5f2c682896105653d3fe21da537ab03a658487f9
[firefly-linux-kernel-4.4.55.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         enum wb_reason reason;          /* why was writeback initiated? */
50
51         struct list_head list;          /* pending work list */
52         struct completion *done;        /* set if the caller waits */
53 };
54
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69         return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74         struct super_block *sb = inode->i_sb;
75
76         if (strcmp(sb->s_type->name, "bdev") == 0)
77                 return inode->i_mapping->backing_dev_info;
78
79         return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84         return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /*
88  * Include the creation of the trace points after defining the
89  * wb_writeback_work structure and inline functions so that the definition
90  * remains local to this file.
91  */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98         if (bdi->wb.task) {
99                 wake_up_process(bdi->wb.task);
100         } else {
101                 /*
102                  * The bdi thread isn't there, wake up the forker thread which
103                  * will create and run it.
104                  */
105                 wake_up_process(default_backing_dev_info.wb.task);
106         }
107 }
108
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110                            struct wb_writeback_work *work)
111 {
112         trace_writeback_queue(bdi, work);
113
114         spin_lock_bh(&bdi->wb_lock);
115         list_add_tail(&work->list, &bdi->work_list);
116         if (!bdi->wb.task)
117                 trace_writeback_nothread(bdi, work);
118         bdi_wakeup_flusher(bdi);
119         spin_unlock_bh(&bdi->wb_lock);
120 }
121
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124                       bool range_cyclic, enum wb_reason reason)
125 {
126         struct wb_writeback_work *work;
127
128         /*
129          * This is WB_SYNC_NONE writeback, so if allocation fails just
130          * wakeup the thread for old dirty data writeback
131          */
132         work = kzalloc(sizeof(*work), GFP_ATOMIC);
133         if (!work) {
134                 if (bdi->wb.task) {
135                         trace_writeback_nowork(bdi);
136                         wake_up_process(bdi->wb.task);
137                 }
138                 return;
139         }
140
141         work->sync_mode = WB_SYNC_NONE;
142         work->nr_pages  = nr_pages;
143         work->range_cyclic = range_cyclic;
144         work->reason    = reason;
145
146         bdi_queue_work(bdi, work);
147 }
148
149 /**
150  * bdi_start_writeback - start writeback
151  * @bdi: the backing device to write from
152  * @nr_pages: the number of pages to write
153  * @reason: reason why some writeback work was initiated
154  *
155  * Description:
156  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
157  *   started when this function returns, we make no guarantees on
158  *   completion. Caller need not hold sb s_umount semaphore.
159  *
160  */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162                         enum wb_reason reason)
163 {
164         __bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179         /*
180          * We just wake up the flusher thread. It will perform background
181          * writeback as soon as there is no other work to do.
182          */
183         trace_writeback_wake_background(bdi);
184         spin_lock_bh(&bdi->wb_lock);
185         bdi_wakeup_flusher(bdi);
186         spin_unlock_bh(&bdi->wb_lock);
187 }
188
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
192 void inode_wb_list_del(struct inode *inode)
193 {
194         struct backing_dev_info *bdi = inode_to_bdi(inode);
195
196         spin_lock(&bdi->wb.list_lock);
197         list_del_init(&inode->i_wb_list);
198         spin_unlock(&bdi->wb.list_lock);
199 }
200
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212         assert_spin_locked(&wb->list_lock);
213         if (!list_empty(&wb->b_dirty)) {
214                 struct inode *tail;
215
216                 tail = wb_inode(wb->b_dirty.next);
217                 if (time_before(inode->dirtied_when, tail->dirtied_when))
218                         inode->dirtied_when = jiffies;
219         }
220         list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228         assert_spin_locked(&wb->list_lock);
229         list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231
232 static void inode_sync_complete(struct inode *inode)
233 {
234         inode->i_state &= ~I_SYNC;
235         /* Waiters must see I_SYNC cleared before being woken up */
236         smp_mb();
237         wake_up_bit(&inode->i_state, __I_SYNC);
238 }
239
240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
241 {
242         bool ret = time_after(inode->dirtied_when, t);
243 #ifndef CONFIG_64BIT
244         /*
245          * For inodes being constantly redirtied, dirtied_when can get stuck.
246          * It _appears_ to be in the future, but is actually in distant past.
247          * This test is necessary to prevent such wrapped-around relative times
248          * from permanently stopping the whole bdi writeback.
249          */
250         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
251 #endif
252         return ret;
253 }
254
255 /*
256  * Move expired (dirtied after work->older_than_this) dirty inodes from
257  * @delaying_queue to @dispatch_queue.
