0bc333b4a594db58ff6d828cf6cfd2793e3f9d0c
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108                   unsigned int line, const char *fmt, ...)
109 {
110         struct va_format vaf;
111         va_list args;
112
113         if (level > jbd2_journal_enable_debug)
114                 return;
115         va_start(args, fmt);
116         vaf.fmt = fmt;
117         vaf.va = &args;
118         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119         va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127         if (!jbd2_journal_has_csum_v2or3(j))
128                 return 1;
129
130         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135         __u32 csum;
136         __be32 old_csum;
137
138         old_csum = sb->s_checksum;
139         sb->s_checksum = 0;
140         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141         sb->s_checksum = old_csum;
142
143         return cpu_to_be32(csum);
144 }
145
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148         if (!jbd2_journal_has_csum_v2or3(j))
149                 return 1;
150
151         return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156         if (!jbd2_journal_has_csum_v2or3(j))
157                 return;
158
159         sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161
162 /*
163  * Helper function used to manage commit timeouts
164  */
165
166 static void commit_timeout(unsigned long __data)
167 {
168         struct task_struct * p = (struct task_struct *) __data;
169
170         wake_up_process(p);
171 }
172
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188
189 static int kjournald2(void *arg)
190 {
191         journal_t *journal = arg;
192         transaction_t *transaction;
193
194         /*
195          * Set up an interval timer which can be used to trigger a commit wakeup
196          * after the commit interval expires
197          */
198         setup_timer(&journal->j_commit_timer, commit_timeout,
199                         (unsigned long)current);
200
201         set_freezable();
202
203         /* Record that the journal thread is running */
204         journal->j_task = current;
205         wake_up(&journal->j_wait_done_commit);
206
207         /*
208          * And now, wait forever for commit wakeup events.
209          */
210         write_lock(&journal->j_state_lock);
211
212 loop:
213         if (journal->j_flags & JBD2_UNMOUNT)
214                 goto end_loop;
215
216         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217                 journal->j_commit_sequence, journal->j_commit_request);
218
219         if (journal->j_commit_sequence != journal->j_commit_request) {
220                 jbd_debug(1, "OK, requests differ\n");
221                 write_unlock(&journal->j_state_lock);
222                 del_timer_sync(&journal->j_commit_timer);
223                 jbd2_journal_commit_transaction(journal);
224                 write_lock(&journal->j_state_lock);
225                 goto loop;
226         }
227
228         wake_up(&journal->j_wait_done_commit);
229         if (freezing(current)) {
230                 /*
231                  * The simpler the better. Flushing journal isn't a
232                  * good idea, because that depends on threads that may
233                  * be already stopped.
234                  */
235                 jbd_debug(1, "Now suspending kjournald2\n");
236                 write_unlock(&journal->j_state_lock);
237                 try_to_freeze();
238                 write_lock(&journal->j_state_lock);
239         } else {
240                 /*
241                  * We assume on resume that commits are already there,
242                  * so we don't sleep
243                  */
244                 DEFINE_WAIT(wait);
245                 int should_sleep = 1;
246
247                 prepare_to_wait(&journal->j_wait_commit, &wait,
248                                 TASK_INTERRUPTIBLE);
249                 if (journal->j_commit_sequence != journal->j_commit_request)
250                         should_sleep = 0;
251                 transaction = journal->j_running_transaction;
252                 if (transaction && time_after_eq(jiffies,
253                                                 transaction->t_expires))
254                         should_sleep = 0;
255                 if (journal->j_flags & JBD2_UNMOUNT)
256                         should_sleep = 0;
257                 if (should_sleep) {
258                         write_unlock(&journal->j_state_lock);
259                         schedule();
260                         write_lock(&journal->j_state_lock);
261                 }
262                 finish_wait(&journal->j_wait_commit, &wait);
263         }
264
265         jbd_debug(1, "kjournald2 wakes\n");
266
267         /*
268          * Were we woken up by a commit wakeup event?
269          */
270         transaction = journal->j_running_transaction;
271         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272                 journal->j_commit_request = transaction->t_tid;
273                 jbd_debug(1, "woke because of timeout\n");
274         }
275         goto loop;
276
277 end_loop:
278         write_unlock(&journal->j_state_lock);
279         del_timer_sync(&journal->j_commit_timer);
280         journal->j_task = NULL;
281         wake_up(&journal->j_wait_done_commit);
282         jbd_debug(1, "Journal thread exiting.\n");
283         return 0;
284 }
285
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288         struct task_struct *t;
289
290         t = kthread_run(kjournald2, journal, "jbd2/%s",
291                         journal->j_devname);
292         if (IS_ERR(t))
293                 return PTR_ERR(t);
294
295         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296         return 0;
297 }
298
299 static void journal_kill_thread(journal_t *journal)
300 {
301         write_lock(&journal->j_state_lock);
302         journal->j_flags |= JBD2_UNMOUNT;
303
304         while (journal->j_task) {
305                 write_unlock(&journal->j_state_lock);
306                 wake_up(&journal->j_wait_commit);
307                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308                 write_lock(&journal->j_state_lock);
309         }
310         write_unlock(&journal->j_state_lock);
311 }
312
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  * 
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349                                   struct journal_head  *jh_in,
350                                   struct buffer_head **bh_out,
351                                   sector_t blocknr)
352 {
353         int need_copy_out = 0;
354         int done_copy_out = 0;
355         int do_escape = 0;
356         char *mapped_data;
357         struct buffer_head *new_bh;
358         struct page *new_page;
359         unsigned int new_offset;
360         struct buffer_head *bh_in = jh2bh(jh_in);
361         journal_t *journal = transaction->t_journal;
362
363         /*
364          * The buffer really shouldn't be locked: only the current committing
365          * transaction is allowed to write it, so nobody else is allowed
366          * to do any IO.
367          *
368          * akpm: except if we're journalling data, and write() output is
369          * also part of a shared mapping, and another thread has
370          * decided to launch a writepage() against this buffer.
371          */
372         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
375
376         /* keep subsequent assertions sane */
377         atomic_set(&new_bh->b_count, 1);
378
379         jbd_lock_bh_state(bh_in);
380 repeat:
381         /*
382          * If a new transaction has already done a buffer copy-out, then
383          * we use that version of the data for the commit.
384          */
385         if (jh_in->b_frozen_data) {
386                 done_copy_out = 1;
387                 new_page = virt_to_page(jh_in->b_frozen_data);
388                 new_offset = offset_in_page(jh_in->b_frozen_data);
389         } else {
390                 new_page = jh2bh(jh_in)->b_page;
391                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
392         }
393
394         mapped_data = kmap_atomic(new_page);
395         /*
396          * Fire data frozen trigger if data already wasn't frozen.  Do this
397          * before checking for escaping, as the trigger may modify the magic
398          * offset.  If a copy-out happens afterwards, it will have the correct
399          * data in the buffer.
400          */
401         if (!done_copy_out)
402                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
403                                            jh_in->b_triggers);
404
405         /*
406          * Check for escaping
407          */
408         if (*((__be32 *)(mapped_data + new_offset)) ==
409                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
410                 need_copy_out = 1;
411                 do_escape = 1;
412         }
413         kunmap_atomic(mapped_data);
414
415         /*
416          * Do we need to do a data copy?
417          */
418         if (need_copy_out && !done_copy_out) {
419                 char *tmp;
420
421                 jbd_unlock_bh_state(bh_in);
422                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
423                 if (!tmp) {
424                         brelse(new_bh);
425                         return -ENOMEM;
426                 }
427                 jbd_lock_bh_state(bh_in);
428                 if (jh_in->b_frozen_data) {
429                         jbd2_free(tmp, bh_in->b_size);
430                         goto repeat;
431                 }
432
433                 jh_in->b_frozen_data = tmp;
434                 mapped_data = kmap_atomic(new_page);
435                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
436                 kunmap_atomic(mapped_data);
437
438                 new_page = virt_to_page(tmp);
439                 new_offset = offset_in_page(tmp);
440                 done_copy_out = 1;
441
442                 /*
443                  * This isn't strictly necessary, as we're using frozen
444                  * data for the escaping, but it keeps consistency with
445                  * b_frozen_data usage.
446                  */
447                 jh_in->b_frozen_triggers = jh_in->b_triggers;
448         }
449
450         /*
451          * Did we need to do an escaping?  Now we've done all the
452          * copying, we can finally do so.
453          */
454         if (do_escape) {
455                 mapped_data = kmap_atomic(new_page);
456                 *((unsigned int *)(mapped_data + new_offset)) = 0;
457                 kunmap_atomic(mapped_data);
458         }
459
460         set_bh_page(new_bh, new_page, new_offset);
461         new_bh->b_size = bh_in->b_size;
462         new_bh->b_bdev = journal->j_dev;
463         new_bh->b_blocknr = blocknr;
464         new_bh->b_private = bh_in;
465         set_buffer_mapped(new_bh);
466         set_buffer_dirty(new_bh);
467
468         *bh_out = new_bh;
469
470         /*
471          * The to-be-written buffer needs to get moved to the io queue,
472          * and the original buffer whose contents we are shadowing or
473          * copying is moved to the transaction's shadow queue.
474          */
475         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
476         spin_lock(&journal->j_list_lock);
477         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
478         spin_unlock(&journal->j_list_lock);
479         set_buffer_shadow(bh_in);
480         jbd_unlock_bh_state(bh_in);
481
482         return do_escape | (done_copy_out << 1);
483 }
484
485 /*
486  * Allocation code for the journal file.  Manage the space left in the
487  * journal, so that we can begin checkpointing when appropriate.
488  */
489
490 /*
491  * Called with j_state_lock locked for writing.
492  * Returns true if a transaction commit was started.
