fs/jbd2/journal.c: use strreplace()
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108                   unsigned int line, const char *fmt, ...)
109 {
110         struct va_format vaf;
111         va_list args;
112
113         if (level > jbd2_journal_enable_debug)
114                 return;
115         va_start(args, fmt);
116         vaf.fmt = fmt;
117         vaf.va = &args;
118         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119         va_end(args);
120 }
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
123
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
126 {
127         if (!jbd2_journal_has_csum_v2or3(j))
128                 return 1;
129
130         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
131 }
132
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
134 {
135         __u32 csum;
136         __be32 old_csum;
137
138         old_csum = sb->s_checksum;
139         sb->s_checksum = 0;
140         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141         sb->s_checksum = old_csum;
142
143         return cpu_to_be32(csum);
144 }
145
146 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
147 {
148         if (!jbd2_journal_has_csum_v2or3(j))
149                 return 1;
150
151         return sb->s_checksum == jbd2_superblock_csum(j, sb);
152 }
153
154 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
155 {
156         if (!jbd2_journal_has_csum_v2or3(j))
157                 return;
158
159         sb->s_checksum = jbd2_superblock_csum(j, sb);
160 }
161
162 /*
163  * Helper function used to manage commit timeouts
164  */
165
166 static void commit_timeout(unsigned long __data)
167 {
168         struct task_struct * p = (struct task_struct *) __data;
169
170         wake_up_process(p);
171 }
172
173 /*
174  * kjournald2: The main thread function used to manage a logging device
175  * journal.
176  *
177  * This kernel thread is responsible for two things:
178  *
179  * 1) COMMIT:  Every so often we need to commit the current state of the
180  *    filesystem to disk.  The journal thread is responsible for writing
181  *    all of the metadata buffers to disk.
182  *
183  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184  *    of the data in that part of the log has been rewritten elsewhere on
185  *    the disk.  Flushing these old buffers to reclaim space in the log is
186  *    known as checkpointing, and this thread is responsible for that job.
187  */
188
189 static int kjournald2(void *arg)
190 {
191         journal_t *journal = arg;
192         transaction_t *transaction;
193
194         /*
195          * Set up an interval timer which can be used to trigger a commit wakeup
196          * after the commit interval expires
197          */
198         setup_timer(&journal->j_commit_timer, commit_timeout,
199                         (unsigned long)current);
200
201         set_freezable();
202
203         /* Record that the journal thread is running */
204         journal->j_task = current;
205         wake_up(&journal->j_wait_done_commit);
206
207         /*
208          * And now, wait forever for commit wakeup events.
209          */
210         write_lock(&journal->j_state_lock);
211
212 loop:
213         if (journal->j_flags & JBD2_UNMOUNT)
214                 goto end_loop;
215
216         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217                 journal->j_commit_sequence, journal->j_commit_request);
218
219         if (journal->j_commit_sequence != journal->j_commit_request) {
220                 jbd_debug(1, "OK, requests differ\n");
221                 write_unlock(&journal->j_state_lock);
222                 del_timer_sync(&journal->j_commit_timer);
223                 jbd2_journal_commit_transaction(journal);
224                 write_lock(&journal->j_state_lock);
225                 goto loop;
226         }
227
228         wake_up(&journal->j_wait_done_commit);
229         if (freezing(current)) {
230                 /*
231                  * The simpler the better. Flushing journal isn't a
232                  * good idea, because that depends on threads that may
233                  * be already stopped.
234                  */
235                 jbd_debug(1, "Now suspending kjournald2\n");
236                 write_unlock(&journal->j_state_lock);
237                 try_to_freeze();
238                 write_lock(&journal->j_state_lock);
239         } else {
240                 /*
241                  * We assume on resume that commits are already there,
242                  * so we don't sleep
243                  */
244                 DEFINE_WAIT(wait);
245                 int should_sleep = 1;
246
247                 prepare_to_wait(&journal->j_wait_commit, &wait,
248                                 TASK_INTERRUPTIBLE);
249                 if (journal->j_commit_sequence != journal->j_commit_request)
250                         should_sleep = 0;
251                 transaction = journal->j_running_transaction;
252                 if (transaction && time_after_eq(jiffies,
253                                                 transaction->t_expires))
254                         should_sleep = 0;
255                 if (journal->j_flags & JBD2_UNMOUNT)
256                         should_sleep = 0;
257                 if (should_sleep) {
258                         write_unlock(&journal->j_state_lock);
259                         schedule();
260                         write_lock(&journal->j_state_lock);
261                 }
262                 finish_wait(&journal->j_wait_commit, &wait);
263         }
264
265         jbd_debug(1, "kjournald2 wakes\n");
266
267         /*
268          * Were we woken up by a commit wakeup event?
