1620 }
1621
1622 /*
1623  * Add in the number of potentially dirty inodes, because each inode
1624  * write can dirty pagecache in the underlying blockdev.
1625  */
1626 static unsigned long get_nr_dirty_pages(void)
1627 {
1628         return global_page_state(NR_FILE_DIRTY) +
1629                 global_page_state(NR_UNSTABLE_NFS) +
1630                 get_nr_dirty_inodes();
1631 }
1632
1633 static long wb_check_background_flush(struct bdi_writeback *wb)
1634 {
1635         if (wb_over_bg_thresh(wb)) {
1636
1637                 struct wb_writeback_work work = {
1638                         .nr_pages       = LONG_MAX,
1639                         .sync_mode      = WB_SYNC_NONE,
1640                         .for_background = 1,
1641                         .range_cyclic   = 1,
1642                         .reason         = WB_REASON_BACKGROUND,
1643                 };
1644
1645                 return wb_writeback(wb, &work);
1646         }
1647
1648         return 0;
1649 }
1650
1651 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1652 {
1653         unsigned long expired;
1654         long nr_pages;
1655
1656         /*
1657          * When set to zero, disable periodic writeback
1658          */
1659         if (!dirty_writeback_interval)
1660                 return 0;
1661
1662         expired = wb->last_old_flush +
1663                         msecs_to_jiffies(dirty_writeback_interval * 10);
1664         if (time_before(jiffies, expired))
1665                 return 0;
1666
1667         wb->last_old_flush = jiffies;
1668         nr_pages = get_nr_dirty_pages();
1669
1670         if (nr_pages) {
1671                 struct wb_writeback_work work = {
1672                         .nr_pages       = nr_pages,
1673                         .sync_mode      = WB_SYNC_NONE,
1674                         .for_kupdate    = 1,
1675                         .range_cyclic   = 1,
1676                         .reason         = WB_REASON_PERIODIC,
1677                 };
1678
1679                 return wb_writeback(wb, &work);
1680         }
1681
1682         return 0;
1683 }
1684
1685 /*
1686  * Retrieve work items and do the writeback they describe
1687  */
1688 static long wb_do_writeback(struct bdi_writeback *wb)
1689 {
1690         struct wb_writeback_work *work;
1691         long wrote = 0;
1692
1693         set_bit(WB_writeback_running, &wb->state);
1694         while ((work = get_next_work_item(wb)) != NULL) {
1695                 struct wb_completion *done = work->done;
1696                 bool need_wake_up = false;
1697
1698                 trace_writeback_exec(wb->bdi, work);
1699
1700                 wrote += wb_writeback(wb, work);
1701
1702                 if (work->single_wait) {
1703                         WARN_ON_ONCE(work->auto_free);
1704                         /* paired w/ rmb in wb_wait_for_single_work() */
1705                         smp_wmb();
1706                         work->single_done = 1;
1707                         need_wake_up = true;
1708                 } else if (work->auto_free) {
1709                         kfree(work);
1710                 }
1711
1712                 if (done && atomic_dec_and_test(&done->cnt))
1713                         need_wake_up = true;
1714
1715                 if (need_wake_up)
1716                         wake_up_all(&wb->bdi->wb_waitq);
1717         }
1718
1719         /*
1720          * Check for periodic writeback, kupdated() style
1721          */
1722         wrote += wb_check_old_data_flush(wb);
1723         wrote += wb_check_background_flush(wb);
1724         clear_bit(WB_writeback_running, &wb->state);
1725
1726         return wrote;
1727 }
1728
1729 /*
1730  * Handle writeback of dirty data for the device backed by this bdi. Also
1731  * reschedules periodically and does kupdated style flushing.
1732  */
1733 void wb_workfn(struct work_struct *work)
1734 {
1735         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1736                                                 struct bdi_writeback, dwork);
1737         long pages_written;
1738
1739         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1740         current->flags |= PF_SWAPWRITE;
1741
1742         if (likely(!current_is_workqueue_rescuer() ||
1743                    !test_bit(WB_registered, &wb->state))) {
1744                 /*
1745                  * The normal path.  Keep writing back @wb until its
1746                  * work_list is empty.  Note that this path is also taken
1747                  * if @wb is shutting down even when we're running off the
1748                  * rescuer as work_list needs to be drained.
