ext4/jbd2: don't wait (forever) for stale tid caused by wraparound
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110                 return 1;
111
112         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117         __u32 csum, old_csum;
118
119         old_csum = sb->s_checksum;
120         sb->s_checksum = 0;
121         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122         sb->s_checksum = old_csum;
123
124         return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130                 return 1;
131
132         return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138                 return;
139
140         sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(unsigned long __data)
148 {
149         struct task_struct * p = (struct task_struct *) __data;
150
151         wake_up_process(p);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk.
163  *
164  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165  *    of the data in that part of the log has been rewritten elsewhere on
166  *    the disk.  Flushing these old buffers to reclaim space in the log is
167  *    known as checkpointing, and this thread is responsible for that job.
168  */
169
170 static int kjournald2(void *arg)
171 {
172         journal_t *journal = arg;
173         transaction_t *transaction;
174
175         /*
176          * Set up an interval timer which can be used to trigger a commit wakeup
177          * after the commit interval expires
178          */
179         setup_timer(&journal->j_commit_timer, commit_timeout,
180                         (unsigned long)current);
181
182         set_freezable();
183
184         /* Record that the journal thread is running */
185         journal->j_task = current;
186         wake_up(&journal->j_wait_done_commit);
187
188         /*
189          * And now, wait forever for commit wakeup events.
190          */
191         write_lock(&journal->j_state_lock);
192
193 loop:
194         if (journal->j_flags & JBD2_UNMOUNT)
195                 goto end_loop;
196
197         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198                 journal->j_commit_sequence, journal->j_commit_request);
199
200         if (journal->j_commit_sequence != journal->j_commit_request) {
201                 jbd_debug(1, "OK, requests differ\n");
202                 write_unlock(&journal->j_state_lock);
203                 del_timer_sync(&journal->j_commit_timer);
204                 jbd2_journal_commit_transaction(journal);
205                 write_lock(&journal->j_state_lock);
206                 goto loop;
207         }
208
209         wake_up(&journal->j_wait_done_commit);
210         if (freezing(current)) {
211                 /*
212                  * The simpler the better. Flushing journal isn't a
213                  * good idea, because that depends on threads that may
214                  * be already stopped.
215                  */
216                 jbd_debug(1, "Now suspending kjournald2\n");
217                 write_unlock(&journal->j_state_lock);
218                 try_to_freeze();
219                 write_lock(&journal->j_state_lock);
220         } else {
221                 /*
222                  * We assume on resume that commits are already there,
223                  * so we don't sleep
224                  */
225                 DEFINE_WAIT(wait);
226                 int should_sleep = 1;
227
228                 prepare_to_wait(&journal->j_wait_commit, &wait,
229                                 TASK_INTERRUPTIBLE);
230                 if (journal->j_commit_sequence != journal->j_commit_request)
231                         should_sleep = 0;
232                 transaction = journal->j_running_transaction;
233                 if (transaction && time_after_eq(jiffies,
234                                                 transaction->t_expires))
235                         should_sleep = 0;
236                 if (journal->j_flags & JBD2_UNMOUNT)
237                         should_sleep = 0;
238                 if (should_sleep) {
239                         write_unlock(&journal->j_state_lock);
240                         schedule();
241                         write_lock(&journal->j_state_lock);
242                 }
243                 finish_wait(&journal->j_wait_commit, &wait);
244         }
245
246         jbd_debug(1, "kjournald2 wakes\n");
247
248         /*
249          * Were we woken up by a commit wakeup event?
250          */
251         transaction = journal->j_running_transaction;
252         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253                 journal->j_commit_request = transaction->t_tid;
254                 jbd_debug(1, "woke because of timeout\n");
255         }
256         goto loop;
257
258 end_loop:
259         write_unlock(&journal->j_state_lock);
260         del_timer_sync(&journal->j_commit_timer);
261         journal->j_task = NULL;
262         wake_up(&journal->j_wait_done_commit);
263         jbd_debug(1, "Journal thread exiting.\n");
264         return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269         struct task_struct *t;
270
271         t = kthread_run(kjournald2, journal, "jbd2/%s",
272                         journal->j_devname);
273         if (IS_ERR(t))
274                 return PTR_ERR(t);
275
276         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277         return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282         write_lock(&journal->j_state_lock);
283         journal->j_flags |= JBD2_UNMOUNT;
284
285         while (journal->j_task) {
286                 wake_up(&journal->j_wait_commit);
287                 write_unlock(&journal->j_state_lock);
288                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289                 write_lock(&journal->j_state_lock);
290         }
291         write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296  *
297  * Writes a metadata buffer to a given disk block.  The actual IO is not
298  * performed but a new buffer_head is constructed which labels the data
299  * to be written with the correct destination disk block.
300  *
301  * Any magic-number escaping which needs to be done will cause a
302  * copy-out here.  If the buffer happens to start with the
303  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304  * magic number is only written to the log for descripter blocks.  In
305  * this case, we copy the data and replace the first word with 0, and we
306  * return a result code which indicates that this buffer needs to be
307  * marked as an escaped buffer in the corresponding log descriptor
308  * block.  The missing word can then be restored when the block is read
309  * during recovery.
310  *
311  * If the source buffer has already been modified by a new transaction
312  * since we took the last commit snapshot, we use the frozen copy of
313  * that data for IO.  If we end up using the existing buffer_head's data
314  * for the write, then we *have* to lock the buffer to prevent anyone
315  * else from using and possibly modifying it while the IO is in
316  * progress.
317  *
318  * The function returns a pointer to the buffer_heads to be used for IO.
319  *
320  * We assume that the journal has already been locked in this function.
321  *
322  * Return value:
323  *  <0: Error
324  * >=0: Finished OK
325  *
326  * On success:
327  * Bit 0 set == escape performed on the data
328  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
329  */
330
331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
332                                   struct journal_head  *jh_in,
333                                   struct journal_head **jh_out,
334                                   unsigned long long blocknr)
335 {
336         int need_copy_out = 0;
337         int done_copy_out = 0;
338         int do_escape = 0;
339         char *mapped_data;
340         struct buffer_head *new_bh;
341         struct journal_head *new_jh;
342         struct page *new_page;
343         unsigned int new_offset;
344         struct buffer_head *bh_in = jh2bh(jh_in);
345         journal_t *journal = transaction->t_journal;
346
347         /*
348          * The buffer really shouldn't be locked: only the current committing
349          * transaction is allowed to write it, so nobody else is allowed
350          * to do any IO.
351          *
352          * akpm: except if we're journalling data, and write() output is
353          * also part of a shared mapping, and another thread has
354          * decided to launch a writepage() against this buffer.
355          */
356         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
357
358 retry_alloc:
359         new_bh = alloc_buffer_head(GFP_NOFS);
360         if (!new_bh) {
361                 /*
362                  * Failure is not an option, but __GFP_NOFAIL is going
363                  * away; so we retry ourselves here.
364                  */
365                 congestion_wait(BLK_RW_ASYNC, HZ/50);
366                 goto retry_alloc;
367         }
368
369         /* keep subsequent assertions sane */
370         new_bh->b_state = 0;
371         init_buffer(new_bh, NULL, NULL);
372         atomic_set(&new_bh->b_count, 1);
373         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
374
375         /*
376          * If a new transaction has already done a buffer copy-out, then
377          * we use that version of the data for the commit.
378          */
379         jbd_lock_bh_state(bh_in);
380 repeat:
381         if (jh_in->b_frozen_data) {
382                 done_copy_out = 1;
383                 new_page = virt_to_page(jh_in->b_frozen_data);
384                 new_offset = offset_in_page(jh_in->b_frozen_data);
385         } else {
386                 new_page = jh2bh(jh_in)->b_page;
387                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
388         }
389
390         mapped_data = kmap_atomic(new_page);
391         /*
392          * Fire data frozen trigger if data already wasn't frozen.  Do this
393          * before checking for escaping, as the trigger may modify the magic
394          * offset.  If a copy-out happens afterwards, it will have the correct
395          * data in the buffer.
396          */
397         if (!done_copy_out)
398                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
399                                            jh_in->b_triggers);
400
401         /*
402          * Check for escaping
403          */
404         if (*((__be32 *)(mapped_data + new_offset)) ==
405                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
406                 need_copy_out = 1;
407                 do_escape = 1;
408         }
409         kunmap_atomic(mapped_data);
410
411         /*
412          * Do we need to do a data copy?
413          */
414         if (need_copy_out && !done_copy_out) {
415                 char *tmp;
416
417                 jbd_unlock_bh_state(bh_in);
418                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
419                 if (!tmp) {
420                         jbd2_journal_put_journal_head(new_jh);
421                         return -ENOMEM;
422                 }
423                 jbd_lock_bh_state(bh_in);
424                 if (jh_in->b_frozen_data) {
425                         jbd2_free(tmp, bh_in->b_size);
426                         goto repeat;
427                 }
428
429                 jh_in->b_frozen_data = tmp;
430                 mapped_data = kmap_atomic(new_page);
431                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
432                 kunmap_atomic(mapped_data);
433
434                 new_page = virt_to_page(tmp);
435                 new_offset = offset_in_page(tmp);
436                 done_copy_out = 1;
437
438                 /*
439                  * This isn't strictly necessary, as we're using frozen
440                  * data for the escaping, but it keeps consistency with
441                  * b_frozen_data usage.
442                  */
443                 jh_in->b_frozen_triggers = jh_in->b_triggers;
444         }
445
446         /*
447          * Did we need to do an escaping?  Now we've done all the
448          * copying, we can finally do so.