269          */
270         transaction = journal->j_running_transaction;
271         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272                 journal->j_commit_request = transaction->t_tid;
273                 jbd_debug(1, "woke because of timeout\n");
274         }
275         goto loop;
276
277 end_loop:
278         write_unlock(&journal->j_state_lock);
279         del_timer_sync(&journal->j_commit_timer);
280         journal->j_task = NULL;
281         wake_up(&journal->j_wait_done_commit);
282         jbd_debug(1, "Journal thread exiting.\n");
283         return 0;
284 }
285
286 static int jbd2_journal_start_thread(journal_t *journal)
287 {
288         struct task_struct *t;
289
290         t = kthread_run(kjournald2, journal, "jbd2/%s",
291                         journal->j_devname);
292         if (IS_ERR(t))
293                 return PTR_ERR(t);
294
295         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296         return 0;
297 }
298
299 static void journal_kill_thread(journal_t *journal)
300 {
301         write_lock(&journal->j_state_lock);
302         journal->j_flags |= JBD2_UNMOUNT;
303
304         while (journal->j_task) {
305                 write_unlock(&journal->j_state_lock);
306                 wake_up(&journal->j_wait_commit);
307                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308                 write_lock(&journal->j_state_lock);
309         }
310         write_unlock(&journal->j_state_lock);
311 }
312
313 /*
314  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
315  *
316  * Writes a metadata buffer to a given disk block.  The actual IO is not
317  * performed but a new buffer_head is constructed which labels the data
318  * to be written with the correct destination disk block.
319  *
320  * Any magic-number escaping which needs to be done will cause a
321  * copy-out here.  If the buffer happens to start with the
322  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323  * magic number is only written to the log for descripter blocks.  In
324  * this case, we copy the data and replace the first word with 0, and we
325  * return a result code which indicates that this buffer needs to be
326  * marked as an escaped buffer in the corresponding log descriptor
327  * block.  The missing word can then be restored when the block is read
328  * during recovery.
329  *
330  * If the source buffer has already been modified by a new transaction
331  * since we took the last commit snapshot, we use the frozen copy of
332  * that data for IO. If we end up using the existing buffer_head's data
333  * for the write, then we have to make sure nobody modifies it while the
334  * IO is in progress. do_get_write_access() handles this.
335  *
336  * The function returns a pointer to the buffer_head to be used for IO.
337  * 
338  *
339  * Return value:
340  *  <0: Error
341  * >=0: Finished OK
342  *
343  * On success:
344  * Bit 0 set == escape performed on the data
345  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
346  */
347
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349                                   struct journal_head  *jh_in,
350                                   struct buffer_head **bh_out,
351                                   sector_t blocknr)
352 {
353         int need_copy_out = 0;
354         int done_copy_out = 0;
355         int do_escape = 0;
356         char *mapped_data;
357         struct buffer_head *new_bh;
358         struct page *new_page;
359         unsigned int new_offset;
360         struct buffer_head *bh_in = jh2bh(jh_in);
361         journal_t *journal = transaction->t_journal;
362
363         /*
364          * The buffer really shouldn't be locked: only the current committing
365          * transaction is allowed to write it, so nobody else is allowed
366          * to do any IO.
367          *
368          * akpm: except if we're journalling data, and write() output is
369          * also part of a shared mapping, and another thread has
370          * decided to launch a writepage() against this buffer.
371          */
372         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
373
374 retry_alloc:
375         new_bh = alloc_buffer_head(GFP_NOFS);
376         if (!new_bh) {
377                 /*
378                  * Failure is not an option, but __GFP_NOFAIL is going
379                  * away; so we retry ourselves here.