493  */
494 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
495 {
496         /* Return if the txn has already requested to be committed */
497         if (journal->j_commit_request == target)
498                 return 0;
499
500         /*
501          * The only transaction we can possibly wait upon is the
502          * currently running transaction (if it exists).  Otherwise,
503          * the target tid must be an old one.
504          */
505         if (journal->j_running_transaction &&
506             journal->j_running_transaction->t_tid == target) {
507                 /*
508                  * We want a new commit: OK, mark the request and wakeup the
509                  * commit thread.  We do _not_ do the commit ourselves.
510                  */
511
512                 journal->j_commit_request = target;
513                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence);
516                 journal->j_running_transaction->t_requested = jiffies;
517                 wake_up(&journal->j_wait_commit);
518                 return 1;
519         } else if (!tid_geq(journal->j_commit_request, target))
520                 /* This should never happen, but if it does, preserve
521                    the evidence before kjournald goes into a loop and
522                    increments j_commit_sequence beyond all recognition. */
523                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
524                           journal->j_commit_request,
525                           journal->j_commit_sequence,
526                           target, journal->j_running_transaction ? 
527                           journal->j_running_transaction->t_tid : 0);
528         return 0;
529 }
530
531 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
532 {
533         int ret;
534
535         write_lock(&journal->j_state_lock);
536         ret = __jbd2_log_start_commit(journal, tid);
537         write_unlock(&journal->j_state_lock);
538         return ret;
539 }
540
541 /*
542  * Force and wait any uncommitted transactions.  We can only force the running
543  * transaction if we don't have an active handle, otherwise, we will deadlock.
544  * Returns: <0 in case of error,
545  *           0 if nothing to commit,
546  *           1 if transaction was successfully committed.
547  */
548 static int __jbd2_journal_force_commit(journal_t *journal)
549 {
550         transaction_t *transaction = NULL;
551         tid_t tid;
552         int need_to_start = 0, ret = 0;
553
554         read_lock(&journal->j_state_lock);
555         if (journal->j_running_transaction && !current->journal_info) {
556                 transaction = journal->j_running_transaction;
557                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
558                         need_to_start = 1;
559         } else if (journal->j_committing_transaction)
560                 transaction = journal->j_committing_transaction;
561
562         if (!transaction) {
563                 /* Nothing to commit */
564                 read_unlock(&journal->j_state_lock);
565                 return 0;
566         }
567         tid = transaction->t_tid;
568         read_unlock(&journal->j_state_lock);
569         if (need_to_start)
570                 jbd2_log_start_commit(journal, tid);
571         ret = jbd2_log_wait_commit(journal, tid);
572         if (!ret)
573                 ret = 1;
574
575         return ret;
576 }
577
578 /**
579  * Force and wait upon a commit if the calling process is not within
580  * transaction.  This is used for forcing out undo-protected data which contains
581  * bitmaps, when the fs is running out of space.
582  *
583  * @journal: journal to force
584  * Returns true if progress was made.
585  */
586 int jbd2_journal_force_commit_nested(journal_t *journal)
587 {
588         int ret;
589
590         ret = __jbd2_journal_force_commit(journal);
591         return ret > 0;
592 }
593
594 /**
595  * int journal_force_commit() - force any uncommitted transactions
596  * @journal: journal to force
597  *
598  * Caller want unconditional commit. We can only force the running transaction
599  * if we don't have an active handle, otherwise, we will deadlock.
600  */
601 int jbd2_journal_force_commit(journal_t *journal)
602 {
603         int ret;
604
605         J_ASSERT(!current->journal_info);
606         ret = __jbd2_journal_force_commit(journal);
607         if (ret > 0)
608                 ret = 0;
609         return ret;
610 }
611
612 /*
613  * Start a commit of the current running transaction (if any).  Returns true
614  * if a transaction is going to be committed (or is currently already
615  * committing), and fills its tid in at *ptid
616  */
617 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
618 {
619         int ret = 0;
620
621         write_lock(&journal->j_state_lock);
622         if (journal->j_running_transaction) {
623                 tid_t tid = journal->j_running_transaction->t_tid;
624
625                 __jbd2_log_start_commit(journal, tid);
626                 /* There's a running transaction and we've just made sure
627                  * it's commit has been scheduled. */
628                 if (ptid)
629                         *ptid = tid;
630                 ret = 1;
631         } else if (journal->j_committing_transaction) {
632                 /*
633                  * If commit has been started, then we have to wait for
634                  * completion of that transaction.
635                  */
636                 if (ptid)
637                         *ptid = journal->j_committing_transaction->t_tid;
638                 ret = 1;
639         }
640         write_unlock(&journal->j_state_lock);
641         return ret;
642 }
643
644 /*
645  * Return 1 if a given transaction has not yet sent barrier request
646  * connected with a transaction commit. If 0 is returned, transaction
647  * may or may not have sent the barrier. Used to avoid sending barrier
648  * twice in common cases.
649  */
650 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
651 {
652         int ret = 0;
653         transaction_t *commit_trans;
654
655         if (!(journal->j_flags & JBD2_BARRIER))
656                 return 0;
657         read_lock(&journal->j_state_lock);
658         /* Transaction already committed? */
659         if (tid_geq(journal->j_commit_sequence, tid))
660                 goto out;
661         commit_trans = journal->j_committing_transaction;
662         if (!commit_trans || commit_trans->t_tid != tid) {
663                 ret = 1;
664                 goto out;
665         }
666         /*
667          * Transaction is being committed and we already proceeded to
668          * submitting a flush to fs partition?
669          */
670         if (journal->j_fs_dev != journal->j_dev) {
671                 if (!commit_trans->t_need_data_flush ||
672                     commit_trans->t_state >= T_COMMIT_DFLUSH)
673                         goto out;
674         } else {
675                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
676                         goto out;
677         }
678         ret = 1;
679 out:
680         read_unlock(&journal->j_state_lock);
681         return ret;
682 }
683 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
684
685 /*
686  * Wait for a specified commit to complete.
687  * The caller may not hold the journal lock.
688  */
689 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
690 {
691         int err = 0;
692
693         read_lock(&journal->j_state_lock);
694 #ifdef CONFIG_JBD2_DEBUG
695         if (!tid_geq(journal->j_commit_request, tid)) {
696                 printk(KERN_ERR
697                        "%s: error: j_commit_request=%d, tid=%d\n",
698                        __func__, journal->j_commit_request, tid);
699         }
700 #endif
701         while (tid_gt(tid, journal->j_commit_sequence)) {
702                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
703                                   tid, journal->j_commit_sequence);
704                 read_unlock(&journal->j_state_lock);
705                 wake_up(&journal->j_wait_commit);
706                 wait_event(journal->j_wait_done_commit,
707                                 !tid_gt(tid, journal->j_commit_sequence));
708                 read_lock(&journal->j_state_lock);
709         }
710         read_unlock(&journal->j_state_lock);
711
712         if (unlikely(is_journal_aborted(journal)))
713                 err = -EIO;
714         return err;
715 }
716
717 /*
718  * When this function returns the transaction corresponding to tid
719  * will be completed.  If the transaction has currently running, start
720  * committing that transaction before waiting for it to complete.  If
721  * the transaction id is stale, it is by definition already completed,
722  * so just return SUCCESS.
723  */
724 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
725 {
726         int     need_to_wait = 1;
727
728         read_lock(&journal->j_state_lock);
729         if (journal->j_running_transaction &&
730             journal->j_running_transaction->t_tid == tid) {
731                 if (journal->j_commit_request != tid) {
732                         /* transaction not yet started, so request it */
733                         read_unlock(&journal->j_state_lock);
734                         jbd2_log_start_commit(journal, tid);
735                         goto wait_commit;
736                 }
737         } else if (!(journal->j_committing_transaction &&
738                      journal->j_committing_transaction->t_tid == tid))
739                 need_to_wait = 0;
740         read_unlock(&journal->j_state_lock);
741         if (!need_to_wait)
742                 return 0;
743 wait_commit:
744         return jbd2_log_wait_commit(journal, tid);
745 }
746 EXPORT_SYMBOL(jbd2_complete_transaction);
747
748 /*
749  * Log buffer allocation routines:
750  */
751
752 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
753 {
754         unsigned long blocknr;
755
756         write_lock(&journal->j_state_lock);
757         J_ASSERT(journal->j_free > 1);
758
759         blocknr = journal->j_head;
760         journal->j_head++;
761         journal->j_free--;
762         if (journal->j_head == journal->j_last)
763                 journal->j_head = journal->j_first;
764         write_unlock(&journal->j_state_lock);
765         return jbd2_journal_bmap(journal, blocknr, retp);
766 }
767
768 /*
769  * Conversion of logical to physical block numbers for the journal
770  *
771  * On external journals the journal blocks are identity-mapped, so
772  * this is a no-op.  If needed, we can use j_blk_offset - everything is
773  * ready.
774  */
775 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
776                  unsigned long long *retp)
777 {
778         int err = 0;
779         unsigned long long ret;
780
781         if (journal->j_inode) {
782                 ret = bmap(journal->j_inode, blocknr);
783                 if (ret)
784                         *retp = ret;
785                 else {
786                         printk(KERN_ALERT "%s: journal block not found "
787                                         "at offset %lu on %s\n",
788                                __func__, blocknr, journal->j_devname);
789                         err = -EIO;
790                         __journal_abort_soft(journal, err);
791                 }
792         } else {
793                 *retp = blocknr; /* +journal->j_blk_offset */
794         }
795         return err;
796 }
797
798 /*
799  * We play buffer_head aliasing tricks to write data/metadata blocks to
800  * the journal without copying their contents, but for journal
801  * descriptor blocks we do need to generate bona fide buffers.
802  *
803  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
804  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
805  * But we don't bother doing that, so there will be coherency problems with
806  * mmaps of blockdevs which hold live JBD-controlled filesystems.