449          */
450         if (do_escape) {
451                 mapped_data = kmap_atomic(new_page);
452                 *((unsigned int *)(mapped_data + new_offset)) = 0;
453                 kunmap_atomic(mapped_data);
454         }
455
456         set_bh_page(new_bh, new_page, new_offset);
457         new_jh->b_transaction = NULL;
458         new_bh->b_size = jh2bh(jh_in)->b_size;
459         new_bh->b_bdev = transaction->t_journal->j_dev;
460         new_bh->b_blocknr = blocknr;
461         set_buffer_mapped(new_bh);
462         set_buffer_dirty(new_bh);
463
464         *jh_out = new_jh;
465
466         /*
467          * The to-be-written buffer needs to get moved to the io queue,
468          * and the original buffer whose contents we are shadowing or
469          * copying is moved to the transaction's shadow queue.
470          */
471         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
472         spin_lock(&journal->j_list_lock);
473         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
474         spin_unlock(&journal->j_list_lock);
475         jbd_unlock_bh_state(bh_in);
476
477         JBUFFER_TRACE(new_jh, "file as BJ_IO");
478         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
479
480         return do_escape | (done_copy_out << 1);
481 }
482
483 /*
484  * Allocation code for the journal file.  Manage the space left in the
485  * journal, so that we can begin checkpointing when appropriate.
486  */
487
488 /*
489  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
490  *
491  * Called with the journal already locked.
492  *
493  * Called under j_state_lock
494  */
495
496 int __jbd2_log_space_left(journal_t *journal)
497 {
498         int left = journal->j_free;
499
500         /* assert_spin_locked(&journal->j_state_lock); */
501
502         /*
503          * Be pessimistic here about the number of those free blocks which
504          * might be required for log descriptor control blocks.
505          */
506
507 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
508
509         left -= MIN_LOG_RESERVED_BLOCKS;
510
511         if (left <= 0)
512                 return 0;
513         left -= (left >> 3);
514         return left;
515 }
516
517 /*
518  * Called with j_state_lock locked for writing.
519  * Returns true if a transaction commit was started.
520  */
521 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
522 {
523         /* Return if the txn has already requested to be committed */
524         if (journal->j_commit_request == target)
525                 return 0;
526
527         /*
528          * The only transaction we can possibly wait upon is the
529          * currently running transaction (if it exists).  Otherwise,
530          * the target tid must be an old one.
531          */
532         if (journal->j_running_transaction &&
533             journal->j_running_transaction->t_tid == target) {
534                 /*
535                  * We want a new commit: OK, mark the request and wakeup the
536                  * commit thread.  We do _not_ do the commit ourselves.
537                  */
538
539                 journal->j_commit_request = target;
540                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
541                           journal->j_commit_request,
542                           journal->j_commit_sequence);
543                 journal->j_running_transaction->t_requested = jiffies;
544                 wake_up(&journal->j_wait_commit);
545                 return 1;
546         } else if (!tid_geq(journal->j_commit_request, target))
547                 /* This should never happen, but if it does, preserve
548                    the evidence before kjournald goes into a loop and
549                    increments j_commit_sequence beyond all recognition. */
550                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
551                           journal->j_commit_request,
552                           journal->j_commit_sequence,
553                           target, journal->j_running_transaction ? 
554                           journal->j_running_transaction->t_tid : 0);
555         return 0;
556 }
557
558 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
559 {
560         int ret;
561
562         write_lock(&journal->j_state_lock);
563         ret = __jbd2_log_start_commit(journal, tid);
564         write_unlock(&journal->j_state_lock);
565         return ret;
566 }
567
568 /*
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * We can only force the running transaction if we don't have an active handle;
574  * otherwise, we will deadlock.
575  *
576  * Returns true if a transaction was started.
577  */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580         transaction_t *transaction = NULL;
581         tid_t tid;
582         int need_to_start = 0;
583
584         read_lock(&journal->j_state_lock);
585         if (journal->j_running_transaction && !current->journal_info) {
586                 transaction = journal->j_running_transaction;
587                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
588                         need_to_start = 1;
589         } else if (journal->j_committing_transaction)
590                 transaction = journal->j_committing_transaction;
591
592         if (!transaction) {
593                 read_unlock(&journal->j_state_lock);
594                 return 0;       /* Nothing to retry */
595         }
596
597         tid = transaction->t_tid;
598         read_unlock(&journal->j_state_lock);
599         if (need_to_start)
600                 jbd2_log_start_commit(journal, tid);
601         jbd2_log_wait_commit(journal, tid);
602         return 1;
603 }
604
605 /*
606  * Start a commit of the current running transaction (if any).  Returns true
607  * if a transaction is going to be committed (or is currently already
608  * committing), and fills its tid in at *ptid
609  */
610 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
611 {
612         int ret = 0;
613
614         write_lock(&journal->j_state_lock);
615         if (journal->j_running_transaction) {
616                 tid_t tid = journal->j_running_transaction->t_tid;
617
618                 __jbd2_log_start_commit(journal, tid);
619                 /* There's a running transaction and we've just made sure
620                  * it's commit has been scheduled. */
621                 if (ptid)
622                         *ptid = tid;
623                 ret = 1;
624         } else if (journal->j_committing_transaction) {
625                 /*
626                  * If commit has been started, then we have to wait for
627                  * completion of that transaction.
628                  */
629                 if (ptid)
630                         *ptid = journal->j_committing_transaction->t_tid;
631                 ret = 1;
632         }
633         write_unlock(&journal->j_state_lock);
634         return ret;
635 }
636
637 /*
638  * Return 1 if a given transaction has not yet sent barrier request
639  * connected with a transaction commit. If 0 is returned, transaction
640  * may or may not have sent the barrier. Used to avoid sending barrier
641  * twice in common cases.
642  */
643 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
644 {
645         int ret = 0;
646         transaction_t *commit_trans;
647
648         if (!(journal->j_flags & JBD2_BARRIER))
649                 return 0;
650         read_lock(&journal->j_state_lock);
651         /* Transaction already committed? */
652         if (tid_geq(journal->j_commit_sequence, tid))
653                 goto out;
654         commit_trans = journal->j_committing_transaction;
655         if (!commit_trans || commit_trans->t_tid != tid) {
656                 ret = 1;
657                 goto out;
658         }
659         /*
660          * Transaction is being committed and we already proceeded to
661          * submitting a flush to fs partition?
662          */
663         if (journal->j_fs_dev != journal->j_dev) {
664                 if (!commit_trans->t_need_data_flush ||
665                     commit_trans->t_state >= T_COMMIT_DFLUSH)
666                         goto out;
667         } else {
668                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
669                         goto out;
670         }
671         ret = 1;
672 out:
673         read_unlock(&journal->j_state_lock);
674         return ret;
675 }
676 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
677
678 /*
679  * Wait for a specified commit to complete.
680  * The caller may not hold the journal lock.
681  */
682 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
683 {
684         int err = 0;
685
686         read_lock(&journal->j_state_lock);
687 #ifdef CONFIG_JBD2_DEBUG
688         if (!tid_geq(journal->j_commit_request, tid)) {
689                 printk(KERN_EMERG
690                        "%s: error: j_commit_request=%d, tid=%d\n",
691                        __func__, journal->j_commit_request, tid);
692         }
693 #endif
694         while (tid_gt(tid, journal->j_commit_sequence)) {
695                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
696                                   tid, journal->j_commit_sequence);
697                 wake_up(&journal->j_wait_commit);
698                 read_unlock(&journal->j_state_lock);
699                 wait_event(journal->j_wait_done_commit,
700                                 !tid_gt(tid, journal->j_commit_sequence));
701                 read_lock(&journal->j_state_lock);
702         }
703         read_unlock(&journal->j_state_lock);
704
705         if (unlikely(is_journal_aborted(journal))) {
706                 printk(KERN_EMERG "journal commit I/O error\n");
707                 err = -EIO;
708         }
709         return err;
710 }
711
712 /*
713  * When this function returns the transaction corresponding to tid
714  * will be completed.  If the transaction has currently running, start
715  * committing that transaction before waiting for it to complete.  If
716  * the transaction id is stale, it is by definition already completed,
717  * so just return SUCCESS.
718  */
719 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
720 {
721         int     need_to_wait = 1;
722
723         read_lock(&journal->j_state_lock);
724         if (journal->j_running_transaction &&
725             journal->j_running_transaction->t_tid == tid) {
726                 if (journal->j_commit_request != tid) {
727                         /* transaction not yet started, so request it */
728                         read_unlock(&journal->j_state_lock);
729                         jbd2_log_start_commit(journal, tid);
730                         goto wait_commit;
731                 }
732         } else if (!(journal->j_committing_transaction &&
733                      journal->j_committing_transaction->t_tid == tid))
734                 need_to_wait = 0;
735         read_unlock(&journal->j_state_lock);
736         if (!need_to_wait)
737                 return 0;
738 wait_commit:
739         return jbd2_log_wait_commit(journal, tid);
740 }
741 EXPORT_SYMBOL(jbd2_complete_transaction);
742
743 /*
744  * Log buffer allocation routines:
745  */
746
747 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
748 {
749         unsigned long blocknr;
750
751         write_lock(&journal->j_state_lock);
752         J_ASSERT(journal->j_free > 1);
753
754         blocknr = journal->j_head;
755         journal->j_head++;
756         journal->j_free--;
757         if (journal->j_head == journal->j_last)
758                 journal->j_head = journal->j_first;
759         write_unlock(&journal->j_state_lock);
760         return jbd2_journal_bmap(journal, blocknr, retp);
761 }
762
763 /*
764  * Conversion of logical to physical block numbers for the journal
765  *
766  * On external journals the journal blocks are identity-mapped, so
767  * this is a no-op.  If needed, we can use j_blk_offset - everything is
768  * ready.