380                  */
381                 congestion_wait(BLK_RW_ASYNC, HZ/50);
382                 goto retry_alloc;
383         }
384
385         /* keep subsequent assertions sane */
386         atomic_set(&new_bh->b_count, 1);
387
388         jbd_lock_bh_state(bh_in);
389 repeat:
390         /*
391          * If a new transaction has already done a buffer copy-out, then
392          * we use that version of the data for the commit.
393          */
394         if (jh_in->b_frozen_data) {
395                 done_copy_out = 1;
396                 new_page = virt_to_page(jh_in->b_frozen_data);
397                 new_offset = offset_in_page(jh_in->b_frozen_data);
398         } else {
399                 new_page = jh2bh(jh_in)->b_page;
400                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401         }
402
403         mapped_data = kmap_atomic(new_page);
404         /*
405          * Fire data frozen trigger if data already wasn't frozen.  Do this
406          * before checking for escaping, as the trigger may modify the magic
407          * offset.  If a copy-out happens afterwards, it will have the correct
408          * data in the buffer.
409          */
410         if (!done_copy_out)
411                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412                                            jh_in->b_triggers);
413
414         /*
415          * Check for escaping
416          */
417         if (*((__be32 *)(mapped_data + new_offset)) ==
418                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419                 need_copy_out = 1;
420                 do_escape = 1;
421         }
422         kunmap_atomic(mapped_data);
423
424         /*
425          * Do we need to do a data copy?
426          */
427         if (need_copy_out && !done_copy_out) {
428                 char *tmp;
429
430                 jbd_unlock_bh_state(bh_in);
431                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432                 if (!tmp) {
433                         brelse(new_bh);
434                         return -ENOMEM;
435                 }
436                 jbd_lock_bh_state(bh_in);
437                 if (jh_in->b_frozen_data) {
438                         jbd2_free(tmp, bh_in->b_size);
439                         goto repeat;
440                 }
441
442                 jh_in->b_frozen_data = tmp;
443                 mapped_data = kmap_atomic(new_page);
444                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445                 kunmap_atomic(mapped_data);
446
447                 new_page = virt_to_page(tmp);
448                 new_offset = offset_in_page(tmp);
449                 done_copy_out = 1;
450
451                 /*
452                  * This isn't strictly necessary, as we're using frozen
453                  * data for the escaping, but it keeps consistency with
454                  * b_frozen_data usage.
455                  */
456                 jh_in->b_frozen_triggers = jh_in->b_triggers;
457         }
458
459         /*
460          * Did we need to do an escaping?  Now we've done all the
461          * copying, we can finally do so.
462          */
463         if (do_escape) {
464                 mapped_data = kmap_atomic(new_page);
465                 *((unsigned int *)(mapped_data + new_offset)) = 0;
466                 kunmap_atomic(mapped_data);
467         }
468
469         set_bh_page(new_bh, new_page, new_offset);
470         new_bh->b_size = bh_in->b_size;
471         new_bh->b_bdev = journal->j_dev;
472         new_bh->b_blocknr = blocknr;
473         new_bh->b_private = bh_in;
474         set_buffer_mapped(new_bh);
475         set_buffer_dirty(new_bh);
476
477         *bh_out = new_bh;
478
479         /*
480          * The to-be-written buffer needs to get moved to the io queue,
481          * and the original buffer whose contents we are shadowing or
482          * copying is moved to the transaction's shadow queue.
483          */
484         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485         spin_lock(&journal->j_list_lock);
486         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487         spin_unlock(&journal->j_list_lock);
488         set_buffer_shadow(bh_in);
489         jbd_unlock_bh_state(bh_in);
490
491         return do_escape | (done_copy_out << 1);
492 }
493
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505         /* Return if the txn has already requested to be committed */
506         if (journal->j_commit_request == target)
507                 return 0;
508
509         /*
510          * The only transaction we can possibly wait upon is the
511          * currently running transaction (if it exists).  Otherwise,
512          * the target tid must be an old one.