807  */
808 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
809 {
810         struct buffer_head *bh;
811         unsigned long long blocknr;
812         int err;
813
814         err = jbd2_journal_next_log_block(journal, &blocknr);
815
816         if (err)
817                 return NULL;
818
819         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
820         if (!bh)
821                 return NULL;
822         lock_buffer(bh);
823         memset(bh->b_data, 0, journal->j_blocksize);
824         set_buffer_uptodate(bh);
825         unlock_buffer(bh);
826         BUFFER_TRACE(bh, "return this buffer");
827         return bh;
828 }
829
830 /*
831  * Return tid of the oldest transaction in the journal and block in the journal
832  * where the transaction starts.
833  *
834  * If the journal is now empty, return which will be the next transaction ID
835  * we will write and where will that transaction start.
836  *
837  * The return value is 0 if journal tail cannot be pushed any further, 1 if
838  * it can.
839  */
840 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
841                               unsigned long *block)
842 {
843         transaction_t *transaction;
844         int ret;
845
846         read_lock(&journal->j_state_lock);
847         spin_lock(&journal->j_list_lock);
848         transaction = journal->j_checkpoint_transactions;
849         if (transaction) {
850                 *tid = transaction->t_tid;
851                 *block = transaction->t_log_start;
852         } else if ((transaction = journal->j_committing_transaction) != NULL) {
853                 *tid = transaction->t_tid;
854                 *block = transaction->t_log_start;
855         } else if ((transaction = journal->j_running_transaction) != NULL) {
856                 *tid = transaction->t_tid;
857                 *block = journal->j_head;
858         } else {
859                 *tid = journal->j_transaction_sequence;
860                 *block = journal->j_head;
861         }
862         ret = tid_gt(*tid, journal->j_tail_sequence);
863         spin_unlock(&journal->j_list_lock);
864         read_unlock(&journal->j_state_lock);
865
866         return ret;
867 }
868
869 /*
870  * Update information in journal structure and in on disk journal superblock
871  * about log tail. This function does not check whether information passed in
872  * really pushes log tail further. It's responsibility of the caller to make
873  * sure provided log tail information is valid (e.g. by holding
874  * j_checkpoint_mutex all the time between computing log tail and calling this
875  * function as is the case with jbd2_cleanup_journal_tail()).
876  *
877  * Requires j_checkpoint_mutex
878  */
879 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
880 {
881         unsigned long freed;
882
883         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
884
885         /*
886          * We cannot afford for write to remain in drive's caches since as
887          * soon as we update j_tail, next transaction can start reusing journal
888          * space and if we lose sb update during power failure we'd replay
889          * old transaction with possibly newly overwritten data.
890          */
891         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
892         write_lock(&journal->j_state_lock);
893         freed = block - journal->j_tail;
894         if (block < journal->j_tail)
895                 freed += journal->j_last - journal->j_first;
896
897         trace_jbd2_update_log_tail(journal, tid, block, freed);
898         jbd_debug(1,
899                   "Cleaning journal tail from %d to %d (offset %lu), "
900                   "freeing %lu\n",
901                   journal->j_tail_sequence, tid, block, freed);
902
903         journal->j_free += freed;
904         journal->j_tail_sequence = tid;
905         journal->j_tail = block;
906         write_unlock(&journal->j_state_lock);
907 }
908
909 /*
910  * This is a variaon of __jbd2_update_log_tail which checks for validity of
911  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
912  * with other threads updating log tail.
913  */
914 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
915 {
916         mutex_lock(&journal->j_checkpoint_mutex);
917         if (tid_gt(tid, journal->j_tail_sequence))
918                 __jbd2_update_log_tail(journal, tid, block);
919         mutex_unlock(&journal->j_checkpoint_mutex);
920 }
921
922 struct jbd2_stats_proc_session {
923         journal_t *journal;
924         struct transaction_stats_s *stats;
925         int start;
926         int max;
927 };
928
929 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
930 {
931         return *pos ? NULL : SEQ_START_TOKEN;
932 }
933
934 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
935 {
936         return NULL;
937 }
938
939 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
940 {
941         struct jbd2_stats_proc_session *s = seq->private;
942
943         if (v != SEQ_START_TOKEN)
944                 return 0;
945         seq_printf(seq, "%lu transactions (%lu requested), "
946                    "each up to %u blocks\n",
947                    s->stats->ts_tid, s->stats->ts_requested,
948                    s->journal->j_max_transaction_buffers);
949         if (s->stats->ts_tid == 0)
950                 return 0;
951         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
952             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
953         seq_printf(seq, "  %ums request delay\n",
954             (s->stats->ts_requested == 0) ? 0 :
955             jiffies_to_msecs(s->stats->run.rs_request_delay /
956                              s->stats->ts_requested));
957         seq_printf(seq, "  %ums running transaction\n",
958             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
959         seq_printf(seq, "  %ums transaction was being locked\n",
960             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
961         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
962             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
963         seq_printf(seq, "  %ums logging transaction\n",
964             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
965         seq_printf(seq, "  %lluus average transaction commit time\n",
966                    div_u64(s->journal->j_average_commit_time, 1000));
967         seq_printf(seq, "  %lu handles per transaction\n",
968             s->stats->run.rs_handle_count / s->stats->ts_tid);
969         seq_printf(seq, "  %lu blocks per transaction\n",
970             s->stats->run.rs_blocks / s->stats->ts_tid);
971         seq_printf(seq, "  %lu logged blocks per transaction\n",
972             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
973         return 0;
974 }
975
976 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
977 {
978 }
979
980 static const struct seq_operations jbd2_seq_info_ops = {
981         .start  = jbd2_seq_info_start,
982         .next   = jbd2_seq_info_next,
983         .stop   = jbd2_seq_info_stop,
984         .show   = jbd2_seq_info_show,
985 };
986
987 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
988 {
989         journal_t *journal = PDE_DATA(inode);
990         struct jbd2_stats_proc_session *s;
991         int rc, size;
992
993         s = kmalloc(sizeof(*s), GFP_KERNEL);
994         if (s == NULL)
995                 return -ENOMEM;
996         size = sizeof(struct transaction_stats_s);
997         s->stats = kmalloc(size, GFP_KERNEL);
998         if (s->stats == NULL) {
999                 kfree(s);
1000                 return -ENOMEM;
1001         }
1002         spin_lock(&journal->j_history_lock);
1003         memcpy(s->stats, &journal->j_stats, size);
1004         s->journal = journal;
1005         spin_unlock(&journal->j_history_lock);
1006
1007         rc = seq_open(file, &jbd2_seq_info_ops);
1008         if (rc == 0) {
1009                 struct seq_file *m = file->private_data;
1010                 m->private = s;
1011         } else {
1012                 kfree(s->stats);
1013                 kfree(s);
1014         }
1015         return rc;
1016
1017 }
1018
1019 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1020 {
1021         struct seq_file *seq = file->private_data;
1022         struct jbd2_stats_proc_session *s = seq->private;
1023         kfree(s->stats);
1024         kfree(s);
1025         return seq_release(inode, file);
1026 }
1027
1028 static const struct file_operations jbd2_seq_info_fops = {
1029         .owner          = THIS_MODULE,
1030         .open           = jbd2_seq_info_open,
1031         .read           = seq_read,
1032         .llseek         = seq_lseek,
1033         .release        = jbd2_seq_info_release,
1034 };
1035
1036 static struct proc_dir_entry *proc_jbd2_stats;
1037
1038 static void jbd2_stats_proc_init(journal_t *journal)
1039 {
1040         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1041         if (journal->j_proc_entry) {
1042                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1043                                  &jbd2_seq_info_fops, journal);
1044         }
1045 }
1046
1047 static void jbd2_stats_proc_exit(journal_t *journal)
1048 {
1049         remove_proc_entry("info", journal->j_proc_entry);
1050         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1051 }
1052
1053 /*
1054  * Management for journal control blocks: functions to create and
1055  * destroy journal_t structures, and to initialise and read existing
1056  * journal blocks from disk.  */
1057
1058 /* First: create and setup a journal_t object in memory.  We initialise
1059  * very few fields yet: that has to wait until we have created the
1060  * journal structures from from scratch, or loaded them from disk. */
1061
1062 static journal_t * journal_init_common (void)
1063 {
1064         journal_t *journal;
1065         int err;
1066
1067         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1068         if (!journal)
1069                 return NULL;
1070
1071         init_waitqueue_head(&journal->j_wait_transaction_locked);
1072         init_waitqueue_head(&journal->j_wait_done_commit);
1073         init_waitqueue_head(&journal->j_wait_commit);
1074         init_waitqueue_head(&journal->j_wait_updates);
1075         init_waitqueue_head(&journal->j_wait_reserved);
1076         mutex_init(&journal->j_barrier);
1077         mutex_init(&journal->j_checkpoint_mutex);
1078         spin_lock_init(&journal->j_revoke_lock);
1079         spin_lock_init(&journal->j_list_lock);
1080         rwlock_init(&journal->j_state_lock);
1081
1082         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1083         journal->j_min_batch_time = 0;
1084         journal->j_max_batch_time = 15000; /* 15ms */
1085         atomic_set(&journal->j_reserved_credits, 0);
1086
1087         /* The journal is marked for error until we succeed with recovery! */
1088         journal->j_flags = JBD2_ABORT;
1089
1090         /* Set up a default-sized revoke table for the new mount. */
1091         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1092         if (err) {
1093                 kfree(journal);
1094                 return NULL;
1095         }
1096
1097         spin_lock_init(&journal->j_history_lock);
1098
1099         return journal;
1100 }
1101
1102 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1103  *
1104  * Create a journal structure assigned some fixed set of disk blocks to
1105  * the journal.  We don't actually touch those disk blocks yet, but we
1106  * need to set up all of the mapping information to tell the journaling
1107  * system where the journal blocks are.