258  */
259 static int move_expired_inodes(struct list_head *delaying_queue,
260                                struct list_head *dispatch_queue,
261                                struct wb_writeback_work *work)
262 {
263         LIST_HEAD(tmp);
264         struct list_head *pos, *node;
265         struct super_block *sb = NULL;
266         struct inode *inode;
267         int do_sb_sort = 0;
268         int moved = 0;
269
270         while (!list_empty(delaying_queue)) {
271                 inode = wb_inode(delaying_queue->prev);
272                 if (work->older_than_this &&
273                     inode_dirtied_after(inode, *work->older_than_this))
274                         break;
275                 if (sb && sb != inode->i_sb)
276                         do_sb_sort = 1;
277                 sb = inode->i_sb;
278                 list_move(&inode->i_wb_list, &tmp);
279                 moved++;
280         }
281
282         /* just one sb in list, splice to dispatch_queue and we're done */
283         if (!do_sb_sort) {
284                 list_splice(&tmp, dispatch_queue);
285                 goto out;
286         }
287
288         /* Move inodes from one superblock together */
289         while (!list_empty(&tmp)) {
290                 sb = wb_inode(tmp.prev)->i_sb;
291                 list_for_each_prev_safe(pos, node, &tmp) {
292                         inode = wb_inode(pos);
293                         if (inode->i_sb == sb)
294                                 list_move(&inode->i_wb_list, dispatch_queue);
295                 }
296         }
297 out:
298         return moved;
299 }
300
301 /*
302  * Queue all expired dirty inodes for io, eldest first.
303  * Before
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    gf         edc     BA
306  * After
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    g          fBAedc
309  *                                           |
310  *                                           +--> dequeue for IO
311  */
312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
313 {
314         int moved;
315         assert_spin_locked(&wb->list_lock);
316         list_splice_init(&wb->b_more_io, &wb->b_io);
317         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
318         trace_writeback_queue_io(wb, work, moved);
319 }
320
321 static int write_inode(struct inode *inode, struct writeback_control *wbc)
322 {
323         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
324                 return inode->i_sb->s_op->write_inode(inode, wbc);
325         return 0;
326 }
327
328 /*
329  * Wait for writeback on an inode to complete.
330  */
331 static void inode_wait_for_writeback(struct inode *inode)
332 {
333         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
334         wait_queue_head_t *wqh;
335
336         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
337         while (inode->i_state & I_SYNC) {
338                 spin_unlock(&inode->i_lock);
339                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340                 spin_lock(&inode->i_lock);
341         }
342 }
343
344 /*
345  * Find proper writeback list for the inode depending on its current state and
346  * possibly also change of its state while we were doing writeback.  Here we
347  * handle things such as livelock prevention or fairness of writeback among
348  * inodes. This function can be called only by flusher thread - noone else
349  * processes all inodes in writeback lists and requeueing inodes behind flusher
350  * thread's back can have unexpected consequences.
351  */
352 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
353                           struct writeback_control *wbc)
354 {
355         if (inode->i_state & I_FREEING)
356                 return;
357
358         /*
359          * Sync livelock prevention. Each inode is tagged and synced in one
360          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
361          * the dirty time to prevent enqueue and sync it again.
362          */
363         if ((inode->i_state & I_DIRTY) &&
364             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
365                 inode->dirtied_when = jiffies;
366
367         if (wbc->pages_skipped) {
368                 /*
369                  * writeback is not making progress due to locked
370                  * buffers. Skip this inode for now.
371                  */
372                 redirty_tail(inode, wb);
373                 return;
374         }
375
376         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
377                 /*
378                  * We didn't write back all the pages.  nfs_writepages()
379                  * sometimes bales out without doing anything.
380                  */
381                 if (wbc->nr_to_write <= 0) {
382                         /* Slice used up. Queue for next turn. */
383                         requeue_io(inode, wb);
384                 } else {
385                         /*
386                          * Writeback blocked by something other than
387                          * congestion. Delay the inode for some time to
388                          * avoid spinning on the CPU (100% iowait)
389                          * retrying writeback of the dirty page/inode
390                          * that cannot be performed immediately.
391                          */
392                         redirty_tail(inode, wb);
393                 }
394         } else if (inode->i_state & I_DIRTY) {
395                 /*
396                  * Filesystems can dirty the inode during writeback operations,
397                  * such as delayed allocation during submission or metadata
398                  * updates after data IO completion.
399                  */
400                 redirty_tail(inode, wb);
401         } else {
402                 /* The inode is clean. Remove from writeback lists. */
403                 list_del_init(&inode->i_wb_list);
404         }
405 }
406
407 /*
408  * Write out an inode and its dirty pages. Do not update the writeback list
409  * linkage. That is left to the caller. The caller is also responsible for
410  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
411  */
412 static int
413 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
414                          struct writeback_control *wbc)
415 {
416         struct address_space *mapping = inode->i_mapping;
417         long nr_to_write = wbc->nr_to_write;
418         unsigned dirty;
419         int ret;
420
421         WARN_ON(!(inode->i_state & I_SYNC));
422
423         ret = do_writepages(mapping, wbc);
424
425         /*
426          * Make sure to wait on the data before writing out the metadata.
427          * This is important for filesystems that modify metadata on data
428          * I/O completion.
429          */
430         if (wbc->sync_mode == WB_SYNC_ALL) {
431                 int err = filemap_fdatawait(mapping);
432                 if (ret == 0)
433                         ret = err;
434         }
435
436         /*
437          * Some filesystems may redirty the inode during the writeback
438          * due to delalloc, clear dirty metadata flags right before
439          * write_inode()
440          */
441         spin_lock(&inode->i_lock);
442         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
443         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
444                 inode->i_state &= ~I_DIRTY_PAGES;
445         dirty = inode->i_state & I_DIRTY;
446         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
447         spin_unlock(&inode->i_lock);
448         /* Don't write the inode if only I_DIRTY_PAGES was set */
449         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
450                 int err = write_inode(inode, wbc);
451                 if (ret == 0)
452                         ret = err;
453         }
454         trace_writeback_single_inode(inode, wbc, nr_to_write);
455         return ret;
456 }
457
458 /*
459  * Write out an inode's dirty pages. Either the caller has an active reference
460  * on the inode or the inode has I_WILL_FREE set.