769  */
770 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
771                  unsigned long long *retp)
772 {
773         int err = 0;
774         unsigned long long ret;
775
776         if (journal->j_inode) {
777                 ret = bmap(journal->j_inode, blocknr);
778                 if (ret)
779                         *retp = ret;
780                 else {
781                         printk(KERN_ALERT "%s: journal block not found "
782                                         "at offset %lu on %s\n",
783                                __func__, blocknr, journal->j_devname);
784                         err = -EIO;
785                         __journal_abort_soft(journal, err);
786                 }
787         } else {
788                 *retp = blocknr; /* +journal->j_blk_offset */
789         }
790         return err;
791 }
792
793 /*
794  * We play buffer_head aliasing tricks to write data/metadata blocks to
795  * the journal without copying their contents, but for journal
796  * descriptor blocks we do need to generate bona fide buffers.
797  *
798  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
799  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
800  * But we don't bother doing that, so there will be coherency problems with
801  * mmaps of blockdevs which hold live JBD-controlled filesystems.
802  */
803 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
804 {
805         struct buffer_head *bh;
806         unsigned long long blocknr;
807         int err;
808
809         err = jbd2_journal_next_log_block(journal, &blocknr);
810
811         if (err)
812                 return NULL;
813
814         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
815         if (!bh)
816                 return NULL;
817         lock_buffer(bh);
818         memset(bh->b_data, 0, journal->j_blocksize);
819         set_buffer_uptodate(bh);
820         unlock_buffer(bh);
821         BUFFER_TRACE(bh, "return this buffer");
822         return jbd2_journal_add_journal_head(bh);
823 }
824
825 /*
826  * Return tid of the oldest transaction in the journal and block in the journal
827  * where the transaction starts.
828  *
829  * If the journal is now empty, return which will be the next transaction ID
830  * we will write and where will that transaction start.
831  *
832  * The return value is 0 if journal tail cannot be pushed any further, 1 if
833  * it can.
834  */
835 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
836                               unsigned long *block)
837 {
838         transaction_t *transaction;
839         int ret;
840
841         read_lock(&journal->j_state_lock);
842         spin_lock(&journal->j_list_lock);
843         transaction = journal->j_checkpoint_transactions;
844         if (transaction) {
845                 *tid = transaction->t_tid;
846                 *block = transaction->t_log_start;
847         } else if ((transaction = journal->j_committing_transaction) != NULL) {
848                 *tid = transaction->t_tid;
849                 *block = transaction->t_log_start;
850         } else if ((transaction = journal->j_running_transaction) != NULL) {
851                 *tid = transaction->t_tid;
852                 *block = journal->j_head;
853         } else {
854                 *tid = journal->j_transaction_sequence;
855                 *block = journal->j_head;
856         }
857         ret = tid_gt(*tid, journal->j_tail_sequence);
858         spin_unlock(&journal->j_list_lock);
859         read_unlock(&journal->j_state_lock);
860
861         return ret;
862 }
863
864 /*
865  * Update information in journal structure and in on disk journal superblock
866  * about log tail. This function does not check whether information passed in
867  * really pushes log tail further. It's responsibility of the caller to make
868  * sure provided log tail information is valid (e.g. by holding
869  * j_checkpoint_mutex all the time between computing log tail and calling this
870  * function as is the case with jbd2_cleanup_journal_tail()).
871  *
872  * Requires j_checkpoint_mutex
873  */
874 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
875 {
876         unsigned long freed;
877
878         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
879
880         /*
881          * We cannot afford for write to remain in drive's caches since as
882          * soon as we update j_tail, next transaction can start reusing journal
883          * space and if we lose sb update during power failure we'd replay
884          * old transaction with possibly newly overwritten data.
885          */
886         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
887         write_lock(&journal->j_state_lock);
888         freed = block - journal->j_tail;
889         if (block < journal->j_tail)
890                 freed += journal->j_last - journal->j_first;
891
892         trace_jbd2_update_log_tail(journal, tid, block, freed);
893         jbd_debug(1,
894                   "Cleaning journal tail from %d to %d (offset %lu), "
895                   "freeing %lu\n",
896                   journal->j_tail_sequence, tid, block, freed);
897
898         journal->j_free += freed;
899         journal->j_tail_sequence = tid;
900         journal->j_tail = block;
901         write_unlock(&journal->j_state_lock);
902 }
903
904 /*
905  * This is a variaon of __jbd2_update_log_tail which checks for validity of
906  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
907  * with other threads updating log tail.
908  */
909 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
910 {
911         mutex_lock(&journal->j_checkpoint_mutex);
912         if (tid_gt(tid, journal->j_tail_sequence))
913                 __jbd2_update_log_tail(journal, tid, block);
914         mutex_unlock(&journal->j_checkpoint_mutex);
915 }
916
917 struct jbd2_stats_proc_session {
918         journal_t *journal;
919         struct transaction_stats_s *stats;
920         int start;
921         int max;
922 };
923
924 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
925 {
926         return *pos ? NULL : SEQ_START_TOKEN;
927 }
928
929 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
930 {
931         return NULL;
932 }
933
934 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
935 {
936         struct jbd2_stats_proc_session *s = seq->private;
937
938         if (v != SEQ_START_TOKEN)
939                 return 0;
940         seq_printf(seq, "%lu transactions (%lu requested), "
941                    "each up to %u blocks\n",
942                    s->stats->ts_tid, s->stats->ts_requested,
943                    s->journal->j_max_transaction_buffers);
944         if (s->stats->ts_tid == 0)
945                 return 0;
946         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
947             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
948         seq_printf(seq, "  %ums request delay\n",
949             (s->stats->ts_requested == 0) ? 0 :
950             jiffies_to_msecs(s->stats->run.rs_request_delay /
951                              s->stats->ts_requested));
952         seq_printf(seq, "  %ums running transaction\n",
953             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
954         seq_printf(seq, "  %ums transaction was being locked\n",
955             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
956         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
957             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
958         seq_printf(seq, "  %ums logging transaction\n",
959             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
960         seq_printf(seq, "  %lluus average transaction commit time\n",
961                    div_u64(s->journal->j_average_commit_time, 1000));
962         seq_printf(seq, "  %lu handles per transaction\n",
963             s->stats->run.rs_handle_count / s->stats->ts_tid);
964         seq_printf(seq, "  %lu blocks per transaction\n",
965             s->stats->run.rs_blocks / s->stats->ts_tid);
966         seq_printf(seq, "  %lu logged blocks per transaction\n",
967             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
968         return 0;
969 }
970
971 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
972 {
973 }
974
975 static const struct seq_operations jbd2_seq_info_ops = {
976         .start  = jbd2_seq_info_start,
977         .next   = jbd2_seq_info_next,
978         .stop   = jbd2_seq_info_stop,
979         .show   = jbd2_seq_info_show,
980 };
981
982 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
983 {
984         journal_t *journal = PDE(inode)->data;
985         struct jbd2_stats_proc_session *s;
986         int rc, size;
987
988         s = kmalloc(sizeof(*s), GFP_KERNEL);
989         if (s == NULL)
990                 return -ENOMEM;
991         size = sizeof(struct transaction_stats_s);
992         s->stats = kmalloc(size, GFP_KERNEL);
993         if (s->stats == NULL) {
994                 kfree(s);
995                 return -ENOMEM;
996         }
997         spin_lock(&journal->j_history_lock);
998         memcpy(s->stats, &journal->j_stats, size);
999         s->journal = journal;
1000         spin_unlock(&journal->j_history_lock);
1001
1002         rc = seq_open(file, &jbd2_seq_info_ops);
1003         if (rc == 0) {
1004                 struct seq_file *m = file->private_data;
1005                 m->private = s;
1006         } else {
1007                 kfree(s->stats);
1008                 kfree(s);
1009         }
1010         return rc;
1011
1012 }
1013
1014 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1015 {
1016         struct seq_file *seq = file->private_data;
1017         struct jbd2_stats_proc_session *s = seq->private;
1018         kfree(s->stats);
1019         kfree(s);
1020         return seq_release(inode, file);
1021 }
1022
1023 static const struct file_operations jbd2_seq_info_fops = {
1024         .owner          = THIS_MODULE,
1025         .open           = jbd2_seq_info_open,
1026         .read           = seq_read,
1027         .llseek         = seq_lseek,
1028         .release        = jbd2_seq_info_release,
1029 };
1030
1031 static struct proc_dir_entry *proc_jbd2_stats;
1032
1033 static void jbd2_stats_proc_init(journal_t *journal)
1034 {
1035         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1036         if (journal->j_proc_entry) {
1037                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1038                                  &jbd2_seq_info_fops, journal);
1039         }
1040 }
1041
1042 static void jbd2_stats_proc_exit(journal_t *journal)
1043 {
1044         remove_proc_entry("info", journal->j_proc_entry);
1045         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1046 }
1047
1048 /*
1049  * Management for journal control blocks: functions to create and
1050  * destroy journal_t structures, and to initialise and read existing
1051  * journal blocks from disk.  */
1052
1053 /* First: create and setup a journal_t object in memory.  We initialise
1054  * very few fields yet: that has to wait until we have created the
1055  * journal structures from from scratch, or loaded them from disk. */
1056
1057 static journal_t * journal_init_common (void)
1058 {
1059         journal_t *journal;
1060         int err;
1061
1062         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1063         if (!journal)
1064                 return NULL;
1065
1066         init_waitqueue_head(&journal->j_wait_transaction_locked);
1067         init_waitqueue_head(&journal->j_wait_logspace);
1068         init_waitqueue_head(&journal->j_wait_done_commit);
1069         init_waitqueue_head(&journal->j_wait_checkpoint);
1070         init_waitqueue_head(&journal->j_wait_commit);
1071         init_waitqueue_head(&journal->j_wait_updates);
1072         mutex_init(&journal->j_barrier);
1073         mutex_init(&journal->j_checkpoint_mutex);
1074         spin_lock_init(&journal->j_revoke_lock);
1075         spin_lock_init(&journal->j_list_lock);
1076         rwlock_init(&journal->j_state_lock);
1077
1078         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1079         journal->j_min_batch_time = 0;
1080         journal->j_max_batch_time = 15000; /* 15ms */
1081
1082         /* The journal is marked for error until we succeed with recovery! */
1083         journal->j_flags = JBD2_ABORT;
1084
1085         /* Set up a default-sized revoke table for the new mount. */
1086         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1087         if (err) {
1088                 kfree(journal);
1089                 return NULL;
1090         }
1091
1092         spin_lock_init(&journal->j_history_lock);
1093
1094         return journal;
1095 }
1096
1097 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1098  *
1099  * Create a journal structure assigned some fixed set of disk blocks to
1100  * the journal.  We don't actually touch those disk blocks yet, but we
1101  * need to set up all of the mapping information to tell the journaling
1102  * system where the journal blocks are.