1108  *
1109  */
1110
1111 /**
1112  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1113  *  @bdev: Block device on which to create the journal
1114  *  @fs_dev: Device which hold journalled filesystem for this journal.
1115  *  @start: Block nr Start of journal.
1116  *  @len:  Length of the journal in blocks.
1117  *  @blocksize: blocksize of journalling device
1118  *
1119  *  Returns: a newly created journal_t *
1120  *
1121  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1122  *  range of blocks on an arbitrary block device.
1123  *
1124  */
1125 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1126                         struct block_device *fs_dev,
1127                         unsigned long long start, int len, int blocksize)
1128 {
1129         journal_t *journal = journal_init_common();
1130         struct buffer_head *bh;
1131         char *p;
1132         int n;
1133
1134         if (!journal)
1135                 return NULL;
1136
1137         /* journal descriptor can store up to n blocks -bzzz */
1138         journal->j_blocksize = blocksize;
1139         journal->j_dev = bdev;
1140         journal->j_fs_dev = fs_dev;
1141         journal->j_blk_offset = start;
1142         journal->j_maxlen = len;
1143         bdevname(journal->j_dev, journal->j_devname);
1144         p = journal->j_devname;
1145         while ((p = strchr(p, '/')))
1146                 *p = '!';
1147         jbd2_stats_proc_init(journal);
1148         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1149         journal->j_wbufsize = n;
1150         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1151         if (!journal->j_wbuf) {
1152                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1153                         __func__);
1154                 goto out_err;
1155         }
1156
1157         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1158         if (!bh) {
1159                 printk(KERN_ERR
1160                        "%s: Cannot get buffer for journal superblock\n",
1161                        __func__);
1162                 goto out_err;
1163         }
1164         journal->j_sb_buffer = bh;
1165         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1166
1167         return journal;
1168 out_err:
1169         kfree(journal->j_wbuf);
1170         jbd2_stats_proc_exit(journal);
1171         kfree(journal);
1172         return NULL;
1173 }
1174
1175 /**
1176  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1177  *  @inode: An inode to create the journal in
1178  *
1179  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1180  * the journal.  The inode must exist already, must support bmap() and
1181  * must have all data blocks preallocated.
1182  */
1183 journal_t * jbd2_journal_init_inode (struct inode *inode)
1184 {
1185         struct buffer_head *bh;
1186         journal_t *journal = journal_init_common();
1187         char *p;
1188         int err;
1189         int n;
1190         unsigned long long blocknr;
1191
1192         if (!journal)
1193                 return NULL;
1194
1195         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1196         journal->j_inode = inode;
1197         bdevname(journal->j_dev, journal->j_devname);
1198         p = journal->j_devname;
1199         while ((p = strchr(p, '/')))
1200                 *p = '!';
1201         p = journal->j_devname + strlen(journal->j_devname);
1202         sprintf(p, "-%lu", journal->j_inode->i_ino);
1203         jbd_debug(1,
1204                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1205                   journal, inode->i_sb->s_id, inode->i_ino,
1206                   (long long) inode->i_size,
1207                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1208
1209         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1210         journal->j_blocksize = inode->i_sb->s_blocksize;
1211         jbd2_stats_proc_init(journal);
1212
1213         /* journal descriptor can store up to n blocks -bzzz */
1214         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1215         journal->j_wbufsize = n;
1216         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1217         if (!journal->j_wbuf) {
1218                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1219                         __func__);
1220                 goto out_err;
1221         }
1222
1223         err = jbd2_journal_bmap(journal, 0, &blocknr);
1224         /* If that failed, give up */
1225         if (err) {
1226                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1227                        __func__);
1228                 goto out_err;
1229         }
1230
1231         bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1232         if (!bh) {
1233                 printk(KERN_ERR
1234                        "%s: Cannot get buffer for journal superblock\n",
1235                        __func__);
1236                 goto out_err;
1237         }
1238         journal->j_sb_buffer = bh;
1239         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1240
1241         return journal;
1242 out_err:
1243         kfree(journal->j_wbuf);
1244         jbd2_stats_proc_exit(journal);
1245         kfree(journal);
1246         return NULL;
1247 }
1248
1249 /*
1250  * If the journal init or create aborts, we need to mark the journal
1251  * superblock as being NULL to prevent the journal destroy from writing
1252  * back a bogus superblock.
1253  */
1254 static void journal_fail_superblock (journal_t *journal)
1255 {
1256         struct buffer_head *bh = journal->j_sb_buffer;
1257         brelse(bh);
1258         journal->j_sb_buffer = NULL;
1259 }
1260
1261 /*
1262  * Given a journal_t structure, initialise the various fields for
1263  * startup of a new journaling session.  We use this both when creating
1264  * a journal, and after recovering an old journal to reset it for
1265  * subsequent use.
1266  */
1267
1268 static int journal_reset(journal_t *journal)
1269 {
1270         journal_superblock_t *sb = journal->j_superblock;
1271         unsigned long long first, last;
1272
1273         first = be32_to_cpu(sb->s_first);
1274         last = be32_to_cpu(sb->s_maxlen);
1275         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1276                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1277                        first, last);
1278                 journal_fail_superblock(journal);
1279                 return -EINVAL;
1280         }
1281
1282         journal->j_first = first;
1283         journal->j_last = last;
1284
1285         journal->j_head = first;
1286         journal->j_tail = first;
1287         journal->j_free = last - first;
1288
1289         journal->j_tail_sequence = journal->j_transaction_sequence;
1290         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1291         journal->j_commit_request = journal->j_commit_sequence;
1292
1293         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1294
1295         /*
1296          * As a special case, if the on-disk copy is already marked as needing
1297          * no recovery (s_start == 0), then we can safely defer the superblock
1298          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1299          * attempting a write to a potential-readonly device.
1300          */
1301         if (sb->s_start == 0) {
1302                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1303                         "(start %ld, seq %d, errno %d)\n",
1304                         journal->j_tail, journal->j_tail_sequence,
1305                         journal->j_errno);
1306                 journal->j_flags |= JBD2_FLUSHED;
1307         } else {
1308                 /* Lock here to make assertions happy... */
1309                 mutex_lock(&journal->j_checkpoint_mutex);
1310                 /*
1311                  * Update log tail information. We use WRITE_FUA since new
1312                  * transaction will start reusing journal space and so we
1313                  * must make sure information about current log tail is on
1314                  * disk before that.
1315                  */
1316                 jbd2_journal_update_sb_log_tail(journal,
1317                                                 journal->j_tail_sequence,
1318                                                 journal->j_tail,
1319                                                 WRITE_FUA);
1320                 mutex_unlock(&journal->j_checkpoint_mutex);
1321         }
1322         return jbd2_journal_start_thread(journal);
1323 }
1324
1325 static void jbd2_write_superblock(journal_t *journal, int write_op)
1326 {
1327         struct buffer_head *bh = journal->j_sb_buffer;
1328         journal_superblock_t *sb = journal->j_superblock;
1329         int ret;
1330
1331         trace_jbd2_write_superblock(journal, write_op);
1332         if (!(journal->j_flags & JBD2_BARRIER))
1333                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1334         lock_buffer(bh);
1335         if (buffer_write_io_error(bh)) {
1336                 /*
1337                  * Oh, dear.  A previous attempt to write the journal
1338                  * superblock failed.  This could happen because the
1339                  * USB device was yanked out.  Or it could happen to
1340                  * be a transient write error and maybe the block will
1341                  * be remapped.  Nothing we can do but to retry the
1342                  * write and hope for the best.
1343                  */
1344                 printk(KERN_ERR "JBD2: previous I/O error detected "
1345                        "for journal superblock update for %s.\n",
1346                        journal->j_devname);
1347                 clear_buffer_write_io_error(bh);
1348                 set_buffer_uptodate(bh);
1349         }
1350         jbd2_superblock_csum_set(journal, sb);
1351         get_bh(bh);
1352         bh->b_end_io = end_buffer_write_sync;
1353         ret = submit_bh(write_op, bh);
1354         wait_on_buffer(bh);
1355         if (buffer_write_io_error(bh)) {
1356                 clear_buffer_write_io_error(bh);
1357                 set_buffer_uptodate(bh);
1358                 ret = -EIO;
1359         }
1360         if (ret) {
1361                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1362                        "journal superblock for %s.\n", ret,
1363                        journal->j_devname);
1364         }
1365 }
1366
1367 /**
1368  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1369  * @journal: The journal to update.
1370  * @tail_tid: TID of the new transaction at the tail of the log
1371  * @tail_block: The first block of the transaction at the tail of the log
1372  * @write_op: With which operation should we write the journal sb
1373  *
1374  * Update a journal's superblock information about log tail and write it to
1375  * disk, waiting for the IO to complete.
1376  */
1377 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1378                                      unsigned long tail_block, int write_op)
1379 {
1380         journal_superblock_t *sb = journal->j_superblock;
1381
1382         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1383         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1384                   tail_block, tail_tid);
1385
1386         sb->s_sequence = cpu_to_be32(tail_tid);
1387         sb->s_start    = cpu_to_be32(tail_block);
1388
1389         jbd2_write_superblock(journal, write_op);
1390
1391         /* Log is no longer empty */
1392         write_lock(&journal->j_state_lock);
1393         WARN_ON(!sb->s_sequence);
1394         journal->j_flags &= ~JBD2_FLUSHED;
1395         write_unlock(&journal->j_state_lock);
1396 }
1397
1398 /**
1399  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1400  * @journal: The journal to update.
1401  *
1402  * Update a journal's dynamic superblock fields to show that journal is empty.
1403  * Write updated superblock to disk waiting for IO to complete.