1749                  */
1750                 do {
1751                         pages_written = wb_do_writeback(wb);
1752                         trace_writeback_pages_written(pages_written);
1753                 } while (!list_empty(&wb->work_list));
1754         } else {
1755                 /*
1756                  * bdi_wq can't get enough workers and we're running off
1757                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1758                  * enough for efficient IO.
1759                  */
1760                 pages_written = writeback_inodes_wb(wb, 1024,
1761                                                     WB_REASON_FORKER_THREAD);
1762                 trace_writeback_pages_written(pages_written);
1763         }
1764
1765         if (!list_empty(&wb->work_list))
1766                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1767         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1768                 wb_wakeup_delayed(wb);
1769
1770         current->flags &= ~PF_SWAPWRITE;
1771 }
1772
1773 /*
1774  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1775  * the whole world.
1776  */
1777 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1778 {
1779         struct backing_dev_info *bdi;
1780
1781         if (!nr_pages)
1782                 nr_pages = get_nr_dirty_pages();
1783
1784         rcu_read_lock();
1785         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1786                 struct bdi_writeback *wb;
1787                 struct wb_iter iter;
1788
1789                 if (!bdi_has_dirty_io(bdi))
1790                         continue;
1791
1792                 bdi_for_each_wb(wb, bdi, &iter, 0)
1793                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1794                                            false, reason);
1795         }
1796         rcu_read_unlock();
1797 }
1798
1799 /*
1800  * Wake up bdi's periodically to make sure dirtytime inodes gets
1801  * written back periodically.  We deliberately do *not* check the
1802  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1803  * kernel to be constantly waking up once there are any dirtytime
1804  * inodes on the system.  So instead we define a separate delayed work
1805  * function which gets called much more rarely.  (By default, only
1806  * once every 12 hours.)
1807  *
1808  * If there is any other write activity going on in the file system,
1809  * this function won't be necessary.  But if the only thing that has
1810  * happened on the file system is a dirtytime inode caused by an atime
1811  * update, we need this infrastructure below to make sure that inode
1812  * eventually gets pushed out to disk.
1813  */
1814 static void wakeup_dirtytime_writeback(struct work_struct *w);
1815 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1816
1817 static void wakeup_dirtytime_writeback(struct work_struct *w)
1818 {
1819         struct backing_dev_info *bdi;
1820
1821         rcu_read_lock();
1822         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1823                 struct bdi_writeback *wb;
1824                 struct wb_iter iter;
1825
1826                 bdi_for_each_wb(wb, bdi, &iter, 0)
1827                         if (!list_empty(&bdi->wb.b_dirty_time))
1828                                 wb_wakeup(&bdi->wb);
1829         }
1830         rcu_read_unlock();
1831         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1832 }
1833
1834 static int __init start_dirtytime_writeback(void)
1835 {
1836         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1837         return 0;
1838 }
1839 __initcall(start_dirtytime_writeback);
1840
1841 int dirtytime_interval_handler(struct ctl_table *table, int write,
1842                                void __user *buffer, size_t *lenp, loff_t *ppos)
1843 {
1844         int ret;
1845
1846         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1847         if (ret == 0 && write)
1848                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1849         return ret;
1850 }
1851
1852 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1853 {
1854         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1855                 struct dentry *dentry;
1856                 const char *name = "?";
1857
1858                 dentry = d_find_alias(inode);
1859                 if (dentry) {
1860                         spin_lock(&dentry->d_lock);
1861                         name = (const char *) dentry->d_name.name;
1862                 }
1863                 printk(KERN_DEBUG
1864                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1865                        current->comm, task_pid_nr(current), inode->i_ino,
1866                        name, inode->i_sb->s_id);
1867                 if (dentry) {
1868                         spin_unlock(&dentry->d_lock);
1869                         dput(dentry);
1870                 }
1871         }
1872 }
1873
1874 /**
1875  *      __mark_inode_dirty -    internal function
1876  *      @inode: inode to mark
1877  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1878  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1879  *      mark_inode_dirty_sync.