513          */
514         if (journal->j_running_transaction &&
515             journal->j_running_transaction->t_tid == target) {
516                 /*
517                  * We want a new commit: OK, mark the request and wakeup the
518                  * commit thread.  We do _not_ do the commit ourselves.
519                  */
520
521                 journal->j_commit_request = target;
522                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523                           journal->j_commit_request,
524                           journal->j_commit_sequence);
525                 journal->j_running_transaction->t_requested = jiffies;
526                 wake_up(&journal->j_wait_commit);
527                 return 1;
528         } else if (!tid_geq(journal->j_commit_request, target))
529                 /* This should never happen, but if it does, preserve
530                    the evidence before kjournald goes into a loop and
531                    increments j_commit_sequence beyond all recognition. */
532                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533                           journal->j_commit_request,
534                           journal->j_commit_sequence,
535                           target, journal->j_running_transaction ? 
536                           journal->j_running_transaction->t_tid : 0);
537         return 0;
538 }
539
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542         int ret;
543
544         write_lock(&journal->j_state_lock);
545         ret = __jbd2_log_start_commit(journal, tid);
546         write_unlock(&journal->j_state_lock);
547         return ret;
548 }
549
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559         transaction_t *transaction = NULL;
560         tid_t tid;
561         int need_to_start = 0, ret = 0;
562
563         read_lock(&journal->j_state_lock);
564         if (journal->j_running_transaction && !current->journal_info) {
565                 transaction = journal->j_running_transaction;
566                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567                         need_to_start = 1;
568         } else if (journal->j_committing_transaction)
569                 transaction = journal->j_committing_transaction;
570
571         if (!transaction) {
572                 /* Nothing to commit */
573                 read_unlock(&journal->j_state_lock);
574                 return 0;
575         }
576         tid = transaction->t_tid;
577         read_unlock(&journal->j_state_lock);
578         if (need_to_start)
579                 jbd2_log_start_commit(journal, tid);
580         ret = jbd2_log_wait_commit(journal, tid);
581         if (!ret)
582                 ret = 1;
583
584         return ret;
585 }
586
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597         int ret;
598
599         ret = __jbd2_journal_force_commit(journal);
600         return ret > 0;
601 }
602
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612         int ret;
613
614         J_ASSERT(!current->journal_info);
615         ret = __jbd2_journal_force_commit(journal);
616         if (ret > 0)
617                 ret = 0;
618         return ret;
619 }
620
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628         int ret = 0;
629
630         write_lock(&journal->j_state_lock);
631         if (journal->j_running_transaction) {
632                 tid_t tid = journal->j_running_transaction->t_tid;
633
634                 __jbd2_log_start_commit(journal, tid);
635                 /* There's a running transaction and we've just made sure
636                  * it's commit has been scheduled. */
637                 if (ptid)
638                         *ptid = tid;
639                 ret = 1;
640         } else if (journal->j_committing_transaction) {
641                 /*
642                  * If commit has been started, then we have to wait for
643                  * completion of that transaction.
644                  */
645                 if (ptid)
646                         *ptid = journal->j_committing_transaction->t_tid;
647                 ret = 1;
648         }
649         write_unlock(&journal->j_state_lock);
650         return ret;
651 }
652
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661         int ret = 0;
662         transaction_t *commit_trans;
663
664         if (!(journal->j_flags & JBD2_BARRIER))
665                 return 0;
666         read_lock(&journal->j_state_lock);
667         /* Transaction already committed? */
668         if (tid_geq(journal->j_commit_sequence, tid))
669                 goto out;
670         commit_trans = journal->j_committing_transaction;
671         if (!commit_trans || commit_trans->t_tid != tid) {
672                 ret = 1;
673                 goto out;
674         }
675         /*
676          * Transaction is being committed and we already proceeded to
677          * submitting a flush to fs partition?