1404  */
1405 static void jbd2_mark_journal_empty(journal_t *journal)
1406 {
1407         journal_superblock_t *sb = journal->j_superblock;
1408
1409         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1410         read_lock(&journal->j_state_lock);
1411         /* Is it already empty? */
1412         if (sb->s_start == 0) {
1413                 read_unlock(&journal->j_state_lock);
1414                 return;
1415         }
1416         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1417                   journal->j_tail_sequence);
1418
1419         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1420         sb->s_start    = cpu_to_be32(0);
1421         read_unlock(&journal->j_state_lock);
1422
1423         jbd2_write_superblock(journal, WRITE_FUA);
1424
1425         /* Log is no longer empty */
1426         write_lock(&journal->j_state_lock);
1427         journal->j_flags |= JBD2_FLUSHED;
1428         write_unlock(&journal->j_state_lock);
1429 }
1430
1431
1432 /**
1433  * jbd2_journal_update_sb_errno() - Update error in the journal.
1434  * @journal: The journal to update.
1435  *
1436  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1437  * to complete.
1438  */
1439 void jbd2_journal_update_sb_errno(journal_t *journal)
1440 {
1441         journal_superblock_t *sb = journal->j_superblock;
1442
1443         read_lock(&journal->j_state_lock);
1444         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1445                   journal->j_errno);
1446         sb->s_errno    = cpu_to_be32(journal->j_errno);
1447         read_unlock(&journal->j_state_lock);
1448
1449         jbd2_write_superblock(journal, WRITE_SYNC);
1450 }
1451 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1452
1453 /*
1454  * Read the superblock for a given journal, performing initial
1455  * validation of the format.
1456  */
1457 static int journal_get_superblock(journal_t *journal)
1458 {
1459         struct buffer_head *bh;
1460         journal_superblock_t *sb;
1461         int err = -EIO;
1462
1463         bh = journal->j_sb_buffer;
1464
1465         J_ASSERT(bh != NULL);
1466         if (!buffer_uptodate(bh)) {
1467                 ll_rw_block(READ, 1, &bh);
1468                 wait_on_buffer(bh);
1469                 if (!buffer_uptodate(bh)) {
1470                         printk(KERN_ERR
1471                                 "JBD2: IO error reading journal superblock\n");
1472                         goto out;
1473                 }
1474         }
1475
1476         if (buffer_verified(bh))
1477                 return 0;
1478
1479         sb = journal->j_superblock;
1480
1481         err = -EINVAL;
1482
1483         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1484             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1485                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1486                 goto out;
1487         }
1488
1489         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1490         case JBD2_SUPERBLOCK_V1:
1491                 journal->j_format_version = 1;
1492                 break;
1493         case JBD2_SUPERBLOCK_V2:
1494                 journal->j_format_version = 2;
1495                 break;
1496         default:
1497                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1498                 goto out;
1499         }
1500
1501         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1502                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1503         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1504                 printk(KERN_WARNING "JBD2: journal file too short\n");
1505                 goto out;
1506         }
1507
1508         if (be32_to_cpu(sb->s_first) == 0 ||
1509             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1510                 printk(KERN_WARNING
1511                         "JBD2: Invalid start block of journal: %u\n",
1512                         be32_to_cpu(sb->s_first));
1513                 goto out;
1514         }
1515
1516         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) &&
1517             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1518                 /* Can't have checksum v2 and v3 at the same time! */
1519                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1520                        "at the same time!\n");
1521                 goto out;
1522         }
1523
1524         if (jbd2_journal_has_csum_v2or3(journal) &&
1525             JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) {
1526                 /* Can't have checksum v1 and v2 on at the same time! */
1527                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1528                        "at the same time!\n");
1529                 goto out;
1530         }
1531
1532         if (!jbd2_verify_csum_type(journal, sb)) {
1533                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1534                 goto out;
1535         }
1536
1537         /* Load the checksum driver */
1538         if (jbd2_journal_has_csum_v2or3(journal)) {
1539                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1540                 if (IS_ERR(journal->j_chksum_driver)) {
1541                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1542                         err = PTR_ERR(journal->j_chksum_driver);
1543                         journal->j_chksum_driver = NULL;
1544                         goto out;
1545                 }
1546         }
1547
1548         /* Check superblock checksum */
1549         if (!jbd2_superblock_csum_verify(journal, sb)) {
1550                 printk(KERN_ERR "JBD2: journal checksum error\n");
1551                 goto out;
1552         }
1553
1554         /* Precompute checksum seed for all metadata */
1555         if (jbd2_journal_has_csum_v2or3(journal))
1556                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1557                                                    sizeof(sb->s_uuid));
1558
1559         set_buffer_verified(bh);
1560
1561         return 0;
1562
1563 out:
1564         journal_fail_superblock(journal);
1565         return err;
1566 }
1567
1568 /*
1569  * Load the on-disk journal superblock and read the key fields into the
1570  * journal_t.
1571  */
1572
1573 static int load_superblock(journal_t *journal)
1574 {
1575         int err;
1576         journal_superblock_t *sb;
1577
1578         err = journal_get_superblock(journal);
1579         if (err)
1580                 return err;
1581
1582         sb = journal->j_superblock;
1583
1584         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1585         journal->j_tail = be32_to_cpu(sb->s_start);
1586         journal->j_first = be32_to_cpu(sb->s_first);
1587         journal->j_last = be32_to_cpu(sb->s_maxlen);
1588         journal->j_errno = be32_to_cpu(sb->s_errno);
1589
1590         return 0;
1591 }
1592
1593
1594 /**
1595  * int jbd2_journal_load() - Read journal from disk.
1596  * @journal: Journal to act on.
1597  *
1598  * Given a journal_t structure which tells us which disk blocks contain
1599  * a journal, read the journal from disk to initialise the in-memory
1600  * structures.
1601  */
1602 int jbd2_journal_load(journal_t *journal)
1603 {
1604         int err;
1605         journal_superblock_t *sb;
1606
1607         err = load_superblock(journal);
1608         if (err)
1609                 return err;
1610
1611         sb = journal->j_superblock;
1612         /* If this is a V2 superblock, then we have to check the
1613          * features flags on it. */
1614
1615         if (journal->j_format_version >= 2) {
1616                 if ((sb->s_feature_ro_compat &
1617                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1618                     (sb->s_feature_incompat &
1619                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1620                         printk(KERN_WARNING
1621                                 "JBD2: Unrecognised features on journal\n");
1622                         return -EINVAL;
1623                 }
1624         }
1625
1626         /*
1627          * Create a slab for this blocksize
1628          */
1629         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1630         if (err)
1631                 return err;
1632
1633         /* Let the recovery code check whether it needs to recover any
1634          * data from the journal. */
1635         if (jbd2_journal_recover(journal))
1636                 goto recovery_error;
1637
1638         if (journal->j_failed_commit) {
1639                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1640                        "is corrupt.\n", journal->j_failed_commit,
1641                        journal->j_devname);
1642                 return -EIO;
1643         }
1644
1645         /* OK, we've finished with the dynamic journal bits:
1646          * reinitialise the dynamic contents of the superblock in memory
1647          * and reset them on disk. */
1648         if (journal_reset(journal))
1649                 goto recovery_error;
1650
1651         journal->j_flags &= ~JBD2_ABORT;
1652         journal->j_flags |= JBD2_LOADED;
1653         return 0;
1654
1655 recovery_error:
1656         printk(KERN_WARNING "JBD2: recovery failed\n");
1657         return -EIO;
1658 }
1659
1660 /**
1661  * void jbd2_journal_destroy() - Release a journal_t structure.
1662  * @journal: Journal to act on.
1663  *
1664  * Release a journal_t structure once it is no longer in use by the
1665  * journaled object.
1666  * Return <0 if we couldn't clean up the journal.
1667  */
1668 int jbd2_journal_destroy(journal_t *journal)
1669 {
1670         int err = 0;
1671
1672         /* Wait for the commit thread to wake up and die. */
1673         journal_kill_thread(journal);
1674
1675         /* Force a final log commit */
1676         if (journal->j_running_transaction)
1677                 jbd2_journal_commit_transaction(journal);
1678
1679         /* Force any old transactions to disk */
1680
1681         /* Totally anal locking here... */
1682         spin_lock(&journal->j_list_lock);
1683         while (journal->j_checkpoint_transactions != NULL) {
1684                 spin_unlock(&journal->j_list_lock);
1685                 mutex_lock(&journal->j_checkpoint_mutex);
1686                 jbd2_log_do_checkpoint(journal);
1687                 mutex_unlock(&journal->j_checkpoint_mutex);
1688                 spin_lock(&journal->j_list_lock);
1689         }
1690
1691         J_ASSERT(journal->j_running_transaction == NULL);
1692         J_ASSERT(journal->j_committing_transaction == NULL);
1693         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1694         spin_unlock(&journal->j_list_lock);
1695
1696         if (journal->j_sb_buffer) {
1697                 if (!is_journal_aborted(journal)) {
1698                         mutex_lock(&journal->j_checkpoint_mutex);
1699                         jbd2_mark_journal_empty(journal);
1700                         mutex_unlock(&journal->j_checkpoint_mutex);
1701                 } else
1702                         err = -EIO;
1703                 brelse(journal->j_sb_buffer);
1704         }
1705
1706         if (journal->j_proc_entry)
1707                 jbd2_stats_proc_exit(journal);
1708         iput(journal->j_inode);
1709         if (journal->j_revoke)
1710                 jbd2_journal_destroy_revoke(journal);
1711         if (journal->j_chksum_driver)
1712                 crypto_free_shash(journal->j_chksum_driver);
1713         kfree(journal->j_wbuf);
1714         kfree(journal);
1715
1716         return err;
1717 }
1718
1719
1720 /**
1721  *int jbd2_journal_check_used_features () - Check if features specified are used.