461  *
462  * This function is designed to be called for writing back one inode which
463  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
464  * and does more profound writeback list handling in writeback_sb_inodes().
465  */
466 static int
467 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
468                        struct writeback_control *wbc)
469 {
470         int ret = 0;
471
472         spin_lock(&inode->i_lock);
473         if (!atomic_read(&inode->i_count))
474                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
475         else
476                 WARN_ON(inode->i_state & I_WILL_FREE);
477
478         if (inode->i_state & I_SYNC) {
479                 if (wbc->sync_mode != WB_SYNC_ALL)
480                         goto out;
481                 /*
482                  * It's a data-integrity sync.  We must wait.
483                  */
484                 inode_wait_for_writeback(inode);
485         }
486         WARN_ON(inode->i_state & I_SYNC);
487         /*
488          * Skip inode if it is clean. We don't want to mess with writeback
489          * lists in this function since flusher thread may be doing for example
490          * sync in parallel and if we move the inode, it could get skipped. So
491          * here we make sure inode is on some writeback list and leave it there
492          * unless we have completely cleaned the inode.
493          */
494         if (!(inode->i_state & I_DIRTY))
495                 goto out;
496         inode->i_state |= I_SYNC;
497         spin_unlock(&inode->i_lock);
498
499         ret = __writeback_single_inode(inode, wb, wbc);
500
501         spin_lock(&wb->list_lock);
502         spin_lock(&inode->i_lock);
503         /*
504          * If inode is clean, remove it from writeback lists. Otherwise don't
505          * touch it. See comment above for explanation.
506          */
507         if (!(inode->i_state & I_DIRTY))
508                 list_del_init(&inode->i_wb_list);
509         spin_unlock(&wb->list_lock);
510         inode_sync_complete(inode);
511 out:
512         spin_unlock(&inode->i_lock);
513         return ret;
514 }
515
516 static long writeback_chunk_size(struct backing_dev_info *bdi,
517                                  struct wb_writeback_work *work)
518 {
519         long pages;
520
521         /*
522          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
523          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
524          * here avoids calling into writeback_inodes_wb() more than once.
525          *
526          * The intended call sequence for WB_SYNC_ALL writeback is:
527          *
528          *      wb_writeback()
529          *          writeback_sb_inodes()       <== called only once
530          *              write_cache_pages()     <== called once for each inode
531          *                   (quickly) tag currently dirty pages
532          *                   (maybe slowly) sync all tagged pages
533          */
534         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
535                 pages = LONG_MAX;
536         else {
537                 pages = min(bdi->avg_write_bandwidth / 2,
538                             global_dirty_limit / DIRTY_SCOPE);
539                 pages = min(pages, work->nr_pages);
540                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
541                                    MIN_WRITEBACK_PAGES);
542         }
543
544         return pages;
545 }
546
547 /*
548  * Write a portion of b_io inodes which belong to @sb.
549  *
550  * If @only_this_sb is true, then find and write all such
551  * inodes. Otherwise write only ones which go sequentially
552  * in reverse order.
553  *
554  * Return the number of pages and/or inodes written.
555  */
556 static long writeback_sb_inodes(struct super_block *sb,
557                                 struct bdi_writeback *wb,
558                                 struct wb_writeback_work *work)
559 {
560         struct writeback_control wbc = {
561                 .sync_mode              = work->sync_mode,
562                 .tagged_writepages      = work->tagged_writepages,
563                 .for_kupdate            = work->for_kupdate,
564                 .for_background         = work->for_background,
565                 .range_cyclic           = work->range_cyclic,
566                 .range_start            = 0,
567                 .range_end              = LLONG_MAX,
568         };
569         unsigned long start_time = jiffies;
570         long write_chunk;
571         long wrote = 0;  /* count both pages and inodes */
572
573         while (!list_empty(&wb->b_io)) {
574                 struct inode *inode = wb_inode(wb->b_io.prev);
575
576                 if (inode->i_sb != sb) {
577                         if (work->sb) {
578                                 /*
579                                  * We only want to write back data for this
580                                  * superblock, move all inodes not belonging
581                                  * to it back onto the dirty list.
582                                  */
583                                 redirty_tail(inode, wb);
584                                 continue;
585                         }
586
587                         /*
588                          * The inode belongs to a different superblock.
589                          * Bounce back to the caller to unpin this and
590                          * pin the next superblock.
591                          */
592                         break;
593                 }
594
595                 /*
596                  * Don't bother with new inodes or inodes beeing freed, first
597                  * kind does not need peridic writeout yet, and for the latter
598                  * kind writeout is handled by the freer.
599                  */
600                 spin_lock(&inode->i_lock);
601                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
602                         spin_unlock(&inode->i_lock);
603                         redirty_tail(inode, wb);
604                         continue;
605                 }
606                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
607                         /*
608                          * If this inode is locked for writeback and we are not
609                          * doing writeback-for-data-integrity, move it to
610                          * b_more_io so that writeback can proceed with the
611                          * other inodes on s_io.