678          */
679         if (journal->j_fs_dev != journal->j_dev) {
680                 if (!commit_trans->t_need_data_flush ||
681                     commit_trans->t_state >= T_COMMIT_DFLUSH)
682                         goto out;
683         } else {
684                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685                         goto out;
686         }
687         ret = 1;
688 out:
689         read_unlock(&journal->j_state_lock);
690         return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700         int err = 0;
701
702         read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704         if (!tid_geq(journal->j_commit_request, tid)) {
705                 printk(KERN_ERR
706                        "%s: error: j_commit_request=%d, tid=%d\n",
707                        __func__, journal->j_commit_request, tid);
708         }
709 #endif
710         while (tid_gt(tid, journal->j_commit_sequence)) {
711                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712                                   tid, journal->j_commit_sequence);
713                 read_unlock(&journal->j_state_lock);
714                 wake_up(&journal->j_wait_commit);
715                 wait_event(journal->j_wait_done_commit,
716                                 !tid_gt(tid, journal->j_commit_sequence));
717                 read_lock(&journal->j_state_lock);
718         }
719         read_unlock(&journal->j_state_lock);
720
721         if (unlikely(is_journal_aborted(journal)))
722                 err = -EIO;
723         return err;
724 }
725
726 /*
727  * When this function returns the transaction corresponding to tid
728  * will be completed.  If the transaction has currently running, start
729  * committing that transaction before waiting for it to complete.  If
730  * the transaction id is stale, it is by definition already completed,
731  * so just return SUCCESS.
732  */
733 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
734 {
735         int     need_to_wait = 1;
736
737         read_lock(&journal->j_state_lock);
738         if (journal->j_running_transaction &&
739             journal->j_running_transaction->t_tid == tid) {
740                 if (journal->j_commit_request != tid) {
741                         /* transaction not yet started, so request it */
742                         read_unlock(&journal->j_state_lock);
743                         jbd2_log_start_commit(journal, tid);
744                         goto wait_commit;
745                 }
746         } else if (!(journal->j_committing_transaction &&
747                      journal->j_committing_transaction->t_tid == tid))
748                 need_to_wait = 0;
749         read_unlock(&journal->j_state_lock);
750         if (!need_to_wait)
751                 return 0;
752 wait_commit:
753         return jbd2_log_wait_commit(journal, tid);
754 }
755 EXPORT_SYMBOL(jbd2_complete_transaction);
756
757 /*
758  * Log buffer allocation routines:
759  */
760
761 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
762 {
763         unsigned long blocknr;
764
765         write_lock(&journal->j_state_lock);
766         J_ASSERT(journal->j_free > 1);
767
768         blocknr = journal->j_head;
769         journal->j_head++;
770         journal->j_free--;
771         if (journal->j_head == journal->j_last)
772                 journal->j_head = journal->j_first;
773         write_unlock(&journal->j_state_lock);
774         return jbd2_journal_bmap(journal, blocknr, retp);
775 }
776
777 /*
778  * Conversion of logical to physical block numbers for the journal
779  *
780  * On external journals the journal blocks are identity-mapped, so
781  * this is a no-op.  If needed, we can use j_blk_offset - everything is
782  * ready.
783  */
784 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
785                  unsigned long long *retp)
786 {
787         int err = 0;
788         unsigned long long ret;
789
790         if (journal->j_inode) {
791                 ret = bmap(journal->j_inode, blocknr);
792                 if (ret)
793                         *retp = ret;
794                 else {
795                         printk(KERN_ALERT "%s: journal block not found "
796                                         "at offset %lu on %s\n",
797                                __func__, blocknr, journal->j_devname);
798                         err = -EIO;
799                         __journal_abort_soft(journal, err);
800                 }
801         } else {
802                 *retp = blocknr; /* +journal->j_blk_offset */
803         }
804         return err;
805 }
806
807 /*
808  * We play buffer_head aliasing tricks to write data/metadata blocks to
809  * the journal without copying their contents, but for journal
810  * descriptor blocks we do need to generate bona fide buffers.
811  *
812  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814  * But we don't bother doing that, so there will be coherency problems with
815  * mmaps of blockdevs which hold live JBD-controlled filesystems.
816  */
817 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
818 {
819         struct buffer_head *bh;
820         unsigned long long blocknr;
821         int err;
822
823         err = jbd2_journal_next_log_block(journal, &blocknr);
824
825         if (err)
826                 return NULL;
827
828         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
829         if (!bh)
830                 return NULL;
831         lock_buffer(bh);
832         memset(bh->b_data, 0, journal->j_blocksize);
833         set_buffer_uptodate(bh);
834         unlock_buffer(bh);
835         BUFFER_TRACE(bh, "return this buffer");
836         return bh;
837 }
838
839 /*
840  * Return tid of the oldest transaction in the journal and block in the journal
841  * where the transaction starts.