1722  * @journal: Journal to check.
1723  * @compat: bitmask of compatible features
1724  * @ro: bitmask of features that force read-only mount
1725  * @incompat: bitmask of incompatible features
1726  *
1727  * Check whether the journal uses all of a given set of
1728  * features.  Return true (non-zero) if it does.
1729  **/
1730
1731 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1732                                  unsigned long ro, unsigned long incompat)
1733 {
1734         journal_superblock_t *sb;
1735
1736         if (!compat && !ro && !incompat)
1737                 return 1;
1738         /* Load journal superblock if it is not loaded yet. */
1739         if (journal->j_format_version == 0 &&
1740             journal_get_superblock(journal) != 0)
1741                 return 0;
1742         if (journal->j_format_version == 1)
1743                 return 0;
1744
1745         sb = journal->j_superblock;
1746
1747         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1748             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1749             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1750                 return 1;
1751
1752         return 0;
1753 }
1754
1755 /**
1756  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1757  * @journal: Journal to check.
1758  * @compat: bitmask of compatible features
1759  * @ro: bitmask of features that force read-only mount
1760  * @incompat: bitmask of incompatible features
1761  *
1762  * Check whether the journaling code supports the use of
1763  * all of a given set of features on this journal.  Return true
1764  * (non-zero) if it can. */
1765
1766 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1767                                       unsigned long ro, unsigned long incompat)
1768 {
1769         if (!compat && !ro && !incompat)
1770                 return 1;
1771
1772         /* We can support any known requested features iff the
1773          * superblock is in version 2.  Otherwise we fail to support any
1774          * extended sb features. */
1775
1776         if (journal->j_format_version != 2)
1777                 return 0;
1778
1779         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1780             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1781             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1782                 return 1;
1783
1784         return 0;
1785 }
1786
1787 /**
1788  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1789  * @journal: Journal to act on.
1790  * @compat: bitmask of compatible features
1791  * @ro: bitmask of features that force read-only mount
1792  * @incompat: bitmask of incompatible features
1793  *
1794  * Mark a given journal feature as present on the
1795  * superblock.  Returns true if the requested features could be set.
1796  *
1797  */
1798
1799 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1800                           unsigned long ro, unsigned long incompat)
1801 {
1802 #define INCOMPAT_FEATURE_ON(f) \
1803                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1804 #define COMPAT_FEATURE_ON(f) \
1805                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1806         journal_superblock_t *sb;
1807
1808         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1809                 return 1;
1810
1811         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1812                 return 0;
1813
1814         /* If enabling v2 checksums, turn on v3 instead */
1815         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1816                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1817                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1818         }
1819
1820         /* Asking for checksumming v3 and v1?  Only give them v3. */
1821         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1822             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1823                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1824
1825         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1826                   compat, ro, incompat);
1827
1828         sb = journal->j_superblock;
1829
1830         /* If enabling v3 checksums, update superblock */
1831         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1832                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1833                 sb->s_feature_compat &=
1834                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1835
1836                 /* Load the checksum driver */
1837                 if (journal->j_chksum_driver == NULL) {
1838                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1839                                                                       0, 0);
1840                         if (IS_ERR(journal->j_chksum_driver)) {
1841                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1842                                        "driver.\n");
1843                                 journal->j_chksum_driver = NULL;
1844                                 return 0;
1845                         }
1846
1847                         /* Precompute checksum seed for all metadata */
1848                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1849                                                            sb->s_uuid,
1850                                                            sizeof(sb->s_uuid));
1851                 }
1852         }
1853
1854         /* If enabling v1 checksums, downgrade superblock */
1855         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1856                 sb->s_feature_incompat &=
1857                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1858                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1859
1860         sb->s_feature_compat    |= cpu_to_be32(compat);
1861         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1862         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1863
1864         return 1;
1865 #undef COMPAT_FEATURE_ON
1866 #undef INCOMPAT_FEATURE_ON
1867 }
1868
1869 /*
1870  * jbd2_journal_clear_features () - Clear a given journal feature in the
1871  *                                  superblock
1872  * @journal: Journal to act on.
1873  * @compat: bitmask of compatible features
1874  * @ro: bitmask of features that force read-only mount
1875  * @incompat: bitmask of incompatible features
1876  *
1877  * Clear a given journal feature as present on the
1878  * superblock.
1879  */
1880 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1881                                 unsigned long ro, unsigned long incompat)
1882 {
1883         journal_superblock_t *sb;
1884
1885         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1886                   compat, ro, incompat);
1887
1888         sb = journal->j_superblock;
1889
1890         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1891         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1892         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1893 }
1894 EXPORT_SYMBOL(jbd2_journal_clear_features);
1895
1896 /**
1897  * int jbd2_journal_flush () - Flush journal
1898  * @journal: Journal to act on.
1899  *
1900  * Flush all data for a given journal to disk and empty the journal.
1901  * Filesystems can use this when remounting readonly to ensure that
1902  * recovery does not need to happen on remount.
1903  */
1904
1905 int jbd2_journal_flush(journal_t *journal)
1906 {
1907         int err = 0;
1908         transaction_t *transaction = NULL;
1909
1910         write_lock(&journal->j_state_lock);
1911
1912         /* Force everything buffered to the log... */
1913         if (journal->j_running_transaction) {
1914                 transaction = journal->j_running_transaction;
1915                 __jbd2_log_start_commit(journal, transaction->t_tid);
1916         } else if (journal->j_committing_transaction)
1917                 transaction = journal->j_committing_transaction;
1918
1919         /* Wait for the log commit to complete... */
1920         if (transaction) {
1921                 tid_t tid = transaction->t_tid;
1922
1923                 write_unlock(&journal->j_state_lock);
1924                 jbd2_log_wait_commit(journal, tid);
1925         } else {
1926                 write_unlock(&journal->j_state_lock);
1927         }
1928
1929         /* ...and flush everything in the log out to disk. */
1930         spin_lock(&journal->j_list_lock);
1931         while (!err && journal->j_checkpoint_transactions != NULL) {
1932                 spin_unlock(&journal->j_list_lock);
1933                 mutex_lock(&journal->j_checkpoint_mutex);
1934                 err = jbd2_log_do_checkpoint(journal);
1935                 mutex_unlock(&journal->j_checkpoint_mutex);
1936                 spin_lock(&journal->j_list_lock);
1937         }
1938         spin_unlock(&journal->j_list_lock);
1939
1940         if (is_journal_aborted(journal))
1941                 return -EIO;
1942
1943         mutex_lock(&journal->j_checkpoint_mutex);
1944         jbd2_cleanup_journal_tail(journal);
1945
1946         /* Finally, mark the journal as really needing no recovery.
1947          * This sets s_start==0 in the underlying superblock, which is
1948          * the magic code for a fully-recovered superblock.  Any future
1949          * commits of data to the journal will restore the current
1950          * s_start value. */
1951         jbd2_mark_journal_empty(journal);
1952         mutex_unlock(&journal->j_checkpoint_mutex);
1953         write_lock(&journal->j_state_lock);
1954         J_ASSERT(!journal->j_running_transaction);
1955         J_ASSERT(!journal->j_committing_transaction);
1956         J_ASSERT(!journal->j_checkpoint_transactions);
1957         J_ASSERT(journal->j_head == journal->j_tail);
1958         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1959         write_unlock(&journal->j_state_lock);
1960         return 0;
1961 }
1962
1963 /**
1964  * int jbd2_journal_wipe() - Wipe journal contents
1965  * @journal: Journal to act on.
1966  * @write: flag (see below)
1967  *
1968  * Wipe out all of the contents of a journal, safely.  This will produce
1969  * a warning if the journal contains any valid recovery information.
1970  * Must be called between journal_init_*() and jbd2_journal_load().
1971  *
1972  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1973  * we merely suppress recovery.
1974  */
1975
1976 int jbd2_journal_wipe(journal_t *journal, int write)
1977 {
1978         int err = 0;
1979
1980         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1981
1982         err = load_superblock(journal);
1983         if (err)
1984                 return err;
1985
1986         if (!journal->j_tail)
1987                 goto no_recovery;
1988
1989         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1990                 write ? "Clearing" : "Ignoring");
1991
1992         err = jbd2_journal_skip_recovery(journal);
1993         if (write) {
1994                 /* Lock to make assertions happy... */
1995                 mutex_lock(&journal->j_checkpoint_mutex);
1996                 jbd2_mark_journal_empty(journal);
1997                 mutex_unlock(&journal->j_checkpoint_mutex);
1998         }
1999
2000  no_recovery:
2001         return err;
2002 }
2003
2004 /*
2005  * Journal abort has very specific semantics, which we describe
2006  * for journal abort.
2007  *
2008  * Two internal functions, which provide abort to the jbd layer
2009  * itself are here.
2010  */
2011
2012 /*
2013  * Quick version for internal journal use (doesn't lock the journal).
2014  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2015  * and don't attempt to make any other journal updates.
2016  */
2017 void __jbd2_journal_abort_hard(journal_t *journal)
2018 {
2019         transaction_t *transaction;
2020
2021         if (journal->j_flags & JBD2_ABORT)
2022                 return;
2023
2024         printk(KERN_ERR "Aborting journal on device %s.\n",
2025                journal->j_devname);
2026
2027         write_lock(&journal->j_state_lock);
2028         journal->j_flags |= JBD2_ABORT;
2029         transaction = journal->j_running_transaction;
2030         if (transaction)
2031                 __jbd2_log_start_commit(journal, transaction->t_tid);
2032         write_unlock(&journal->j_state_lock);
2033 }
2034
2035 /* Soft abort: record the abort error status in the journal superblock,
2036  * but don't do any other IO. */
2037 static void __journal_abort_soft (journal_t *journal, int errno)
2038 {
2039         if (journal->j_flags & JBD2_ABORT)
2040                 return;
2041
2042         if (!journal->j_errno)
2043                 journal->j_errno = errno;
2044
2045         __jbd2_journal_abort_hard(journal);
2046
2047         if (errno)
2048                 jbd2_journal_update_sb_errno(journal);
2049 }
2050
2051 /**
2052  * void jbd2_journal_abort () - Shutdown the journal immediately.