612                          *
613                          * We'll have another go at writing back this inode
614                          * when we completed a full scan of b_io.
615                          */
616                         spin_unlock(&inode->i_lock);
617                         requeue_io(inode, wb);
618                         trace_writeback_sb_inodes_requeue(inode);
619                         continue;
620                 }
621                 spin_unlock(&wb->list_lock);
622
623                 __iget(inode);
624                 /*
625                  * We already requeued the inode if it had I_SYNC set and we
626                  * are doing WB_SYNC_NONE writeback. So this catches only the
627                  * WB_SYNC_ALL case.
628                  */
629                 if (inode->i_state & I_SYNC)
630                         inode_wait_for_writeback(inode);
631                 inode->i_state |= I_SYNC;
632                 spin_unlock(&inode->i_lock);
633                 write_chunk = writeback_chunk_size(wb->bdi, work);
634                 wbc.nr_to_write = write_chunk;
635                 wbc.pages_skipped = 0;
636
637                 __writeback_single_inode(inode, wb, &wbc);
638
639                 work->nr_pages -= write_chunk - wbc.nr_to_write;
640                 wrote += write_chunk - wbc.nr_to_write;
641                 spin_lock(&wb->list_lock);
642                 spin_lock(&inode->i_lock);
643                 if (!(inode->i_state & I_DIRTY))
644                         wrote++;
645                 requeue_inode(inode, wb, &wbc);
646                 inode_sync_complete(inode);
647                 spin_unlock(&inode->i_lock);
648                 spin_unlock(&wb->list_lock);
649                 iput(inode);
650                 cond_resched();
651                 spin_lock(&wb->list_lock);
652                 /*
653                  * bail out to wb_writeback() often enough to check
654                  * background threshold and other termination conditions.
655                  */
656                 if (wrote) {
657                         if (time_is_before_jiffies(start_time + HZ / 10UL))
658                                 break;
659                         if (work->nr_pages <= 0)
660                                 break;
661                 }
662         }
663         return wrote;
664 }
665
666 static long __writeback_inodes_wb(struct bdi_writeback *wb,
667                                   struct wb_writeback_work *work)
668 {
669         unsigned long start_time = jiffies;
670         long wrote = 0;
671
672         while (!list_empty(&wb->b_io)) {
673                 struct inode *inode = wb_inode(wb->b_io.prev);
674                 struct super_block *sb = inode->i_sb;
675
676                 if (!grab_super_passive(sb)) {
677                         /*
678                          * grab_super_passive() may fail consistently due to
679                          * s_umount being grabbed by someone else. Don't use
680                          * requeue_io() to avoid busy retrying the inode/sb.
681                          */
682                         redirty_tail(inode, wb);
683                         continue;
684                 }
685                 wrote += writeback_sb_inodes(sb, wb, work);
686                 drop_super(sb);
687
688                 /* refer to the same tests at the end of writeback_sb_inodes */
689                 if (wrote) {
690                         if (time_is_before_jiffies(start_time + HZ / 10UL))
691                                 break;
692                         if (work->nr_pages <= 0)
693                                 break;
694                 }
695         }
696         /* Leave any unwritten inodes on b_io */
697         return wrote;
698 }
699
700 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
701                                 enum wb_reason reason)
702 {
703         struct wb_writeback_work work = {
704                 .nr_pages       = nr_pages,
705                 .sync_mode      = WB_SYNC_NONE,
706                 .range_cyclic   = 1,
707                 .reason         = reason,
708         };
709
710         spin_lock(&wb->list_lock);
711         if (list_empty(&wb->b_io))
712                 queue_io(wb, &work);
713         __writeback_inodes_wb(wb, &work);
714         spin_unlock(&wb->list_lock);
715
716         return nr_pages - work.nr_pages;
717 }
718
719 static bool over_bground_thresh(struct backing_dev_info *bdi)
720 {
721         unsigned long background_thresh, dirty_thresh;
722
723         global_dirty_limits(&background_thresh, &dirty_thresh);
724
725         if (global_page_state(NR_FILE_DIRTY) +
726             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
727                 return true;
728
729         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
730                                 bdi_dirty_limit(bdi, background_thresh))
731                 return true;
732
733         return false;
734 }
735
736 /*
737  * Called under wb->list_lock. If there are multiple wb per bdi,
738  * only the flusher working on the first wb should do it.
739  */
740 static void wb_update_bandwidth(struct bdi_writeback *wb,
741                                 unsigned long start_time)
742 {
743         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
744 }
745
746 /*
747  * Explicit flushing or periodic writeback of "old" data.
748  *
749  * Define "old": the first time one of an inode's pages is dirtied, we mark the
750  * dirtying-time in the inode's address_space.  So this periodic writeback code
751  * just walks the superblock inode list, writing back any inodes which are
752  * older than a specific point in time.
753  *
754  * Try to run once per dirty_writeback_interval.  But if a writeback event
755  * takes longer than a dirty_writeback_interval interval, then leave a
756  * one-second gap.
757  *
758  * older_than_this takes precedence over nr_to_write.  So we'll only write back
759  * all dirty pages if they are all attached to "old" mappings.