1880  *
1881  * Put the inode on the super block's dirty list.
1882  *
1883  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1884  * dirty list only if it is hashed or if it refers to a blockdev.
1885  * If it was not hashed, it will never be added to the dirty list
1886  * even if it is later hashed, as it will have been marked dirty already.
1887  *
1888  * In short, make sure you hash any inodes _before_ you start marking
1889  * them dirty.
1890  *
1891  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1892  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1893  * the kernel-internal blockdev inode represents the dirtying time of the
1894  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1895  * page->mapping->host, so the page-dirtying time is recorded in the internal
1896  * blockdev inode.
1897  */
1898 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1899 void __mark_inode_dirty(struct inode *inode, int flags)
1900 {
1901         struct super_block *sb = inode->i_sb;
1902         int dirtytime;
1903
1904         trace_writeback_mark_inode_dirty(inode, flags);
1905
1906         /*
1907          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1908          * dirty the inode itself
1909          */
1910         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1911                 trace_writeback_dirty_inode_start(inode, flags);
1912
1913                 if (sb->s_op->dirty_inode)
1914                         sb->s_op->dirty_inode(inode, flags);
1915
1916                 trace_writeback_dirty_inode(inode, flags);
1917         }
1918         if (flags & I_DIRTY_INODE)
1919                 flags &= ~I_DIRTY_TIME;
1920         dirtytime = flags & I_DIRTY_TIME;
1921
1922         /*
1923          * Paired with smp_mb() in __writeback_single_inode() for the
1924          * following lockless i_state test.  See there for details.
1925          */
1926         smp_mb();
1927
1928         if (((inode->i_state & flags) == flags) ||
1929             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1930                 return;
1931
1932         if (unlikely(block_dump))
1933                 block_dump___mark_inode_dirty(inode);
1934
1935         spin_lock(&inode->i_lock);
1936         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1937                 goto out_unlock_inode;
1938         if ((inode->i_state & flags) != flags) {
1939                 const int was_dirty = inode->i_state & I_DIRTY;
1940
1941                 inode_attach_wb(inode, NULL);
1942
1943                 if (flags & I_DIRTY_INODE)
1944                         inode->i_state &= ~I_DIRTY_TIME;
1945                 inode->i_state |= flags;
1946
1947                 /*
1948                  * If the inode is being synced, just update its dirty state.
1949                  * The unlocker will place the inode on the appropriate
1950                  * superblock list, based upon its state.
1951                  */
1952                 if (inode->i_state & I_SYNC)
1953                         goto out_unlock_inode;
1954
1955                 /*
1956                  * Only add valid (hashed) inodes to the superblock's
1957                  * dirty list.  Add blockdev inodes as well.
1958                  */
1959                 if (!S_ISBLK(inode->i_mode)) {
1960                         if (inode_unhashed(inode))
1961                                 goto out_unlock_inode;
1962                 }
1963                 if (inode->i_state & I_FREEING)
1964                         goto out_unlock_inode;
1965
1966                 /*
1967                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1968                  * reposition it (that would break b_dirty time-ordering).
1969                  */
1970                 if (!was_dirty) {
1971                         struct bdi_writeback *wb;
1972                         struct list_head *dirty_list;
1973                         bool wakeup_bdi = false;
1974
1975                         wb = locked_inode_to_wb_and_lock_list(inode);
1976
1977                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1978                              !test_bit(WB_registered, &wb->state),
1979                              "bdi-%s not registered\n", wb->bdi->name);
1980
1981                         inode->dirtied_when = jiffies;
1982                         if (dirtytime)
1983                                 inode->dirtied_time_when = jiffies;
1984
1985                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1986                                 dirty_list = &wb->b_dirty;
1987                         else
1988                                 dirty_list = &wb->b_dirty_time;
1989
1990                         wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1991                                                                dirty_list);
1992
1993                         spin_unlock(&wb->list_lock);
1994                         trace_writeback_dirty_inode_enqueue(inode);
1995
1996                         /*
1997                          * If this is the first dirty inode for this bdi,
1998                          * we have to wake-up the corresponding bdi thread
1999                          * to make sure background write-back happens
2000                          * later.