1103  *
1104  */
1105
1106 /**
1107  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1108  *  @bdev: Block device on which to create the journal
1109  *  @fs_dev: Device which hold journalled filesystem for this journal.
1110  *  @start: Block nr Start of journal.
1111  *  @len:  Length of the journal in blocks.
1112  *  @blocksize: blocksize of journalling device
1113  *
1114  *  Returns: a newly created journal_t *
1115  *
1116  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1117  *  range of blocks on an arbitrary block device.
1118  *
1119  */
1120 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1121                         struct block_device *fs_dev,
1122                         unsigned long long start, int len, int blocksize)
1123 {
1124         journal_t *journal = journal_init_common();
1125         struct buffer_head *bh;
1126         char *p;
1127         int n;
1128
1129         if (!journal)
1130                 return NULL;
1131
1132         /* journal descriptor can store up to n blocks -bzzz */
1133         journal->j_blocksize = blocksize;
1134         journal->j_dev = bdev;
1135         journal->j_fs_dev = fs_dev;
1136         journal->j_blk_offset = start;
1137         journal->j_maxlen = len;
1138         bdevname(journal->j_dev, journal->j_devname);
1139         p = journal->j_devname;
1140         while ((p = strchr(p, '/')))
1141                 *p = '!';
1142         jbd2_stats_proc_init(journal);
1143         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1144         journal->j_wbufsize = n;
1145         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1146         if (!journal->j_wbuf) {
1147                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1148                         __func__);
1149                 goto out_err;
1150         }
1151
1152         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1153         if (!bh) {
1154                 printk(KERN_ERR
1155                        "%s: Cannot get buffer for journal superblock\n",
1156                        __func__);
1157                 goto out_err;
1158         }
1159         journal->j_sb_buffer = bh;
1160         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1161
1162         return journal;
1163 out_err:
1164         kfree(journal->j_wbuf);
1165         jbd2_stats_proc_exit(journal);
1166         kfree(journal);
1167         return NULL;
1168 }
1169
1170 /**
1171  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1172  *  @inode: An inode to create the journal in
1173  *
1174  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1175  * the journal.  The inode must exist already, must support bmap() and
1176  * must have all data blocks preallocated.
1177  */
1178 journal_t * jbd2_journal_init_inode (struct inode *inode)
1179 {
1180         struct buffer_head *bh;
1181         journal_t *journal = journal_init_common();
1182         char *p;
1183         int err;
1184         int n;
1185         unsigned long long blocknr;
1186
1187         if (!journal)
1188                 return NULL;
1189
1190         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1191         journal->j_inode = inode;
1192         bdevname(journal->j_dev, journal->j_devname);
1193         p = journal->j_devname;
1194         while ((p = strchr(p, '/')))
1195                 *p = '!';
1196         p = journal->j_devname + strlen(journal->j_devname);
1197         sprintf(p, "-%lu", journal->j_inode->i_ino);
1198         jbd_debug(1,
1199                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1200                   journal, inode->i_sb->s_id, inode->i_ino,
1201                   (long long) inode->i_size,
1202                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1203
1204         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1205         journal->j_blocksize = inode->i_sb->s_blocksize;
1206         jbd2_stats_proc_init(journal);
1207
1208         /* journal descriptor can store up to n blocks -bzzz */
1209         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1210         journal->j_wbufsize = n;
1211         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1212         if (!journal->j_wbuf) {
1213                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1214                         __func__);
1215                 goto out_err;
1216         }
1217
1218         err = jbd2_journal_bmap(journal, 0, &blocknr);
1219         /* If that failed, give up */
1220         if (err) {
1221                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1222                        __func__);
1223                 goto out_err;
1224         }
1225
1226         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1227         if (!bh) {
1228                 printk(KERN_ERR
1229                        "%s: Cannot get buffer for journal superblock\n",
1230                        __func__);
1231                 goto out_err;
1232         }
1233         journal->j_sb_buffer = bh;
1234         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1235
1236         return journal;
1237 out_err:
1238         kfree(journal->j_wbuf);
1239         jbd2_stats_proc_exit(journal);
1240         kfree(journal);
1241         return NULL;
1242 }
1243
1244 /*
1245  * If the journal init or create aborts, we need to mark the journal
1246  * superblock as being NULL to prevent the journal destroy from writing
1247  * back a bogus superblock.
1248  */
1249 static void journal_fail_superblock (journal_t *journal)
1250 {
1251         struct buffer_head *bh = journal->j_sb_buffer;
1252         brelse(bh);
1253         journal->j_sb_buffer = NULL;
1254 }
1255
1256 /*
1257  * Given a journal_t structure, initialise the various fields for
1258  * startup of a new journaling session.  We use this both when creating
1259  * a journal, and after recovering an old journal to reset it for
1260  * subsequent use.
1261  */
1262
1263 static int journal_reset(journal_t *journal)
1264 {
1265         journal_superblock_t *sb = journal->j_superblock;
1266         unsigned long long first, last;
1267
1268         first = be32_to_cpu(sb->s_first);
1269         last = be32_to_cpu(sb->s_maxlen);
1270         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1271                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1272                        first, last);
1273                 journal_fail_superblock(journal);
1274                 return -EINVAL;
1275         }
1276
1277         journal->j_first = first;
1278         journal->j_last = last;
1279
1280         journal->j_head = first;
1281         journal->j_tail = first;
1282         journal->j_free = last - first;
1283
1284         journal->j_tail_sequence = journal->j_transaction_sequence;
1285         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1286         journal->j_commit_request = journal->j_commit_sequence;
1287
1288         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1289
1290         /*
1291          * As a special case, if the on-disk copy is already marked as needing
1292          * no recovery (s_start == 0), then we can safely defer the superblock
1293          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1294          * attempting a write to a potential-readonly device.
1295          */
1296         if (sb->s_start == 0) {
1297                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1298                         "(start %ld, seq %d, errno %d)\n",
1299                         journal->j_tail, journal->j_tail_sequence,
1300                         journal->j_errno);
1301                 journal->j_flags |= JBD2_FLUSHED;
1302         } else {
1303                 /* Lock here to make assertions happy... */
1304                 mutex_lock(&journal->j_checkpoint_mutex);
1305                 /*
1306                  * Update log tail information. We use WRITE_FUA since new
1307                  * transaction will start reusing journal space and so we
1308                  * must make sure information about current log tail is on
1309                  * disk before that.
1310                  */
1311                 jbd2_journal_update_sb_log_tail(journal,
1312                                                 journal->j_tail_sequence,
1313                                                 journal->j_tail,
1314                                                 WRITE_FUA);
1315                 mutex_unlock(&journal->j_checkpoint_mutex);
1316         }
1317         return jbd2_journal_start_thread(journal);
1318 }
1319
1320 static void jbd2_write_superblock(journal_t *journal, int write_op)
1321 {
1322         struct buffer_head *bh = journal->j_sb_buffer;
1323         int ret;
1324
1325         trace_jbd2_write_superblock(journal, write_op);
1326         if (!(journal->j_flags & JBD2_BARRIER))
1327                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1328         lock_buffer(bh);
1329         if (buffer_write_io_error(bh)) {
1330                 /*
1331                  * Oh, dear.  A previous attempt to write the journal
1332                  * superblock failed.  This could happen because the
1333                  * USB device was yanked out.  Or it could happen to
1334                  * be a transient write error and maybe the block will
1335                  * be remapped.  Nothing we can do but to retry the
1336                  * write and hope for the best.
1337                  */
1338                 printk(KERN_ERR "JBD2: previous I/O error detected "
1339                        "for journal superblock update for %s.\n",
1340                        journal->j_devname);
1341                 clear_buffer_write_io_error(bh);
1342                 set_buffer_uptodate(bh);
1343         }
1344         get_bh(bh);
1345         bh->b_end_io = end_buffer_write_sync;
1346         ret = submit_bh(write_op, bh);
1347         wait_on_buffer(bh);
1348         if (buffer_write_io_error(bh)) {
1349                 clear_buffer_write_io_error(bh);
1350                 set_buffer_uptodate(bh);
1351                 ret = -EIO;
1352         }
1353         if (ret) {
1354                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1355                        "journal superblock for %s.\n", ret,
1356                        journal->j_devname);
1357         }
1358 }
1359
1360 /**
1361  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1362  * @journal: The journal to update.
1363  * @tail_tid: TID of the new transaction at the tail of the log
1364  * @tail_block: The first block of the transaction at the tail of the log
1365  * @write_op: With which operation should we write the journal sb
1366  *
1367  * Update a journal's superblock information about log tail and write it to
1368  * disk, waiting for the IO to complete.
1369  */
1370 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1371                                      unsigned long tail_block, int write_op)
1372 {
1373         journal_superblock_t *sb = journal->j_superblock;
1374
1375         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1376         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1377                   tail_block, tail_tid);
1378
1379         sb->s_sequence = cpu_to_be32(tail_tid);
1380         sb->s_start    = cpu_to_be32(tail_block);
1381
1382         jbd2_write_superblock(journal, write_op);
1383
1384         /* Log is no longer empty */
1385         write_lock(&journal->j_state_lock);
1386         WARN_ON(!sb->s_sequence);
1387         journal->j_flags &= ~JBD2_FLUSHED;
1388         write_unlock(&journal->j_state_lock);
1389 }
1390
1391 /**
1392  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1393  * @journal: The journal to update.