760  */
761 static long wb_writeback(struct bdi_writeback *wb,
762                          struct wb_writeback_work *work)
763 {
764         unsigned long wb_start = jiffies;
765         long nr_pages = work->nr_pages;
766         unsigned long oldest_jif;
767         struct inode *inode;
768         long progress;
769
770         oldest_jif = jiffies;
771         work->older_than_this = &oldest_jif;
772
773         spin_lock(&wb->list_lock);
774         for (;;) {
775                 /*
776                  * Stop writeback when nr_pages has been consumed
777                  */
778                 if (work->nr_pages <= 0)
779                         break;
780
781                 /*
782                  * Background writeout and kupdate-style writeback may
783                  * run forever. Stop them if there is other work to do
784                  * so that e.g. sync can proceed. They'll be restarted
785                  * after the other works are all done.
786                  */
787                 if ((work->for_background || work->for_kupdate) &&
788                     !list_empty(&wb->bdi->work_list))
789                         break;
790
791                 /*
792                  * For background writeout, stop when we are below the
793                  * background dirty threshold
794                  */
795                 if (work->for_background && !over_bground_thresh(wb->bdi))
796                         break;
797
798                 /*
799                  * Kupdate and background works are special and we want to
800                  * include all inodes that need writing. Livelock avoidance is
801                  * handled by these works yielding to any other work so we are
802                  * safe.
803                  */
804                 if (work->for_kupdate) {
805                         oldest_jif = jiffies -
806                                 msecs_to_jiffies(dirty_expire_interval * 10);
807                 } else if (work->for_background)
808                         oldest_jif = jiffies;
809
810                 trace_writeback_start(wb->bdi, work);
811                 if (list_empty(&wb->b_io))
812                         queue_io(wb, work);
813                 if (work->sb)
814                         progress = writeback_sb_inodes(work->sb, wb, work);
815                 else
816                         progress = __writeback_inodes_wb(wb, work);
817                 trace_writeback_written(wb->bdi, work);
818
819                 wb_update_bandwidth(wb, wb_start);
820
821                 /*
822                  * Did we write something? Try for more
823                  *
824                  * Dirty inodes are moved to b_io for writeback in batches.
825                  * The completion of the current batch does not necessarily
826                  * mean the overall work is done. So we keep looping as long
827                  * as made some progress on cleaning pages or inodes.
828                  */
829                 if (progress)
830                         continue;
831                 /*
832                  * No more inodes for IO, bail
833                  */
834                 if (list_empty(&wb->b_more_io))
835                         break;
836                 /*
837                  * Nothing written. Wait for some inode to
838                  * become available for writeback. Otherwise
839                  * we'll just busyloop.
840                  */
841                 if (!list_empty(&wb->b_more_io))  {
842                         trace_writeback_wait(wb->bdi, work);
843                         inode = wb_inode(wb->b_more_io.prev);
844                         spin_lock(&inode->i_lock);
845                         spin_unlock(&wb->list_lock);
846                         inode_wait_for_writeback(inode);
847                         spin_unlock(&inode->i_lock);
848                         spin_lock(&wb->list_lock);
849                 }
850         }
851         spin_unlock(&wb->list_lock);
852
853         return nr_pages - work->nr_pages;
854 }
855
856 /*
857  * Return the next wb_writeback_work struct that hasn't been processed yet.
858  */
859 static struct wb_writeback_work *
860 get_next_work_item(struct backing_dev_info *bdi)
861 {
862         struct wb_writeback_work *work = NULL;
863
864         spin_lock_bh(&bdi->wb_lock);
865         if (!list_empty(&bdi->work_list)) {
866                 work = list_entry(bdi->work_list.next,
867                                   struct wb_writeback_work, list);
868                 list_del_init(&work->list);
869         }
870         spin_unlock_bh(&bdi->wb_lock);
871         return work;
872 }
873
874 /*
875  * Add in the number of potentially dirty inodes, because each inode
876  * write can dirty pagecache in the underlying blockdev.
877  */
878 static unsigned long get_nr_dirty_pages(void)
879 {
880         return global_page_state(NR_FILE_DIRTY) +
881                 global_page_state(NR_UNSTABLE_NFS) +
882                 get_nr_dirty_inodes();
883 }
884
885 static long wb_check_background_flush(struct bdi_writeback *wb)
886 {
887         if (over_bground_thresh(wb->bdi)) {
888
889                 struct wb_writeback_work work = {
890                         .nr_pages       = LONG_MAX,
891                         .sync_mode      = WB_SYNC_NONE,
892                         .for_background = 1,
893                         .range_cyclic   = 1,
894                         .reason         = WB_REASON_BACKGROUND,
895                 };
896
897                 return wb_writeback(wb, &work);
898         }
899
900         return 0;
901 }
902
903 static long wb_check_old_data_flush(struct bdi_writeback *wb)
904 {
905         unsigned long expired;
906         long nr_pages;
907
908         /*
909          * When set to zero, disable periodic writeback
910          */
911         if (!dirty_writeback_interval)
912                 return 0;
913
914         expired = wb->last_old_flush +
915                         msecs_to_jiffies(dirty_writeback_interval * 10);
916         if (time_before(jiffies, expired))
917                 return 0;
918
919         wb->last_old_flush = jiffies;
920         nr_pages = get_nr_dirty_pages();
921
922         if (nr_pages) {
923                 struct wb_writeback_work work = {
924                         .nr_pages       = nr_pages,
925                         .sync_mode      = WB_SYNC_NONE,
926                         .for_kupdate    = 1,
927                         .range_cyclic   = 1,
928                         .reason         = WB_REASON_PERIODIC,
929                 };
930
931                 return wb_writeback(wb, &work);
932         }
933
934         return 0;
935 }
936
937 /*
938  * Retrieve work items and do the writeback they describe
939  */
940 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
941 {
942         struct backing_dev_info *bdi = wb->bdi;
943         struct wb_writeback_work *work;
944         long wrote = 0;
945
946         set_bit(BDI_writeback_running, &wb->bdi->state);
947         while ((work = get_next_work_item(bdi)) != NULL) {
948                 /*
949                  * Override sync mode, in case we must wait for completion
950                  * because this thread is exiting now.