842  *
843  * If the journal is now empty, return which will be the next transaction ID
844  * we will write and where will that transaction start.
845  *
846  * The return value is 0 if journal tail cannot be pushed any further, 1 if
847  * it can.
848  */
849 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
850                               unsigned long *block)
851 {
852         transaction_t *transaction;
853         int ret;
854
855         read_lock(&journal->j_state_lock);
856         spin_lock(&journal->j_list_lock);
857         transaction = journal->j_checkpoint_transactions;
858         if (transaction) {
859                 *tid = transaction->t_tid;
860                 *block = transaction->t_log_start;
861         } else if ((transaction = journal->j_committing_transaction) != NULL) {
862                 *tid = transaction->t_tid;
863                 *block = transaction->t_log_start;
864         } else if ((transaction = journal->j_running_transaction) != NULL) {
865                 *tid = transaction->t_tid;
866                 *block = journal->j_head;
867         } else {
868                 *tid = journal->j_transaction_sequence;
869                 *block = journal->j_head;
870         }
871         ret = tid_gt(*tid, journal->j_tail_sequence);
872         spin_unlock(&journal->j_list_lock);
873         read_unlock(&journal->j_state_lock);
874
875         return ret;
876 }
877
878 /*
879  * Update information in journal structure and in on disk journal superblock
880  * about log tail. This function does not check whether information passed in
881  * really pushes log tail further. It's responsibility of the caller to make
882  * sure provided log tail information is valid (e.g. by holding
883  * j_checkpoint_mutex all the time between computing log tail and calling this
884  * function as is the case with jbd2_cleanup_journal_tail()).
885  *
886  * Requires j_checkpoint_mutex
887  */
888 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
889 {
890         unsigned long freed;
891
892         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
893
894         /*
895          * We cannot afford for write to remain in drive's caches since as
896          * soon as we update j_tail, next transaction can start reusing journal
897          * space and if we lose sb update during power failure we'd replay
898          * old transaction with possibly newly overwritten data.
899          */
900         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
901         write_lock(&journal->j_state_lock);
902         freed = block - journal->j_tail;
903         if (block < journal->j_tail)
904                 freed += journal->j_last - journal->j_first;
905
906         trace_jbd2_update_log_tail(journal, tid, block, freed);
907         jbd_debug(1,
908                   "Cleaning journal tail from %d to %d (offset %lu), "
909                   "freeing %lu\n",
910                   journal->j_tail_sequence, tid, block, freed);
911
912         journal->j_free += freed;
913         journal->j_tail_sequence = tid;
914         journal->j_tail = block;
915         write_unlock(&journal->j_state_lock);
916 }
917
918 /*
919  * This is a variaon of __jbd2_update_log_tail which checks for validity of
920  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
921  * with other threads updating log tail.