1394  *
1395  * Update a journal's dynamic superblock fields to show that journal is empty.
1396  * Write updated superblock to disk waiting for IO to complete.
1397  */
1398 static void jbd2_mark_journal_empty(journal_t *journal)
1399 {
1400         journal_superblock_t *sb = journal->j_superblock;
1401
1402         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1403         read_lock(&journal->j_state_lock);
1404         /* Is it already empty? */
1405         if (sb->s_start == 0) {
1406                 read_unlock(&journal->j_state_lock);
1407                 return;
1408         }
1409         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1410                   journal->j_tail_sequence);
1411
1412         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1413         sb->s_start    = cpu_to_be32(0);
1414         read_unlock(&journal->j_state_lock);
1415
1416         jbd2_write_superblock(journal, WRITE_FUA);
1417
1418         /* Log is no longer empty */
1419         write_lock(&journal->j_state_lock);
1420         journal->j_flags |= JBD2_FLUSHED;
1421         write_unlock(&journal->j_state_lock);
1422 }
1423
1424
1425 /**
1426  * jbd2_journal_update_sb_errno() - Update error in the journal.
1427  * @journal: The journal to update.
1428  *
1429  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1430  * to complete.
1431  */
1432 void jbd2_journal_update_sb_errno(journal_t *journal)
1433 {
1434         journal_superblock_t *sb = journal->j_superblock;
1435
1436         read_lock(&journal->j_state_lock);
1437         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1438                   journal->j_errno);
1439         sb->s_errno    = cpu_to_be32(journal->j_errno);
1440         jbd2_superblock_csum_set(journal, sb);
1441         read_unlock(&journal->j_state_lock);
1442
1443         jbd2_write_superblock(journal, WRITE_SYNC);
1444 }
1445 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1446
1447 /*
1448  * Read the superblock for a given journal, performing initial
1449  * validation of the format.
1450  */
1451 static int journal_get_superblock(journal_t *journal)
1452 {
1453         struct buffer_head *bh;
1454         journal_superblock_t *sb;
1455         int err = -EIO;
1456
1457         bh = journal->j_sb_buffer;
1458
1459         J_ASSERT(bh != NULL);
1460         if (!buffer_uptodate(bh)) {
1461                 ll_rw_block(READ, 1, &bh);
1462                 wait_on_buffer(bh);
1463                 if (!buffer_uptodate(bh)) {
1464                         printk(KERN_ERR
1465                                 "JBD2: IO error reading journal superblock\n");
1466                         goto out;
1467                 }
1468         }
1469
1470         if (buffer_verified(bh))
1471                 return 0;
1472
1473         sb = journal->j_superblock;
1474
1475         err = -EINVAL;
1476
1477         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1478             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1479                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1480                 goto out;
1481         }
1482
1483         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1484         case JBD2_SUPERBLOCK_V1:
1485                 journal->j_format_version = 1;
1486                 break;
1487         case JBD2_SUPERBLOCK_V2:
1488                 journal->j_format_version = 2;
1489                 break;
1490         default:
1491                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1492                 goto out;
1493         }
1494
1495         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1496                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1497         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1498                 printk(KERN_WARNING "JBD2: journal file too short\n");
1499                 goto out;
1500         }
1501
1502         if (be32_to_cpu(sb->s_first) == 0 ||
1503             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1504                 printk(KERN_WARNING
1505                         "JBD2: Invalid start block of journal: %u\n",
1506                         be32_to_cpu(sb->s_first));
1507                 goto out;
1508         }
1509
1510         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1511             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1512                 /* Can't have checksum v1 and v2 on at the same time! */
1513                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1514                        "at the same time!\n");
1515                 goto out;
1516         }
1517
1518         if (!jbd2_verify_csum_type(journal, sb)) {
1519                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1520                 goto out;
1521         }
1522
1523         /* Load the checksum driver */
1524         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1525                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1526                 if (IS_ERR(journal->j_chksum_driver)) {
1527                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1528                         err = PTR_ERR(journal->j_chksum_driver);
1529                         journal->j_chksum_driver = NULL;
1530                         goto out;
1531                 }
1532         }
1533
1534         /* Check superblock checksum */
1535         if (!jbd2_superblock_csum_verify(journal, sb)) {
1536                 printk(KERN_ERR "JBD: journal checksum error\n");
1537                 goto out;
1538         }
1539
1540         /* Precompute checksum seed for all metadata */
1541         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1542                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1543                                                    sizeof(sb->s_uuid));
1544
1545         set_buffer_verified(bh);
1546
1547         return 0;
1548
1549 out:
1550         journal_fail_superblock(journal);
1551         return err;
1552 }
1553
1554 /*
1555  * Load the on-disk journal superblock and read the key fields into the
1556  * journal_t.
1557  */
1558
1559 static int load_superblock(journal_t *journal)
1560 {
1561         int err;
1562         journal_superblock_t *sb;
1563
1564         err = journal_get_superblock(journal);
1565         if (err)
1566                 return err;
1567
1568         sb = journal->j_superblock;
1569
1570         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1571         journal->j_tail = be32_to_cpu(sb->s_start);
1572         journal->j_first = be32_to_cpu(sb->s_first);
1573         journal->j_last = be32_to_cpu(sb->s_maxlen);
1574         journal->j_errno = be32_to_cpu(sb->s_errno);
1575
1576         return 0;
1577 }
1578
1579
1580 /**
1581  * int jbd2_journal_load() - Read journal from disk.
1582  * @journal: Journal to act on.
1583  *
1584  * Given a journal_t structure which tells us which disk blocks contain
1585  * a journal, read the journal from disk to initialise the in-memory
1586  * structures.
1587  */
1588 int jbd2_journal_load(journal_t *journal)
1589 {
1590         int err;
1591         journal_superblock_t *sb;
1592
1593         err = load_superblock(journal);
1594         if (err)
1595                 return err;
1596
1597         sb = journal->j_superblock;
1598         /* If this is a V2 superblock, then we have to check the
1599          * features flags on it. */
1600
1601         if (journal->j_format_version >= 2) {
1602                 if ((sb->s_feature_ro_compat &
1603                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1604                     (sb->s_feature_incompat &
1605                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1606                         printk(KERN_WARNING
1607                                 "JBD2: Unrecognised features on journal\n");
1608                         return -EINVAL;
1609                 }
1610         }
1611
1612         /*
1613          * Create a slab for this blocksize
1614          */
1615         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1616         if (err)
1617                 return err;
1618
1619         /* Let the recovery code check whether it needs to recover any
1620          * data from the journal. */
1621         if (jbd2_journal_recover(journal))
1622                 goto recovery_error;
1623
1624         if (journal->j_failed_commit) {
1625                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1626                        "is corrupt.\n", journal->j_failed_commit,
1627                        journal->j_devname);
1628                 return -EIO;
1629         }
1630
1631         /* OK, we've finished with the dynamic journal bits:
1632          * reinitialise the dynamic contents of the superblock in memory
1633          * and reset them on disk. */
1634         if (journal_reset(journal))
1635                 goto recovery_error;
1636
1637         journal->j_flags &= ~JBD2_ABORT;
1638         journal->j_flags |= JBD2_LOADED;
1639         return 0;
1640
1641 recovery_error:
1642         printk(KERN_WARNING "JBD2: recovery failed\n");
1643         return -EIO;
1644 }
1645
1646 /**
1647  * void jbd2_journal_destroy() - Release a journal_t structure.
1648  * @journal: Journal to act on.
1649  *
1650  * Release a journal_t structure once it is no longer in use by the
1651  * journaled object.
1652  * Return <0 if we couldn't clean up the journal.
1653  */
1654 int jbd2_journal_destroy(journal_t *journal)
1655 {
1656         int err = 0;
1657
1658         /* Wait for the commit thread to wake up and die. */
1659         journal_kill_thread(journal);
1660
1661         /* Force a final log commit */
1662         if (journal->j_running_transaction)
1663                 jbd2_journal_commit_transaction(journal);
1664
1665         /* Force any old transactions to disk */
1666
1667         /* Totally anal locking here... */
1668         spin_lock(&journal->j_list_lock);
1669         while (journal->j_checkpoint_transactions != NULL) {
1670                 spin_unlock(&journal->j_list_lock);
1671                 mutex_lock(&journal->j_checkpoint_mutex);
1672                 jbd2_log_do_checkpoint(journal);
1673                 mutex_unlock(&journal->j_checkpoint_mutex);
1674                 spin_lock(&journal->j_list_lock);
1675         }
1676
1677         J_ASSERT(journal->j_running_transaction == NULL);
1678         J_ASSERT(journal->j_committing_transaction == NULL);
1679         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1680         spin_unlock(&journal->j_list_lock);
1681
1682         if (journal->j_sb_buffer) {
1683                 if (!is_journal_aborted(journal)) {
1684                         mutex_lock(&journal->j_checkpoint_mutex);
1685                         jbd2_mark_journal_empty(journal);
1686                         mutex_unlock(&journal->j_checkpoint_mutex);
1687                 } else
1688                         err = -EIO;
1689                 brelse(journal->j_sb_buffer);
1690         }
1691
1692         if (journal->j_proc_entry)
1693                 jbd2_stats_proc_exit(journal);
1694         if (journal->j_inode)
1695                 iput(journal->j_inode);
1696         if (journal->j_revoke)
1697                 jbd2_journal_destroy_revoke(journal);
1698         if (journal->j_chksum_driver)
1699                 crypto_free_shash(journal->j_chksum_driver);
1700         kfree(journal->j_wbuf);
1701         kfree(journal);
1702
1703         return err;
1704 }
1705
1706
1707 /**
1708  *int jbd2_journal_check_used_features () - Check if features specified are used.