2053  * @journal: the journal to shutdown.
2054  * @errno:   an error number to record in the journal indicating
2055  *           the reason for the shutdown.
2056  *
2057  * Perform a complete, immediate shutdown of the ENTIRE
2058  * journal (not of a single transaction).  This operation cannot be
2059  * undone without closing and reopening the journal.
2060  *
2061  * The jbd2_journal_abort function is intended to support higher level error
2062  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2063  * mode.
2064  *
2065  * Journal abort has very specific semantics.  Any existing dirty,
2066  * unjournaled buffers in the main filesystem will still be written to
2067  * disk by bdflush, but the journaling mechanism will be suspended
2068  * immediately and no further transaction commits will be honoured.
2069  *
2070  * Any dirty, journaled buffers will be written back to disk without
2071  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2072  * filesystem, but we _do_ attempt to leave as much data as possible
2073  * behind for fsck to use for cleanup.
2074  *
2075  * Any attempt to get a new transaction handle on a journal which is in
2076  * ABORT state will just result in an -EROFS error return.  A
2077  * jbd2_journal_stop on an existing handle will return -EIO if we have
2078  * entered abort state during the update.
2079  *
2080  * Recursive transactions are not disturbed by journal abort until the
2081  * final jbd2_journal_stop, which will receive the -EIO error.
2082  *
2083  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2084  * which will be recorded (if possible) in the journal superblock.  This
2085  * allows a client to record failure conditions in the middle of a
2086  * transaction without having to complete the transaction to record the
2087  * failure to disk.  ext3_error, for example, now uses this
2088  * functionality.
2089  *
2090  * Errors which originate from within the journaling layer will NOT
2091  * supply an errno; a null errno implies that absolutely no further
2092  * writes are done to the journal (unless there are any already in
2093  * progress).
2094  *
2095  */
2096
2097 void jbd2_journal_abort(journal_t *journal, int errno)
2098 {
2099         __journal_abort_soft(journal, errno);
2100 }
2101
2102 /**
2103  * int jbd2_journal_errno () - returns the journal's error state.
2104  * @journal: journal to examine.
2105  *
2106  * This is the errno number set with jbd2_journal_abort(), the last
2107  * time the journal was mounted - if the journal was stopped
2108  * without calling abort this will be 0.
2109  *
2110  * If the journal has been aborted on this mount time -EROFS will
2111  * be returned.
2112  */
2113 int jbd2_journal_errno(journal_t *journal)
2114 {
2115         int err;
2116
2117         read_lock(&journal->j_state_lock);
2118         if (journal->j_flags & JBD2_ABORT)
2119                 err = -EROFS;
2120         else
2121                 err = journal->j_errno;
2122         read_unlock(&journal->j_state_lock);
2123         return err;
2124 }
2125
2126 /**
2127  * int jbd2_journal_clear_err () - clears the journal's error state
2128  * @journal: journal to act on.
2129  *
2130  * An error must be cleared or acked to take a FS out of readonly
2131  * mode.
2132  */
2133 int jbd2_journal_clear_err(journal_t *journal)
2134 {
2135         int err = 0;
2136
2137         write_lock(&journal->j_state_lock);
2138         if (journal->j_flags & JBD2_ABORT)
2139                 err = -EROFS;
2140         else
2141                 journal->j_errno = 0;
2142         write_unlock(&journal->j_state_lock);
2143         return err;
2144 }
2145
2146 /**
2147  * void jbd2_journal_ack_err() - Ack journal err.
2148  * @journal: journal to act on.
2149  *
2150  * An error must be cleared or acked to take a FS out of readonly
2151  * mode.
2152  */
2153 void jbd2_journal_ack_err(journal_t *journal)
2154 {
2155         write_lock(&journal->j_state_lock);
2156         if (journal->j_errno)
2157                 journal->j_flags |= JBD2_ACK_ERR;
2158         write_unlock(&journal->j_state_lock);
2159 }
2160
2161 int jbd2_journal_blocks_per_page(struct inode *inode)
2162 {
2163         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2164 }
2165
2166 /*
2167  * helper functions to deal with 32 or 64bit block numbers.
2168  */
2169 size_t journal_tag_bytes(journal_t *journal)
2170 {
2171         size_t sz;
2172
2173         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3))
2174                 return sizeof(journal_block_tag3_t);
2175
2176         sz = sizeof(journal_block_tag_t);
2177
2178         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2179                 sz += sizeof(__u16);
2180
2181         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2182                 return sz;
2183         else
2184                 return sz - sizeof(__u32);
2185 }
2186
2187 /*
2188  * JBD memory management
2189  *
2190  * These functions are used to allocate block-sized chunks of memory
2191  * used for making copies of buffer_head data.  Very often it will be
2192  * page-sized chunks of data, but sometimes it will be in
2193  * sub-page-size chunks.  (For example, 16k pages on Power systems
2194  * with a 4k block file system.)  For blocks smaller than a page, we
2195  * use a SLAB allocator.  There are slab caches for each block size,
2196  * which are allocated at mount time, if necessary, and we only free
2197  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2198  * this reason we don't need to a mutex to protect access to
2199  * jbd2_slab[] allocating or releasing memory; only in
2200  * jbd2_journal_create_slab().
2201  */
2202 #define JBD2_MAX_SLABS 8
2203 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2204
2205 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2206         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2207         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2208 };
2209
2210
2211 static void jbd2_journal_destroy_slabs(void)
2212 {
2213         int i;
2214
2215         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2216                 if (jbd2_slab[i])
2217                         kmem_cache_destroy(jbd2_slab[i]);
2218                 jbd2_slab[i] = NULL;
2219         }
2220 }
2221
2222 static int jbd2_journal_create_slab(size_t size)
2223 {
2224         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2225         int i = order_base_2(size) - 10;
2226         size_t slab_size;
2227
2228         if (size == PAGE_SIZE)
2229                 return 0;
2230
2231         if (i >= JBD2_MAX_SLABS)
2232                 return -EINVAL;
2233
2234         if (unlikely(i < 0))
2235                 i = 0;
2236         mutex_lock(&jbd2_slab_create_mutex);
2237         if (jbd2_slab[i]) {
2238                 mutex_unlock(&jbd2_slab_create_mutex);
2239                 return 0;       /* Already created */
2240         }
2241
2242         slab_size = 1 << (i+10);
2243         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2244                                          slab_size, 0, NULL);
2245         mutex_unlock(&jbd2_slab_create_mutex);
2246         if (!jbd2_slab[i]) {
2247                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2248                 return -ENOMEM;
2249         }
2250         return 0;
2251 }
2252
2253 static struct kmem_cache *get_slab(size_t size)
2254 {
2255         int i = order_base_2(size) - 10;
2256
2257         BUG_ON(i >= JBD2_MAX_SLABS);
2258         if (unlikely(i < 0))
2259                 i = 0;
2260         BUG_ON(jbd2_slab[i] == NULL);
2261         return jbd2_slab[i];
2262 }
2263
2264 void *jbd2_alloc(size_t size, gfp_t flags)
2265 {
2266         void *ptr;
2267
2268         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2269
2270         flags |= __GFP_REPEAT;
2271         if (size == PAGE_SIZE)
2272                 ptr = (void *)__get_free_pages(flags, 0);
2273         else if (size > PAGE_SIZE) {
2274                 int order = get_order(size);
2275
2276                 if (order < 3)
2277                         ptr = (void *)__get_free_pages(flags, order);
2278                 else
2279                         ptr = vmalloc(size);
2280         } else
2281                 ptr = kmem_cache_alloc(get_slab(size), flags);
2282
2283         /* Check alignment; SLUB has gotten this wrong in the past,
2284          * and this can lead to user data corruption! */
2285         BUG_ON(((unsigned long) ptr) & (size-1));
2286
2287         return ptr;
2288 }
2289
2290 void jbd2_free(void *ptr, size_t size)
2291 {
2292         if (size == PAGE_SIZE) {
2293                 free_pages((unsigned long)ptr, 0);
2294                 return;
2295         }
2296         if (size > PAGE_SIZE) {
2297                 int order = get_order(size);
2298
2299                 if (order < 3)
2300                         free_pages((unsigned long)ptr, order);
2301                 else
2302                         vfree(ptr);
2303                 return;
2304         }
2305         kmem_cache_free(get_slab(size), ptr);
2306 };
2307
2308 /*
2309  * Journal_head storage management
2310  */
2311 static struct kmem_cache *jbd2_journal_head_cache;
2312 #ifdef CONFIG_JBD2_DEBUG
2313 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2314 #endif
2315
2316 static int jbd2_journal_init_journal_head_cache(void)
2317 {
2318         int retval;
2319
2320         J_ASSERT(jbd2_journal_head_cache == NULL);
2321         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2322                                 sizeof(struct journal_head),
2323                                 0,              /* offset */
2324                                 SLAB_TEMPORARY, /* flags */
2325                                 NULL);          /* ctor */
2326         retval = 0;
2327         if (!jbd2_journal_head_cache) {
2328                 retval = -ENOMEM;
2329                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2330         }
2331         return retval;
2332 }
2333
2334 static void jbd2_journal_destroy_journal_head_cache(void)
2335 {
2336         if (jbd2_journal_head_cache) {
2337                 kmem_cache_destroy(jbd2_journal_head_cache);
2338                 jbd2_journal_head_cache = NULL;
2339         }
2340 }
2341
2342 /*
2343  * journal_head splicing and dicing
2344  */
2345 static struct journal_head *journal_alloc_journal_head(void)
2346 {
2347         struct journal_head *ret;
2348
2349 #ifdef CONFIG_JBD2_DEBUG
2350         atomic_inc(&nr_journal_heads);
2351 #endif
2352         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2353         if (!ret) {
2354                 jbd_debug(1, "out of memory for journal_head\n");
2355                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2356                 while (!ret) {
2357                         yield();
2358                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2359                 }
2360         }
2361         return ret;
2362 }
2363
2364 static void journal_free_journal_head(struct journal_head *jh)
2365 {
2366 #ifdef CONFIG_JBD2_DEBUG
2367         atomic_dec(&nr_journal_heads);
2368         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2369 #endif
2370         kmem_cache_free(jbd2_journal_head_cache, jh);
2371 }
2372
2373 /*
2374  * A journal_head is attached to a buffer_head whenever JBD has an
2375  * interest in the buffer.