922  */
923 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
924 {
925         mutex_lock(&journal->j_checkpoint_mutex);
926         if (tid_gt(tid, journal->j_tail_sequence))
927                 __jbd2_update_log_tail(journal, tid, block);
928         mutex_unlock(&journal->j_checkpoint_mutex);
929 }
930
931 struct jbd2_stats_proc_session {
932         journal_t *journal;
933         struct transaction_stats_s *stats;
934         int start;
935         int max;
936 };
937
938 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
939 {
940         return *pos ? NULL : SEQ_START_TOKEN;
941 }
942
943 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
944 {
945         return NULL;
946 }
947
948 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
949 {
950         struct jbd2_stats_proc_session *s = seq->private;
951
952         if (v != SEQ_START_TOKEN)
953                 return 0;
954         seq_printf(seq, "%lu transactions (%lu requested), "
955                    "each up to %u blocks\n",
956                    s->stats->ts_tid, s->stats->ts_requested,
957                    s->journal->j_max_transaction_buffers);
958         if (s->stats->ts_tid == 0)
959                 return 0;
960         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
961             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
962         seq_printf(seq, "  %ums request delay\n",
963             (s->stats->ts_requested == 0) ? 0 :
964             jiffies_to_msecs(s->stats->run.rs_request_delay /
965                              s->stats->ts_requested));
966         seq_printf(seq, "  %ums running transaction\n",
967             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
968         seq_printf(seq, "  %ums transaction was being locked\n",
969             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
970         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
971             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
972         seq_printf(seq, "  %ums logging transaction\n",
973             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
974         seq_printf(seq, "  %lluus average transaction commit time\n",
975                    div_u64(s->journal->j_average_commit_time, 1000));
976         seq_printf(seq, "  %lu handles per transaction\n",
977             s->stats->run.rs_handle_count / s->stats->ts_tid);
978         seq_printf(seq, "  %lu blocks per transaction\n",
979             s->stats->run.rs_blocks / s->stats->ts_tid);
980         seq_printf(seq, "  %lu logged blocks per transaction\n",
981             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
982         return 0;
983 }
984
985 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
986 {
987 }
988
989 static const struct seq_operations jbd2_seq_info_ops = {
990         .start  = jbd2_seq_info_start,
991         .next   = jbd2_seq_info_next,
992         .stop   = jbd2_seq_info_stop,
993         .show   = jbd2_seq_info_show,
994 };
995
996 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
997 {
998         journal_t *journal = PDE_DATA(inode);
999         struct jbd2_stats_proc_session *s;
1000         int rc, size;
1001
1002         s = kmalloc(sizeof(*s), GFP_KERNEL);
1003         if (s == NULL)
1004                 return -ENOMEM;
1005         size = sizeof(struct transaction_stats_s);
1006         s->stats = kmalloc(size, GFP_KERNEL);
1007         if (s->stats == NULL) {
1008                 kfree(s);
1009                 return -ENOMEM;
1010         }
1011         spin_lock(&journal->j_history_lock);
1012         memcpy(s->stats, &journal->j_stats, size);
1013         s->journal = journal;
1014         spin_unlock(&journal->j_history_lock);
1015
1016         rc = seq_open(file, &jbd2_seq_info_ops);
1017         if (rc == 0) {
1018                 struct seq_file *m = file->private_data;
1019                 m->private = s;
1020         } else {
1021                 kfree(s->stats);
1022                 kfree(s);
1023         }
1024         return rc;
1025
1026 }
1027
1028 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1029 {
1030         struct seq_file *seq = file->private_data;
1031         struct jbd2_stats_proc_session *s = seq->private;
1032         kfree(s->stats);
1033         kfree(s);
1034         return seq_release(inode, file);
1035 }
1036
1037 static const struct file_operations jbd2_seq_info_fops = {
1038         .owner          = THIS_MODULE,
1039         .open           = jbd2_seq_info_open,
1040         .read           = seq_read,
1041         .llseek         = seq_lseek,
1042         .release        = jbd2_seq_info_release,
1043 };
1044
1045 static struct proc_dir_entry *proc_jbd2_stats;
1046
1047 static void jbd2_stats_proc_init(journal_t *journal)
1048 {
1049         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1050         if (journal->j_proc_entry) {
1051                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1052                                  &jbd2_seq_info_fops, journal);
1053         }
1054 }
1055
1056 static void jbd2_stats_proc_exit(journal_t *journal)
1057 {
1058         remove_proc_entry("info", journal->j_proc_entry);
1059         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1060 }
1061
1062 /*
1063  * Management for journal control blocks: functions to create and
1064  * destroy journal_t structures, and to initialise and read existing
1065  * journal blocks from disk.  */