951                  */
952                 if (force_wait)
953                         work->sync_mode = WB_SYNC_ALL;
954
955                 trace_writeback_exec(bdi, work);
956
957                 wrote += wb_writeback(wb, work);
958
959                 /*
960                  * Notify the caller of completion if this is a synchronous
961                  * work item, otherwise just free it.
962                  */
963                 if (work->done)
964                         complete(work->done);
965                 else
966                         kfree(work);
967         }
968
969         /*
970          * Check for periodic writeback, kupdated() style
971          */
972         wrote += wb_check_old_data_flush(wb);
973         wrote += wb_check_background_flush(wb);
974         clear_bit(BDI_writeback_running, &wb->bdi->state);
975
976         return wrote;
977 }
978
979 /*
980  * Handle writeback of dirty data for the device backed by this bdi. Also
981  * wakes up periodically and does kupdated style flushing.
982  */
983 int bdi_writeback_thread(void *data)
984 {
985         struct bdi_writeback *wb = data;
986         struct backing_dev_info *bdi = wb->bdi;
987         long pages_written;
988
989         current->flags |= PF_SWAPWRITE;
990         set_freezable();
991         wb->last_active = jiffies;
992
993         /*
994          * Our parent may run at a different priority, just set us to normal
995          */
996         set_user_nice(current, 0);
997
998         trace_writeback_thread_start(bdi);
999
1000         while (!kthread_freezable_should_stop(NULL)) {
1001                 /*
1002                  * Remove own delayed wake-up timer, since we are already awake
1003                  * and we'll take care of the preriodic write-back.
1004                  */
1005                 del_timer(&wb->wakeup_timer);
1006
1007                 pages_written = wb_do_writeback(wb, 0);
1008
1009                 trace_writeback_pages_written(pages_written);
1010
1011                 if (pages_written)
1012                         wb->last_active = jiffies;
1013
1014                 set_current_state(TASK_INTERRUPTIBLE);
1015                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1016                         __set_current_state(TASK_RUNNING);
1017                         continue;
1018                 }
1019
1020                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1021                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1022                 else {
1023                         /*
1024                          * We have nothing to do, so can go sleep without any
1025                          * timeout and save power. When a work is queued or
1026                          * something is made dirty - we will be woken up.
1027                          */
1028                         schedule();
1029                 }
1030         }
1031
1032         /* Flush any work that raced with us exiting */
1033         if (!list_empty(&bdi->work_list))
1034                 wb_do_writeback(wb, 1);
1035
1036         trace_writeback_thread_stop(bdi);
1037         return 0;
1038 }
1039
1040
1041 /*
1042  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1043  * the whole world.
1044  */
1045 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1046 {
1047         struct backing_dev_info *bdi;
1048
1049         if (!nr_pages) {
1050                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1051                                 global_page_state(NR_UNSTABLE_NFS);
1052         }
1053
1054         rcu_read_lock();
1055         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1056                 if (!bdi_has_dirty_io(bdi))
1057                         continue;
1058                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1059         }
1060         rcu_read_unlock();
1061 }
1062
1063 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1064 {
1065         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1066                 struct dentry *dentry;
1067                 const char *name = "?";
1068
1069                 dentry = d_find_alias(inode);
1070                 if (dentry) {
1071                         spin_lock(&dentry->d_lock);
1072                         name = (const char *) dentry->d_name.name;
1073                 }
1074                 printk(KERN_DEBUG
1075                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1076                        current->comm, task_pid_nr(current), inode->i_ino,
1077                        name, inode->i_sb->s_id);
1078                 if (dentry) {
1079                         spin_unlock(&dentry->d_lock);
1080                         dput(dentry);
1081                 }
1082         }
1083 }
1084
1085 /**
1086  *      __mark_inode_dirty -    internal function
1087  *      @inode: inode to mark
1088  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1089  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1090  *      mark_inode_dirty_sync.
1091  *
1092  * Put the inode on the super block's dirty list.
1093  *
1094  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1095  * dirty list only if it is hashed or if it refers to a blockdev.
1096  * If it was not hashed, it will never be added to the dirty list
1097  * even if it is later hashed, as it will have been marked dirty already.
1098  *
1099  * In short, make sure you hash any inodes _before_ you start marking
1100  * them dirty.
1101  *
1102  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1103  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1104  * the kernel-internal blockdev inode represents the dirtying time of the
1105  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1106  * page->mapping->host, so the page-dirtying time is recorded in the internal
1107  * blockdev inode.