2376  *
2377  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2378  * is set.  This bit is tested in core kernel code where we need to take
2379  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2380  * there.
2381  *
2382  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2383  *
2384  * When a buffer has its BH_JBD bit set it is immune from being released by
2385  * core kernel code, mainly via ->b_count.
2386  *
2387  * A journal_head is detached from its buffer_head when the journal_head's
2388  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2389  * transaction (b_cp_transaction) hold their references to b_jcount.
2390  *
2391  * Various places in the kernel want to attach a journal_head to a buffer_head
2392  * _before_ attaching the journal_head to a transaction.  To protect the
2393  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2394  * journal_head's b_jcount refcount by one.  The caller must call
2395  * jbd2_journal_put_journal_head() to undo this.
2396  *
2397  * So the typical usage would be:
2398  *
2399  *      (Attach a journal_head if needed.  Increments b_jcount)
2400  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2401  *      ...
2402  *      (Get another reference for transaction)
2403  *      jbd2_journal_grab_journal_head(bh);
2404  *      jh->b_transaction = xxx;
2405  *      (Put original reference)
2406  *      jbd2_journal_put_journal_head(jh);
2407  */
2408
2409 /*
2410  * Give a buffer_head a journal_head.
2411  *
2412  * May sleep.
2413  */
2414 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2415 {
2416         struct journal_head *jh;
2417         struct journal_head *new_jh = NULL;
2418
2419 repeat:
2420         if (!buffer_jbd(bh))
2421                 new_jh = journal_alloc_journal_head();
2422
2423         jbd_lock_bh_journal_head(bh);
2424         if (buffer_jbd(bh)) {
2425                 jh = bh2jh(bh);
2426         } else {
2427                 J_ASSERT_BH(bh,
2428                         (atomic_read(&bh->b_count) > 0) ||
2429                         (bh->b_page && bh->b_page->mapping));
2430
2431                 if (!new_jh) {
2432                         jbd_unlock_bh_journal_head(bh);
2433                         goto repeat;
2434                 }
2435
2436                 jh = new_jh;
2437                 new_jh = NULL;          /* We consumed it */
2438                 set_buffer_jbd(bh);
2439                 bh->b_private = jh;
2440                 jh->b_bh = bh;
2441                 get_bh(bh);
2442                 BUFFER_TRACE(bh, "added journal_head");
2443         }
2444         jh->b_jcount++;
2445         jbd_unlock_bh_journal_head(bh);
2446         if (new_jh)
2447                 journal_free_journal_head(new_jh);
2448         return bh->b_private;
2449 }
2450
2451 /*
2452  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2453  * having a journal_head, return NULL
2454  */
2455 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2456 {
2457         struct journal_head *jh = NULL;
2458
2459         jbd_lock_bh_journal_head(bh);
2460         if (buffer_jbd(bh)) {
2461                 jh = bh2jh(bh);
2462                 jh->b_jcount++;
2463         }
2464         jbd_unlock_bh_journal_head(bh);
2465         return jh;
2466 }
2467
2468 static void __journal_remove_journal_head(struct buffer_head *bh)
2469 {
2470         struct journal_head *jh = bh2jh(bh);
2471
2472         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2473         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2474         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2475         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2476         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2477         J_ASSERT_BH(bh, buffer_jbd(bh));
2478         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2479         BUFFER_TRACE(bh, "remove journal_head");
2480         if (jh->b_frozen_data) {
2481                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2482                 jbd2_free(jh->b_frozen_data, bh->b_size);
2483         }
2484         if (jh->b_committed_data) {
2485                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2486                 jbd2_free(jh->b_committed_data, bh->b_size);
2487         }
2488         bh->b_private = NULL;
2489         jh->b_bh = NULL;        /* debug, really */
2490         clear_buffer_jbd(bh);
2491         journal_free_journal_head(jh);
2492 }
2493
2494 /*
2495  * Drop a reference on the passed journal_head.  If it fell to zero then
2496  * release the journal_head from the buffer_head.
2497  */
2498 void jbd2_journal_put_journal_head(struct journal_head *jh)
2499 {
2500         struct buffer_head *bh = jh2bh(jh);
2501
2502         jbd_lock_bh_journal_head(bh);
2503         J_ASSERT_JH(jh, jh->b_jcount > 0);
2504         --jh->b_jcount;
2505         if (!jh->b_jcount) {
2506                 __journal_remove_journal_head(bh);
2507                 jbd_unlock_bh_journal_head(bh);
2508                 __brelse(bh);
2509         } else
2510                 jbd_unlock_bh_journal_head(bh);
2511 }
2512
2513 /*
2514  * Initialize jbd inode head
2515  */
2516 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2517 {
2518         jinode->i_transaction = NULL;
2519         jinode->i_next_transaction = NULL;
2520         jinode->i_vfs_inode = inode;
2521         jinode->i_flags = 0;
2522         INIT_LIST_HEAD(&jinode->i_list);
2523 }
2524
2525 /*
2526  * Function to be called before we start removing inode from memory (i.e.,
2527  * clear_inode() is a fine place to be called from). It removes inode from
2528  * transaction's lists.
2529  */
2530 void jbd2_journal_release_jbd_inode(journal_t *journal,
2531                                     struct jbd2_inode *jinode)
2532 {
2533         if (!journal)
2534                 return;
2535 restart:
2536         spin_lock(&journal->j_list_lock);
2537         /* Is commit writing out inode - we have to wait */
2538         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2539                 wait_queue_head_t *wq;
2540                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2541                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2542                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2543                 spin_unlock(&journal->j_list_lock);
2544                 schedule();
2545                 finish_wait(wq, &wait.wait);
2546                 goto restart;
2547         }
2548
2549         if (jinode->i_transaction) {
2550                 list_del(&jinode->i_list);
2551                 jinode->i_transaction = NULL;
2552         }
2553         spin_unlock(&journal->j_list_lock);
2554 }
2555
2556
2557 #ifdef CONFIG_PROC_FS
2558
2559 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2560
2561 static void __init jbd2_create_jbd_stats_proc_entry(void)
2562 {
2563         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2564 }
2565
2566 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2567 {
2568         if (proc_jbd2_stats)
2569                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2570 }
2571
2572 #else
2573
2574 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2575 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2576
2577 #endif
2578
2579 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2580
2581 static int __init jbd2_journal_init_handle_cache(void)
2582 {
2583         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2584         if (jbd2_handle_cache == NULL) {
2585                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2586                 return -ENOMEM;
2587         }
2588         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2589         if (jbd2_inode_cache == NULL) {
2590                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2591                 kmem_cache_destroy(jbd2_handle_cache);
2592                 return -ENOMEM;
2593         }
2594         return 0;
2595 }
2596
2597 static void jbd2_journal_destroy_handle_cache(void)
2598 {
2599         if (jbd2_handle_cache)
2600                 kmem_cache_destroy(jbd2_handle_cache);
2601         if (jbd2_inode_cache)
2602                 kmem_cache_destroy(jbd2_inode_cache);
2603
2604 }
2605
2606 /*
2607  * Module startup and shutdown
2608  */
2609
2610 static int __init journal_init_caches(void)
2611 {
2612         int ret;
2613
2614         ret = jbd2_journal_init_revoke_caches();
2615         if (ret == 0)
2616                 ret = jbd2_journal_init_journal_head_cache();
2617         if (ret == 0)
2618                 ret = jbd2_journal_init_handle_cache();
2619         if (ret == 0)
2620                 ret = jbd2_journal_init_transaction_cache();
2621         return ret;
2622 }
2623
2624 static void jbd2_journal_destroy_caches(void)
2625 {
2626         jbd2_journal_destroy_revoke_caches();
2627         jbd2_journal_destroy_journal_head_cache();
2628         jbd2_journal_destroy_handle_cache();
2629         jbd2_journal_destroy_transaction_cache();
2630         jbd2_journal_destroy_slabs();
2631 }
2632
2633 static int __init journal_init(void)
2634 {
2635         int ret;
2636
2637         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2638
2639         ret = journal_init_caches();
2640         if (ret == 0) {
2641                 jbd2_create_jbd_stats_proc_entry();
2642         } else {
2643                 jbd2_journal_destroy_caches();
2644         }
2645         return ret;
2646 }
2647
2648 static void __exit journal_exit(void)
2649 {
2650 #ifdef CONFIG_JBD2_DEBUG
2651         int n = atomic_read(&nr_journal_heads);
2652         if (n)
2653                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2654 #endif
2655         jbd2_remove_jbd_stats_proc_entry();
2656         jbd2_journal_destroy_caches();
2657 }
2658
2659 MODULE_LICENSE("GPL");
2660 module_init(journal_init);
2661 module_exit(journal_exit);
2662