2001                          */
2002                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2003                                 wb_wakeup_delayed(wb);
2004                         return;
2005                 }
2006         }
2007 out_unlock_inode:
2008         spin_unlock(&inode->i_lock);
2009
2010 }
2011 EXPORT_SYMBOL(__mark_inode_dirty);
2012
2013 static void wait_sb_inodes(struct super_block *sb)
2014 {
2015         struct inode *inode, *old_inode = NULL;
2016
2017         /*
2018          * We need to be protected against the filesystem going from
2019          * r/o to r/w or vice versa.
2020          */
2021         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2022
2023         spin_lock(&inode_sb_list_lock);
2024
2025         /*
2026          * Data integrity sync. Must wait for all pages under writeback,
2027          * because there may have been pages dirtied before our sync
2028          * call, but which had writeout started before we write it out.
2029          * In which case, the inode may not be on the dirty list, but
2030          * we still have to wait for that writeout.
2031          */
2032         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2033                 struct address_space *mapping = inode->i_mapping;
2034
2035                 spin_lock(&inode->i_lock);
2036                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2037                     (mapping->nrpages == 0)) {
2038                         spin_unlock(&inode->i_lock);
2039                         continue;
2040                 }
2041                 __iget(inode);
2042                 spin_unlock(&inode->i_lock);
2043                 spin_unlock(&inode_sb_list_lock);
2044
2045                 /*
2046                  * We hold a reference to 'inode' so it couldn't have been
2047                  * removed from s_inodes list while we dropped the
2048                  * inode_sb_list_lock.  We cannot iput the inode now as we can
2049                  * be holding the last reference and we cannot iput it under
2050                  * inode_sb_list_lock. So we keep the reference and iput it
2051                  * later.
2052                  */
2053                 iput(old_inode);
2054                 old_inode = inode;
2055
2056                 filemap_fdatawait(mapping);
2057
2058                 cond_resched();
2059
2060                 spin_lock(&inode_sb_list_lock);
2061         }
2062         spin_unlock(&inode_sb_list_lock);
2063         iput(old_inode);
2064 }
2065
2066 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2067                                      enum wb_reason reason, bool skip_if_busy)
2068 {
2069         DEFINE_WB_COMPLETION_ONSTACK(done);
2070         struct wb_writeback_work work = {
2071                 .sb                     = sb,
2072                 .sync_mode              = WB_SYNC_NONE,
2073                 .tagged_writepages      = 1,
2074                 .done                   = &done,
2075                 .nr_pages               = nr,
2076                 .reason                 = reason,
2077         };
2078         struct backing_dev_info *bdi = sb->s_bdi;
2079
2080         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2081                 return;
2082         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2083
2084         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2085         wb_wait_for_completion(bdi, &done);
2086 }
2087
2088 /**
2089  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2090  * @sb: the superblock
2091  * @nr: the number of pages to write
2092  * @reason: reason why some writeback work initiated
2093  *
2094  * Start writeback on some inodes on this super_block. No guarantees are made
2095  * on how many (if any) will be written, and this function does not wait
2096  * for IO completion of submitted IO.
2097  */
2098 void writeback_inodes_sb_nr(struct super_block *sb,
2099                             unsigned long nr,
2100                             enum wb_reason reason)
2101 {
2102         __writeback_inodes_sb_nr(sb, nr, reason, false);
2103 }
2104 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2105
2106 /**
2107  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2108  * @sb: the superblock
2109  * @reason: reason why some writeback work was initiated
2110  *
2111  * Start writeback on some inodes on this super_block. No guarantees are made
2112  * on how many (if any) will be written, and this function does not wait
2113  * for IO completion of submitted IO.
2114  */
2115 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2116 {
2117         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2118 }
2119 EXPORT_SYMBOL(writeback_inodes_sb);
2120
2121 /**
2122  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2123  * @sb: the superblock
2124  * @nr: the number of pages to write
2125  * @reason: the reason of writeback
2126  *
2127  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2128  * Returns 1 if writeback was started, 0 if not.