1108  */
1109 void __mark_inode_dirty(struct inode *inode, int flags)
1110 {
1111         struct super_block *sb = inode->i_sb;
1112         struct backing_dev_info *bdi = NULL;
1113
1114         /*
1115          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1116          * dirty the inode itself
1117          */
1118         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1119                 if (sb->s_op->dirty_inode)
1120                         sb->s_op->dirty_inode(inode, flags);
1121         }
1122
1123         /*
1124          * make sure that changes are seen by all cpus before we test i_state
1125          * -- mikulas
1126          */
1127         smp_mb();
1128
1129         /* avoid the locking if we can */
1130         if ((inode->i_state & flags) == flags)
1131                 return;
1132
1133         if (unlikely(block_dump))
1134                 block_dump___mark_inode_dirty(inode);
1135
1136         spin_lock(&inode->i_lock);
1137         if ((inode->i_state & flags) != flags) {
1138                 const int was_dirty = inode->i_state & I_DIRTY;
1139
1140                 inode->i_state |= flags;
1141
1142                 /*
1143                  * If the inode is being synced, just update its dirty state.
1144                  * The unlocker will place the inode on the appropriate
1145                  * superblock list, based upon its state.
1146                  */
1147                 if (inode->i_state & I_SYNC)
1148                         goto out_unlock_inode;
1149
1150                 /*
1151                  * Only add valid (hashed) inodes to the superblock's
1152                  * dirty list.  Add blockdev inodes as well.
1153                  */
1154                 if (!S_ISBLK(inode->i_mode)) {
1155                         if (inode_unhashed(inode))
1156                                 goto out_unlock_inode;
1157                 }
1158                 if (inode->i_state & I_FREEING)
1159                         goto out_unlock_inode;
1160
1161                 /*
1162                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1163                  * reposition it (that would break b_dirty time-ordering).
1164                  */
1165                 if (!was_dirty) {
1166                         bool wakeup_bdi = false;
1167                         bdi = inode_to_bdi(inode);
1168
1169                         if (bdi_cap_writeback_dirty(bdi)) {
1170                                 WARN(!test_bit(BDI_registered, &bdi->state),
1171                                      "bdi-%s not registered\n", bdi->name);
1172
1173                                 /*
1174                                  * If this is the first dirty inode for this
1175                                  * bdi, we have to wake-up the corresponding
1176                                  * bdi thread to make sure background
1177                                  * write-back happens later.
1178                                  */
1179                                 if (!wb_has_dirty_io(&bdi->wb))
1180                                         wakeup_bdi = true;
1181                         }
1182
1183                         spin_unlock(&inode->i_lock);
1184                         spin_lock(&bdi->wb.list_lock);
1185                         inode->dirtied_when = jiffies;
1186                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1187                         spin_unlock(&bdi->wb.list_lock);
1188
1189                         if (wakeup_bdi)
1190                                 bdi_wakeup_thread_delayed(bdi);
1191                         return;
1192                 }
1193         }
1194 out_unlock_inode:
1195         spin_unlock(&inode->i_lock);
1196
1197 }
1198 EXPORT_SYMBOL(__mark_inode_dirty);
1199
1200 static void wait_sb_inodes(struct super_block *sb)
1201 {
1202         struct inode *inode, *old_inode = NULL;
1203
1204         /*
1205          * We need to be protected against the filesystem going from
1206          * r/o to r/w or vice versa.
1207          */
1208         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1209
1210         spin_lock(&inode_sb_list_lock);
1211
1212         /*
1213          * Data integrity sync. Must wait for all pages under writeback,
1214          * because there may have been pages dirtied before our sync
1215          * call, but which had writeout started before we write it out.
1216          * In which case, the inode may not be on the dirty list, but
1217          * we still have to wait for that writeout.
1218          */
1219         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1220                 struct address_space *mapping = inode->i_mapping;
1221
1222                 spin_lock(&inode->i_lock);
1223                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1224                     (mapping->nrpages == 0)) {
1225                         spin_unlock(&inode->i_lock);
1226                         continue;
1227                 }
1228                 __iget(inode);
1229                 spin_unlock(&inode->i_lock);
1230                 spin_unlock(&inode_sb_list_lock);
1231
1232                 /*
1233                  * We hold a reference to 'inode' so it couldn't have been
1234                  * removed from s_inodes list while we dropped the
1235                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1236                  * be holding the last reference and we cannot iput it under
1237                  * inode_sb_list_lock. So we keep the reference and iput it
1238                  * later.
1239                  */
1240                 iput(old_inode);
1241                 old_inode = inode;
1242
1243                 filemap_fdatawait(mapping);
1244
1245                 cond_resched();
1246
1247                 spin_lock(&inode_sb_list_lock);
1248         }
1249         spin_unlock(&inode_sb_list_lock);
1250         iput(old_inode);
1251 }
1252
1253 /**
1254  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1255  * @sb: the superblock
1256  * @nr: the number of pages to write
1257  * @reason: reason why some writeback work initiated
1258  *
1259  * Start writeback on some inodes on this super_block. No guarantees are made
1260  * on how many (if any) will be written, and this function does not wait
1261  * for IO completion of submitted IO.