1709  * @journal: Journal to check.
1710  * @compat: bitmask of compatible features
1711  * @ro: bitmask of features that force read-only mount
1712  * @incompat: bitmask of incompatible features
1713  *
1714  * Check whether the journal uses all of a given set of
1715  * features.  Return true (non-zero) if it does.
1716  **/
1717
1718 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1719                                  unsigned long ro, unsigned long incompat)
1720 {
1721         journal_superblock_t *sb;
1722
1723         if (!compat && !ro && !incompat)
1724                 return 1;
1725         /* Load journal superblock if it is not loaded yet. */
1726         if (journal->j_format_version == 0 &&
1727             journal_get_superblock(journal) != 0)
1728                 return 0;
1729         if (journal->j_format_version == 1)
1730                 return 0;
1731
1732         sb = journal->j_superblock;
1733
1734         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1735             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1736             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1737                 return 1;
1738
1739         return 0;
1740 }
1741
1742 /**
1743  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1744  * @journal: Journal to check.
1745  * @compat: bitmask of compatible features
1746  * @ro: bitmask of features that force read-only mount
1747  * @incompat: bitmask of incompatible features
1748  *
1749  * Check whether the journaling code supports the use of
1750  * all of a given set of features on this journal.  Return true
1751  * (non-zero) if it can. */
1752
1753 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1754                                       unsigned long ro, unsigned long incompat)
1755 {
1756         if (!compat && !ro && !incompat)
1757                 return 1;
1758
1759         /* We can support any known requested features iff the
1760          * superblock is in version 2.  Otherwise we fail to support any
1761          * extended sb features. */
1762
1763         if (journal->j_format_version != 2)
1764                 return 0;
1765
1766         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1767             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1768             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1769                 return 1;
1770
1771         return 0;
1772 }
1773
1774 /**
1775  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1776  * @journal: Journal to act on.
1777  * @compat: bitmask of compatible features
1778  * @ro: bitmask of features that force read-only mount
1779  * @incompat: bitmask of incompatible features
1780  *
1781  * Mark a given journal feature as present on the
1782  * superblock.  Returns true if the requested features could be set.
1783  *
1784  */
1785
1786 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1787                           unsigned long ro, unsigned long incompat)
1788 {
1789 #define INCOMPAT_FEATURE_ON(f) \
1790                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1791 #define COMPAT_FEATURE_ON(f) \
1792                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1793         journal_superblock_t *sb;
1794
1795         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1796                 return 1;
1797
1798         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1799                 return 0;
1800
1801         /* Asking for checksumming v2 and v1?  Only give them v2. */
1802         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1803             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1804                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1805
1806         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1807                   compat, ro, incompat);
1808
1809         sb = journal->j_superblock;
1810
1811         /* If enabling v2 checksums, update superblock */
1812         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1813                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1814                 sb->s_feature_compat &=
1815                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1816
1817                 /* Load the checksum driver */
1818                 if (journal->j_chksum_driver == NULL) {
1819                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1820                                                                       0, 0);
1821                         if (IS_ERR(journal->j_chksum_driver)) {
1822                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1823                                        "driver.\n");
1824                                 journal->j_chksum_driver = NULL;
1825                                 return 0;
1826                         }
1827                 }
1828
1829                 /* Precompute checksum seed for all metadata */
1830                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1831                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1832                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1833                                                            sb->s_uuid,
1834                                                            sizeof(sb->s_uuid));
1835         }
1836
1837         /* If enabling v1 checksums, downgrade superblock */
1838         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1839                 sb->s_feature_incompat &=
1840                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1841
1842         sb->s_feature_compat    |= cpu_to_be32(compat);
1843         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1844         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1845
1846         return 1;
1847 #undef COMPAT_FEATURE_ON
1848 #undef INCOMPAT_FEATURE_ON
1849 }
1850
1851 /*
1852  * jbd2_journal_clear_features () - Clear a given journal feature in the
1853  *                                  superblock
1854  * @journal: Journal to act on.
1855  * @compat: bitmask of compatible features
1856  * @ro: bitmask of features that force read-only mount
1857  * @incompat: bitmask of incompatible features
1858  *
1859  * Clear a given journal feature as present on the
1860  * superblock.
1861  */
1862 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1863                                 unsigned long ro, unsigned long incompat)
1864 {
1865         journal_superblock_t *sb;
1866
1867         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1868                   compat, ro, incompat);
1869
1870         sb = journal->j_superblock;
1871
1872         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1873         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1874         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1875 }
1876 EXPORT_SYMBOL(jbd2_journal_clear_features);
1877
1878 /**
1879  * int jbd2_journal_flush () - Flush journal
1880  * @journal: Journal to act on.
1881  *
1882  * Flush all data for a given journal to disk and empty the journal.
1883  * Filesystems can use this when remounting readonly to ensure that
1884  * recovery does not need to happen on remount.
1885  */
1886
1887 int jbd2_journal_flush(journal_t *journal)
1888 {
1889         int err = 0;
1890         transaction_t *transaction = NULL;
1891
1892         write_lock(&journal->j_state_lock);
1893
1894         /* Force everything buffered to the log... */
1895         if (journal->j_running_transaction) {
1896                 transaction = journal->j_running_transaction;
1897                 __jbd2_log_start_commit(journal, transaction->t_tid);
1898         } else if (journal->j_committing_transaction)
1899                 transaction = journal->j_committing_transaction;
1900
1901         /* Wait for the log commit to complete... */
1902         if (transaction) {
1903                 tid_t tid = transaction->t_tid;
1904
1905                 write_unlock(&journal->j_state_lock);
1906                 jbd2_log_wait_commit(journal, tid);
1907         } else {
1908                 write_unlock(&journal->j_state_lock);
1909         }
1910
1911         /* ...and flush everything in the log out to disk. */
1912         spin_lock(&journal->j_list_lock);
1913         while (!err && journal->j_checkpoint_transactions != NULL) {
1914                 spin_unlock(&journal->j_list_lock);
1915                 mutex_lock(&journal->j_checkpoint_mutex);
1916                 err = jbd2_log_do_checkpoint(journal);
1917                 mutex_unlock(&journal->j_checkpoint_mutex);
1918                 spin_lock(&journal->j_list_lock);
1919         }
1920         spin_unlock(&journal->j_list_lock);
1921
1922         if (is_journal_aborted(journal))
1923                 return -EIO;
1924
1925         mutex_lock(&journal->j_checkpoint_mutex);
1926         jbd2_cleanup_journal_tail(journal);
1927
1928         /* Finally, mark the journal as really needing no recovery.
1929          * This sets s_start==0 in the underlying superblock, which is
1930          * the magic code for a fully-recovered superblock.  Any future
1931          * commits of data to the journal will restore the current
1932          * s_start value. */
1933         jbd2_mark_journal_empty(journal);
1934         mutex_unlock(&journal->j_checkpoint_mutex);
1935         write_lock(&journal->j_state_lock);
1936         J_ASSERT(!journal->j_running_transaction);
1937         J_ASSERT(!journal->j_committing_transaction);
1938         J_ASSERT(!journal->j_checkpoint_transactions);
1939         J_ASSERT(journal->j_head == journal->j_tail);
1940         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1941         write_unlock(&journal->j_state_lock);
1942         return 0;
1943 }
1944
1945 /**
1946  * int jbd2_journal_wipe() - Wipe journal contents
1947  * @journal: Journal to act on.
1948  * @write: flag (see below)
1949  *
1950  * Wipe out all of the contents of a journal, safely.  This will produce
1951  * a warning if the journal contains any valid recovery information.
1952  * Must be called between journal_init_*() and jbd2_journal_load().
1953  *
1954  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1955  * we merely suppress recovery.
1956  */
1957
1958 int jbd2_journal_wipe(journal_t *journal, int write)
1959 {
1960         int err = 0;
1961
1962         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1963
1964         err = load_superblock(journal);
1965         if (err)
1966                 return err;
1967
1968         if (!journal->j_tail)
1969                 goto no_recovery;
1970
1971         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1972                 write ? "Clearing" : "Ignoring");
1973
1974         err = jbd2_journal_skip_recovery(journal);
1975         if (write) {
1976                 /* Lock to make assertions happy... */
1977                 mutex_lock(&journal->j_checkpoint_mutex);
1978                 jbd2_mark_journal_empty(journal);
1979                 mutex_unlock(&journal->j_checkpoint_mutex);
1980         }
1981
1982  no_recovery:
1983         return err;
1984 }
1985
1986 /*
1987  * Journal abort has very specific semantics, which we describe
1988  * for journal abort.
1989  *
1990  * Two internal functions, which provide abort to the jbd layer
1991  * itself are here.
1992  */
1993
1994 /*
1995  * Quick version for internal journal use (doesn't lock the journal).
1996  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1997  * and don't attempt to make any other journal updates.
1998  */
1999 void __jbd2_journal_abort_hard(journal_t *journal)
2000 {
2001         transaction_t *transaction;
2002
2003         if (journal->j_flags & JBD2_ABORT)
2004                 return;
2005
2006         printk(KERN_ERR "Aborting journal on device %s.\n",
2007                journal->j_devname);
2008
2009         write_lock(&journal->j_state_lock);
2010         journal->j_flags |= JBD2_ABORT;
2011         transaction = journal->j_running_transaction;
2012         if (transaction)
2013                 __jbd2_log_start_commit(journal, transaction->t_tid);
2014         write_unlock(&journal->j_state_lock);
2015 }
2016
2017 /* Soft abort: record the abort error status in the journal superblock,
2018  * but don't do any other IO. */
2019 static void __journal_abort_soft (journal_t *journal, int errno)
2020 {
2021         if (journal->j_flags & JBD2_ABORT)
2022                 return;
2023
2024         if (!journal->j_errno)
2025                 journal->j_errno = errno;
2026
2027         __jbd2_journal_abort_hard(journal);
2028
2029         if (errno)
2030                 jbd2_journal_update_sb_errno(journal);
2031 }
2032
2033 /**
2034  * void jbd2_journal_abort () - Shutdown the journal immediately.