2129  */
2130 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2131                                    enum wb_reason reason)
2132 {
2133         if (!down_read_trylock(&sb->s_umount))
2134                 return false;
2135
2136         __writeback_inodes_sb_nr(sb, nr, reason, true);
2137         up_read(&sb->s_umount);
2138         return true;
2139 }
2140 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2141
2142 /**
2143  * try_to_writeback_inodes_sb - try to start writeback if none underway
2144  * @sb: the superblock
2145  * @reason: reason why some writeback work was initiated
2146  *
2147  * Implement by try_to_writeback_inodes_sb_nr()
2148  * Returns 1 if writeback was started, 0 if not.
2149  */
2150 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2151 {
2152         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2153 }
2154 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2155
2156 /**
2157  * sync_inodes_sb       -       sync sb inode pages
2158  * @sb: the superblock
2159  *
2160  * This function writes and waits on any dirty inode belonging to this
2161  * super_block.
2162  */
2163 void sync_inodes_sb(struct super_block *sb)
2164 {
2165         DEFINE_WB_COMPLETION_ONSTACK(done);
2166         struct wb_writeback_work work = {
2167                 .sb             = sb,
2168                 .sync_mode      = WB_SYNC_ALL,
2169                 .nr_pages       = LONG_MAX,
2170                 .range_cyclic   = 0,
2171                 .done           = &done,
2172                 .reason         = WB_REASON_SYNC,
2173                 .for_sync       = 1,
2174         };
2175         struct backing_dev_info *bdi = sb->s_bdi;
2176
2177         /* Nothing to do? */
2178         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2179                 return;
2180         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2181
2182         bdi_split_work_to_wbs(bdi, &work, false);
2183         wb_wait_for_completion(bdi, &done);
2184
2185         wait_sb_inodes(sb);
2186 }
2187 EXPORT_SYMBOL(sync_inodes_sb);
2188
2189 /**
2190  * write_inode_now      -       write an inode to disk
2191  * @inode: inode to write to disk
2192  * @sync: whether the write should be synchronous or not
2193  *
2194  * This function commits an inode to disk immediately if it is dirty. This is
2195  * primarily needed by knfsd.
2196  *
2197  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2198  */
2199 int write_inode_now(struct inode *inode, int sync)
2200 {
2201         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2202         struct writeback_control wbc = {
2203                 .nr_to_write = LONG_MAX,
2204                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2205                 .range_start = 0,
2206                 .range_end = LLONG_MAX,
2207         };
2208
2209         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2210                 wbc.nr_to_write = 0;
2211
2212         might_sleep();
2213         return writeback_single_inode(inode, wb, &wbc);
2214 }
2215 EXPORT_SYMBOL(write_inode_now);
2216
2217 /**
2218  * sync_inode - write an inode and its pages to disk.
2219  * @inode: the inode to sync
2220  * @wbc: controls the writeback mode
2221  *
2222  * sync_inode() will write an inode and its pages to disk.  It will also
2223  * correctly update the inode on its superblock's dirty inode lists and will
2224  * update inode->i_state.
2225  *
2226  * The caller must have a ref on the inode.
2227  */
2228 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2229 {
2230         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2231 }
2232 EXPORT_SYMBOL(sync_inode);
2233
2234 /**
2235  * sync_inode_metadata - write an inode to disk
2236  * @inode: the inode to sync
2237  * @wait: wait for I/O to complete.
2238  *
2239  * Write an inode to disk and adjust its dirty state after completion.
2240  *
2241  * Note: only writes the actual inode, no associated data or other metadata.
2242  */
2243 int sync_inode_metadata(struct inode *inode, int wait)
2244 {
2245         struct writeback_control wbc = {
2246                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2247                 .nr_to_write = 0, /* metadata-only */
2248         };
2249
2250         return sync_inode(inode, &wbc);
2251 }
2252 EXPORT_SYMBOL(sync_inode_metadata);