1262  */
1263 void writeback_inodes_sb_nr(struct super_block *sb,
1264                             unsigned long nr,
1265                             enum wb_reason reason)
1266 {
1267         DECLARE_COMPLETION_ONSTACK(done);
1268         struct wb_writeback_work work = {
1269                 .sb                     = sb,
1270                 .sync_mode              = WB_SYNC_NONE,
1271                 .tagged_writepages      = 1,
1272                 .done                   = &done,
1273                 .nr_pages               = nr,
1274                 .reason                 = reason,
1275         };
1276
1277         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1278         bdi_queue_work(sb->s_bdi, &work);
1279         wait_for_completion(&done);
1280 }
1281 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1282
1283 /**
1284  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1285  * @sb: the superblock
1286  * @reason: reason why some writeback work was initiated
1287  *
1288  * Start writeback on some inodes on this super_block. No guarantees are made
1289  * on how many (if any) will be written, and this function does not wait
1290  * for IO completion of submitted IO.
1291  */
1292 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1293 {
1294         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1295 }
1296 EXPORT_SYMBOL(writeback_inodes_sb);
1297
1298 /**
1299  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1300  * @sb: the superblock
1301  * @reason: reason why some writeback work was initiated
1302  *
1303  * Invoke writeback_inodes_sb if no writeback is currently underway.
1304  * Returns 1 if writeback was started, 0 if not.
1305  */
1306 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1307 {
1308         if (!writeback_in_progress(sb->s_bdi)) {
1309                 down_read(&sb->s_umount);
1310                 writeback_inodes_sb(sb, reason);
1311                 up_read(&sb->s_umount);
1312                 return 1;
1313         } else
1314                 return 0;
1315 }
1316 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1317
1318 /**
1319  * writeback_inodes_sb_nr_if_idle       -       start writeback if none underway
1320  * @sb: the superblock
1321  * @nr: the number of pages to write
1322  * @reason: reason why some writeback work was initiated
1323  *
1324  * Invoke writeback_inodes_sb if no writeback is currently underway.
1325  * Returns 1 if writeback was started, 0 if not.
1326  */
1327 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1328                                    unsigned long nr,
1329                                    enum wb_reason reason)
1330 {
1331         if (!writeback_in_progress(sb->s_bdi)) {
1332                 down_read(&sb->s_umount);
1333                 writeback_inodes_sb_nr(sb, nr, reason);
1334                 up_read(&sb->s_umount);
1335                 return 1;
1336         } else
1337                 return 0;
1338 }
1339 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1340
1341 /**
1342  * sync_inodes_sb       -       sync sb inode pages
1343  * @sb: the superblock
1344  *
1345  * This function writes and waits on any dirty inode belonging to this
1346  * super_block.
1347  */
1348 void sync_inodes_sb(struct super_block *sb)
1349 {
1350         DECLARE_COMPLETION_ONSTACK(done);
1351         struct wb_writeback_work work = {
1352                 .sb             = sb,
1353                 .sync_mode      = WB_SYNC_ALL,
1354                 .nr_pages       = LONG_MAX,
1355                 .range_cyclic   = 0,
1356                 .done           = &done,
1357                 .reason         = WB_REASON_SYNC,
1358         };
1359
1360         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1361
1362         bdi_queue_work(sb->s_bdi, &work);
1363         wait_for_completion(&done);
1364
1365         wait_sb_inodes(sb);
1366 }
1367 EXPORT_SYMBOL(sync_inodes_sb);
1368
1369 /**
1370  * write_inode_now      -       write an inode to disk
1371  * @inode: inode to write to disk
1372  * @sync: whether the write should be synchronous or not
1373  *
1374  * This function commits an inode to disk immediately if it is dirty. This is
1375  * primarily needed by knfsd.
1376  *
1377  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1378  */
1379 int write_inode_now(struct inode *inode, int sync)
1380 {
1381         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1382         struct writeback_control wbc = {
1383                 .nr_to_write = LONG_MAX,
1384                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1385                 .range_start = 0,
1386                 .range_end = LLONG_MAX,
1387         };
1388
1389         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1390                 wbc.nr_to_write = 0;
1391
1392         might_sleep();
1393         return writeback_single_inode(inode, wb, &wbc);
1394 }
1395 EXPORT_SYMBOL(write_inode_now);
1396
1397 /**
1398  * sync_inode - write an inode and its pages to disk.
1399  * @inode: the inode to sync
1400  * @wbc: controls the writeback mode
1401  *
1402  * sync_inode() will write an inode and its pages to disk.  It will also
1403  * correctly update the inode on its superblock's dirty inode lists and will
1404  * update inode->i_state.
1405  *
1406  * The caller must have a ref on the inode.
1407  */
1408 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1409 {
1410         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1411 }
1412 EXPORT_SYMBOL(sync_inode);
1413
1414 /**
1415  * sync_inode_metadata - write an inode to disk
1416  * @inode: the inode to sync
1417  * @wait: wait for I/O to complete.
1418  *
1419  * Write an inode to disk and adjust its dirty state after completion.
1420  *
1421  * Note: only writes the actual inode, no associated data or other metadata.
1422  */
1423 int sync_inode_metadata(struct inode *inode, int wait)
1424 {
1425         struct writeback_control wbc = {
1426                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1427                 .nr_to_write = 0, /* metadata-only */
1428         };
1429
1430         return sync_inode(inode, &wbc);
1431 }
1432 EXPORT_SYMBOL(sync_inode_metadata);