2035  * @journal: the journal to shutdown.
2036  * @errno:   an error number to record in the journal indicating
2037  *           the reason for the shutdown.
2038  *
2039  * Perform a complete, immediate shutdown of the ENTIRE
2040  * journal (not of a single transaction).  This operation cannot be
2041  * undone without closing and reopening the journal.
2042  *
2043  * The jbd2_journal_abort function is intended to support higher level error
2044  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2045  * mode.
2046  *
2047  * Journal abort has very specific semantics.  Any existing dirty,
2048  * unjournaled buffers in the main filesystem will still be written to
2049  * disk by bdflush, but the journaling mechanism will be suspended
2050  * immediately and no further transaction commits will be honoured.
2051  *
2052  * Any dirty, journaled buffers will be written back to disk without
2053  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2054  * filesystem, but we _do_ attempt to leave as much data as possible
2055  * behind for fsck to use for cleanup.
2056  *
2057  * Any attempt to get a new transaction handle on a journal which is in
2058  * ABORT state will just result in an -EROFS error return.  A
2059  * jbd2_journal_stop on an existing handle will return -EIO if we have
2060  * entered abort state during the update.
2061  *
2062  * Recursive transactions are not disturbed by journal abort until the
2063  * final jbd2_journal_stop, which will receive the -EIO error.
2064  *
2065  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2066  * which will be recorded (if possible) in the journal superblock.  This
2067  * allows a client to record failure conditions in the middle of a
2068  * transaction without having to complete the transaction to record the
2069  * failure to disk.  ext3_error, for example, now uses this
2070  * functionality.
2071  *
2072  * Errors which originate from within the journaling layer will NOT
2073  * supply an errno; a null errno implies that absolutely no further
2074  * writes are done to the journal (unless there are any already in
2075  * progress).
2076  *
2077  */
2078
2079 void jbd2_journal_abort(journal_t *journal, int errno)
2080 {
2081         __journal_abort_soft(journal, errno);
2082 }
2083
2084 /**
2085  * int jbd2_journal_errno () - returns the journal's error state.
2086  * @journal: journal to examine.
2087  *
2088  * This is the errno number set with jbd2_journal_abort(), the last
2089  * time the journal was mounted - if the journal was stopped
2090  * without calling abort this will be 0.
2091  *
2092  * If the journal has been aborted on this mount time -EROFS will
2093  * be returned.
2094  */
2095 int jbd2_journal_errno(journal_t *journal)
2096 {
2097         int err;
2098
2099         read_lock(&journal->j_state_lock);
2100         if (journal->j_flags & JBD2_ABORT)
2101                 err = -EROFS;
2102         else
2103                 err = journal->j_errno;
2104         read_unlock(&journal->j_state_lock);
2105         return err;
2106 }
2107
2108 /**
2109  * int jbd2_journal_clear_err () - clears the journal's error state
2110  * @journal: journal to act on.
2111  *
2112  * An error must be cleared or acked to take a FS out of readonly
2113  * mode.
2114  */
2115 int jbd2_journal_clear_err(journal_t *journal)
2116 {
2117         int err = 0;
2118
2119         write_lock(&journal->j_state_lock);
2120         if (journal->j_flags & JBD2_ABORT)
2121                 err = -EROFS;
2122         else
2123                 journal->j_errno = 0;
2124         write_unlock(&journal->j_state_lock);
2125         return err;
2126 }
2127
2128 /**
2129  * void jbd2_journal_ack_err() - Ack journal err.
2130  * @journal: journal to act on.
2131  *
2132  * An error must be cleared or acked to take a FS out of readonly
2133  * mode.
2134  */
2135 void jbd2_journal_ack_err(journal_t *journal)
2136 {
2137         write_lock(&journal->j_state_lock);
2138         if (journal->j_errno)
2139                 journal->j_flags |= JBD2_ACK_ERR;
2140         write_unlock(&journal->j_state_lock);
2141 }
2142
2143 int jbd2_journal_blocks_per_page(struct inode *inode)
2144 {
2145         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2146 }
2147
2148 /*
2149  * helper functions to deal with 32 or 64bit block numbers.
2150  */
2151 size_t journal_tag_bytes(journal_t *journal)
2152 {
2153         journal_block_tag_t tag;
2154         size_t x = 0;
2155
2156         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2157                 x += sizeof(tag.t_checksum);
2158
2159         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2160                 return x + JBD2_TAG_SIZE64;
2161         else
2162                 return x + JBD2_TAG_SIZE32;
2163 }
2164
2165 /*
2166  * JBD memory management
2167  *
2168  * These functions are used to allocate block-sized chunks of memory
2169  * used for making copies of buffer_head data.  Very often it will be
2170  * page-sized chunks of data, but sometimes it will be in
2171  * sub-page-size chunks.  (For example, 16k pages on Power systems
2172  * with a 4k block file system.)  For blocks smaller than a page, we
2173  * use a SLAB allocator.  There are slab caches for each block size,
2174  * which are allocated at mount time, if necessary, and we only free
2175  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2176  * this reason we don't need to a mutex to protect access to
2177  * jbd2_slab[] allocating or releasing memory; only in
2178  * jbd2_journal_create_slab().
2179  */
2180 #define JBD2_MAX_SLABS 8
2181 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2182
2183 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2184         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2185         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2186 };
2187
2188
2189 static void jbd2_journal_destroy_slabs(void)
2190 {
2191         int i;
2192
2193         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2194                 if (jbd2_slab[i])
2195                         kmem_cache_destroy(jbd2_slab[i]);
2196                 jbd2_slab[i] = NULL;
2197         }
2198 }
2199
2200 static int jbd2_journal_create_slab(size_t size)
2201 {
2202         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2203         int i = order_base_2(size) - 10;
2204         size_t slab_size;
2205
2206         if (size == PAGE_SIZE)
2207                 return 0;
2208
2209         if (i >= JBD2_MAX_SLABS)
2210                 return -EINVAL;
2211
2212         if (unlikely(i < 0))
2213                 i = 0;
2214         mutex_lock(&jbd2_slab_create_mutex);
2215         if (jbd2_slab[i]) {
2216                 mutex_unlock(&jbd2_slab_create_mutex);
2217                 return 0;       /* Already created */
2218         }
2219
2220         slab_size = 1 << (i+10);
2221         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2222                                          slab_size, 0, NULL);
2223         mutex_unlock(&jbd2_slab_create_mutex);
2224         if (!jbd2_slab[i]) {
2225                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2226                 return -ENOMEM;
2227         }
2228         return 0;
2229 }
2230
2231 static struct kmem_cache *get_slab(size_t size)
2232 {
2233         int i = order_base_2(size) - 10;
2234
2235         BUG_ON(i >= JBD2_MAX_SLABS);
2236         if (unlikely(i < 0))
2237                 i = 0;
2238         BUG_ON(jbd2_slab[i] == NULL);
2239         return jbd2_slab[i];
2240 }
2241
2242 void *jbd2_alloc(size_t size, gfp_t flags)
2243 {
2244         void *ptr;
2245
2246         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2247
2248         flags |= __GFP_REPEAT;
2249         if (size == PAGE_SIZE)
2250                 ptr = (void *)__get_free_pages(flags, 0);
2251         else if (size > PAGE_SIZE) {
2252                 int order = get_order(size);
2253
2254                 if (order < 3)
2255                         ptr = (void *)__get_free_pages(flags, order);
2256                 else
2257                         ptr = vmalloc(size);
2258         } else
2259                 ptr = kmem_cache_alloc(get_slab(size), flags);
2260
2261         /* Check alignment; SLUB has gotten this wrong in the past,
2262          * and this can lead to user data corruption! */
2263         BUG_ON(((unsigned long) ptr) & (size-1));
2264
2265         return ptr;
2266 }
2267
2268 void jbd2_free(void *ptr, size_t size)
2269 {
2270         if (size == PAGE_SIZE) {
2271                 free_pages((unsigned long)ptr, 0);
2272                 return;
2273         }
2274         if (size > PAGE_SIZE) {
2275                 int order = get_order(size);
2276
2277                 if (order < 3)
2278                         free_pages((unsigned long)ptr, order);
2279                 else
2280                         vfree(ptr);
2281                 return;
2282         }
2283         kmem_cache_free(get_slab(size), ptr);
2284 };
2285
2286 /*
2287  * Journal_head storage management
2288  */
2289 static struct kmem_cache *jbd2_journal_head_cache;
2290 #ifdef CONFIG_JBD2_DEBUG
2291 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2292 #endif
2293
2294 static int jbd2_journal_init_journal_head_cache(void)
2295 {
2296         int retval;
2297
2298         J_ASSERT(jbd2_journal_head_cache == NULL);
2299         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2300                                 sizeof(struct journal_head),
2301                                 0,              /* offset */
2302                                 SLAB_TEMPORARY, /* flags */
2303                                 NULL);          /* ctor */
2304         retval = 0;
2305         if (!jbd2_journal_head_cache) {
2306                 retval = -ENOMEM;
2307                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2308         }
2309         return retval;
2310 }
2311
2312 static void jbd2_journal_destroy_journal_head_cache(void)
2313 {
2314         if (jbd2_journal_head_cache) {
2315                 kmem_cache_destroy(jbd2_journal_head_cache);
2316                 jbd2_journal_head_cache = NULL;
2317         }
2318 }
2319
2320 /*
2321  * journal_head splicing and dicing
2322  */
2323 static struct journal_head *journal_alloc_journal_head(void)
2324 {
2325         struct journal_head *ret;
2326
2327 #ifdef CONFIG_JBD2_DEBUG
2328         atomic_inc(&nr_journal_heads);
2329 #endif
2330         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2331         if (!ret) {
2332                 jbd_debug(1, "out of memory for journal_head\n");
2333                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2334                 while (!ret) {
2335                         yield();
2336                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2337                 }
2338         }
2339         return ret;
2340 }
2341
2342 static void journal_free_journal_head(struct journal_head *jh)
2343 {
2344 #ifdef CONFIG_JBD2_DEBUG
2345         atomic_dec(&nr_journal_heads);
2346         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2347 #endif
2348         kmem_cache_free(jbd2_journal_head_cache, jh);
2349 }
2350
2351 /*
2352  * A journal_head is attached to a buffer_head whenever JBD has an
2353  * interest in the buffer.
2354  *
2355  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2356  * is set.  This bit is tested in core kernel code where we need to take
2357  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2358  * there.
2359  *
2360  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2361  *
2362  * When a buffer has its BH_JBD bit set it is immune from being released by
2363  * core kernel code, mainly via ->b_count.
2364  *
2365  * A journal_head is detached from its buffer_head when the journal_head's
2366  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2367  * transaction (b_cp_transaction) hold their references to b_jcount.
2368  *
2369  * Various places in the kernel want to attach a journal_head to a buffer_head
2370  * _before_ attaching the journal_head to a transaction.  To protect the
2371  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2372  * journal_head's b_jcount refcount by one.  The caller must call
2373  * jbd2_journal_put_journal_head() to undo this.
2374  *
2375  * So the typical usage would be:
2376  *
2377  *      (Attach a journal_head if needed.  Increments b_jcount)
2378  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2379  *      ...
2380  *      (Get another reference for transaction)
2381  *      jbd2_journal_grab_journal_head(bh);
2382  *      jh->b_transaction = xxx;
2383  *      (Put original reference)
2384  *      jbd2_journal_put_journal_head(jh);
2385  */
2386
2387 /*
2388  * Give a buffer_head a journal_head.
2389  *
2390  * May sleep.
2391  */
2392 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2393 {
2394         struct journal_head *jh;
2395         struct journal_head *new_jh = NULL;
2396
2397 repeat:
2398         if (!buffer_jbd(bh)) {
2399                 new_jh = journal_alloc_journal_head();
2400                 memset(new_jh, 0, sizeof(*new_jh));
2401         }
2402
2403         jbd_lock_bh_journal_head(bh);
2404         if (buffer_jbd(bh)) {
2405                 jh = bh2jh(bh);
2406         } else {
2407                 J_ASSERT_BH(bh,
2408                         (atomic_read(&bh->b_count) > 0) ||
2409                         (bh->b_page && bh->b_page->mapping));
2410
2411                 if (!new_jh) {
2412                         jbd_unlock_bh_journal_head(bh);
2413                         goto repeat;
2414                 }
2415
2416                 jh = new_jh;
2417                 new_jh = NULL;          /* We consumed it */
2418                 set_buffer_jbd(bh);
2419                 bh->b_private = jh;
2420                 jh->b_bh = bh;
2421                 get_bh(bh);
2422                 BUFFER_TRACE(bh, "added journal_head");
2423         }
2424         jh->b_jcount++;
2425         jbd_unlock_bh_journal_head(bh);
2426         if (new_jh)
2427                 journal_free_journal_head(new_jh);
2428         return bh->b_private;
2429 }
2430
2431 /*
2432  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2433  * having a journal_head, return NULL
2434  */
2435 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2436 {
2437         struct journal_head *jh = NULL;
2438
2439         jbd_lock_bh_journal_head(bh);
2440         if (buffer_jbd(bh)) {
2441                 jh = bh2jh(bh);
2442                 jh->b_jcount++;
2443         }
2444         jbd_unlock_bh_journal_head(bh);
2445         return jh;
2446 }
2447
2448 static void __journal_remove_journal_head(struct buffer_head *bh)
2449 {
2450         struct journal_head *jh = bh2jh(bh);
2451
2452         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2453         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2454         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2455         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2456         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2457         J_ASSERT_BH(bh, buffer_jbd(bh));
2458         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2459         BUFFER_TRACE(bh, "remove journal_head");
2460         if (jh->b_frozen_data) {
2461                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2462                 jbd2_free(jh->b_frozen_data, bh->b_size);
2463         }
2464         if (jh->b_committed_data) {
2465                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2466                 jbd2_free(jh->b_committed_data, bh->b_size);
2467         }
2468         bh->b_private = NULL;
2469         jh->b_bh = NULL;        /* debug, really */
2470         clear_buffer_jbd(bh);
2471         journal_free_journal_head(jh);
2472 }
2473
2474 /*
2475  * Drop a reference on the passed journal_head.  If it fell to zero then
2476  * release the journal_head from the buffer_head.
2477  */
2478 void jbd2_journal_put_journal_head(struct journal_head *jh)
2479 {
2480         struct buffer_head *bh = jh2bh(jh);
2481
2482         jbd_lock_bh_journal_head(bh);
2483         J_ASSERT_JH(jh, jh->b_jcount > 0);
2484         --jh->b_jcount;
2485         if (!jh->b_jcount) {
2486                 __journal_remove_journal_head(bh);
2487                 jbd_unlock_bh_journal_head(bh);
2488                 __brelse(bh);
2489         } else
2490                 jbd_unlock_bh_journal_head(bh);
2491 }
2492
2493 /*
2494  * Initialize jbd inode head
2495  */
2496 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2497 {
2498         jinode->i_transaction = NULL;
2499         jinode->i_next_transaction = NULL;
2500         jinode->i_vfs_inode = inode;
2501         jinode->i_flags = 0;
2502         INIT_LIST_HEAD(&jinode->i_list);
2503 }
2504
2505 /*
2506  * Function to be called before we start removing inode from memory (i.e.,
2507  * clear_inode() is a fine place to be called from). It removes inode from
2508  * transaction's lists.
2509  */
2510 void jbd2_journal_release_jbd_inode(journal_t *journal,
2511                                     struct jbd2_inode *jinode)
2512 {
2513         if (!journal)
2514                 return;
2515 restart:
2516         spin_lock(&journal->j_list_lock);
2517         /* Is commit writing out inode - we have to wait */
2518         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2519                 wait_queue_head_t *wq;
2520                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2521                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2522                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2523                 spin_unlock(&journal->j_list_lock);
2524                 schedule();
2525                 finish_wait(wq, &wait.wait);
2526                 goto restart;
2527         }
2528
2529         if (jinode->i_transaction) {
2530                 list_del(&jinode->i_list);
2531                 jinode->i_transaction = NULL;
2532         }
2533         spin_unlock(&journal->j_list_lock);
2534 }
2535
2536
2537 #ifdef CONFIG_PROC_FS
2538
2539 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2540
2541 static void __init jbd2_create_jbd_stats_proc_entry(void)
2542 {
2543         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2544 }
2545
2546 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2547 {
2548         if (proc_jbd2_stats)
2549                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2550 }
2551
2552 #else
2553
2554 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2555 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2556
2557 #endif
2558
2559 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2560
2561 static int __init jbd2_journal_init_handle_cache(void)
2562 {
2563         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2564         if (jbd2_handle_cache == NULL) {
2565                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2566                 return -ENOMEM;
2567         }
2568         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2569         if (jbd2_inode_cache == NULL) {
2570                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2571                 kmem_cache_destroy(jbd2_handle_cache);
2572                 return -ENOMEM;
2573         }
2574         return 0;
2575 }
2576
2577 static void jbd2_journal_destroy_handle_cache(void)
2578 {
2579         if (jbd2_handle_cache)
2580                 kmem_cache_destroy(jbd2_handle_cache);
2581         if (jbd2_inode_cache)
2582                 kmem_cache_destroy(jbd2_inode_cache);
2583
2584 }
2585
2586 /*
2587  * Module startup and shutdown
2588  */
2589
2590 static int __init journal_init_caches(void)
2591 {
2592         int ret;
2593
2594         ret = jbd2_journal_init_revoke_caches();
2595         if (ret == 0)
2596                 ret = jbd2_journal_init_journal_head_cache();
2597         if (ret == 0)
2598                 ret = jbd2_journal_init_handle_cache();
2599         if (ret == 0)
2600                 ret = jbd2_journal_init_transaction_cache();
2601         return ret;
2602 }
2603
2604 static void jbd2_journal_destroy_caches(void)
2605 {
2606         jbd2_journal_destroy_revoke_caches();
2607         jbd2_journal_destroy_journal_head_cache();
2608         jbd2_journal_destroy_handle_cache();
2609         jbd2_journal_destroy_transaction_cache();
2610         jbd2_journal_destroy_slabs();
2611 }
2612
2613 static int __init journal_init(void)
2614 {
2615         int ret;
2616
2617         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2618
2619         ret = journal_init_caches();
2620         if (ret == 0) {
2621                 jbd2_create_jbd_stats_proc_entry();
2622         } else {
2623                 jbd2_journal_destroy_caches();
2624         }
2625         return ret;
2626 }
2627
2628 static void __exit journal_exit(void)
2629 {
2630 #ifdef CONFIG_JBD2_DEBUG
2631         int n = atomic_read(&nr_journal_heads);
2632         if (n)
2633                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2634 #endif
2635         jbd2_remove_jbd_stats_proc_entry();
2636         jbd2_journal_destroy_caches();
2637 }
2638
2639 MODULE_LICENSE("GPL");
2640 module_init(journal_init);
2641 module_exit(journal_exit);
2642