1066
1067 /* First: create and setup a journal_t object in memory.  We initialise
1068  * very few fields yet: that has to wait until we have created the
1069  * journal structures from from scratch, or loaded them from disk. */
1070
1071 static journal_t * journal_init_common (void)
1072 {
1073         journal_t *journal;
1074         int err;
1075
1076         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1077         if (!journal)
1078                 return NULL;
1079
1080         init_waitqueue_head(&journal->j_wait_transaction_locked);
1081         init_waitqueue_head(&journal->j_wait_done_commit);
1082         init_waitqueue_head(&journal->j_wait_commit);
1083         init_waitqueue_head(&journal->j_wait_updates);
1084         init_waitqueue_head(&journal->j_wait_reserved);
1085         mutex_init(&journal->j_barrier);
1086         mutex_init(&journal->j_checkpoint_mutex);
1087         spin_lock_init(&journal->j_revoke_lock);
1088         spin_lock_init(&journal->j_list_lock);
1089         rwlock_init(&journal->j_state_lock);
1090
1091         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1092         journal->j_min_batch_time = 0;
1093         journal->j_max_batch_time = 15000; /* 15ms */
1094         atomic_set(&journal->j_reserved_credits, 0);
1095
1096         /* The journal is marked for error until we succeed with recovery! */
1097         journal->j_flags = JBD2_ABORT;
1098
1099         /* Set up a default-sized revoke table for the new mount. */
1100         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1101         if (err) {
1102                 kfree(journal);
1103                 return NULL;
1104         }
1105
1106         spin_lock_init(&journal->j_history_lock);
1107
1108         return journal;
1109 }
1110
1111 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1112  *
1113  * Create a journal structure assigned some fixed set of disk blocks to
1114  * the journal.  We don't actually touch those disk blocks yet, but we
1115  * need to set up all of the mapping information to tell the journaling
1116  * system where the journal blocks are.
1117  *
1118  */
1119
1120 /**
1121  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1122  *  @bdev: Block device on which to create the journal
1123  *  @fs_dev: Device which hold journalled filesystem for this journal.
1124  *  @start: Block nr Start of journal.
1125  *  @len:  Length of the journal in blocks.
1126  *  @blocksize: blocksize of journalling device
1127  *
1128  *  Returns: a newly created journal_t *
1129  *
1130  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1131  *  range of blocks on an arbitrary block device.
1132  *
1133  */
1134 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1135                         struct block_device *fs_dev,
1136                         unsigned long long start, int len, int blocksize)
1137 {
1138         journal_t *journal = journal_init_common();
1139         struct buffer_head *bh;
1140         int n;
1141
1142         if (!journal)
1143                 return NULL;
1144
1145         /* journal descriptor can store up to n blocks -bzzz */
1146         journal->j_blocksize = blocksize;
1147         journal->j_dev = bdev;
1148         journal->j_fs_dev = fs_dev;
1149         journal->j_blk_offset = start;
1150         journal->j_maxlen = len;
1151         bdevname(journal->j_dev, journal->j_devname);
1152         strreplace(journal->j_devname, '/', '!');
1153         jbd2_stats_proc_init(journal);
1154         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1155         journal->j_wbufsize = n;
1156         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1157         if (!journal->j_wbuf) {
1158                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1159                         __func__);
1160                 goto out_err;
1161         }
1162
1163         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1164         if (!bh) {
1165                 printk(KERN_ERR
1166                        "%s: Cannot get buffer for journal superblock\n",
1167                        __func__);
1168                 goto out_err;
1169         }
1170         journal->j_sb_buffer = bh;
1171         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1172
1173         return journal;
1174 out_err:
1175         kfree(journal->j_wbuf);
1176         jbd2_stats_proc_exit(journal);
1177         kfree(journal);
1178         return NULL;
1179 }
1180
1181 /**
1182  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1183  *  @inode: An inode to create the journal in
1184  *
1185  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1186  * the journal.  The inode must exist already, must support bmap() and
1187  * must have all data blocks preallocated.
1188  */
1189 journal_t * jbd2_journal_init_inode (struct inode *inode)
1190 {
1191         struct buffer_head *bh;
1192         journal_t *journal = journal_init_common();
1193         char *p;
1194         int err;
1195         int n;
1196         unsigned long long blocknr;
1197
1198         if (!journal)
1199                 return NULL;
1200
1201         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1202         journal->j_inode = inode;
1203         bdevname(journal->j_dev, journal->j_devname);
1204         p = strreplace(journal->j_devname, '/', '!');
1205         sprintf(p, "-%lu", journal->j_inode->i_ino);
1206         jbd_debug(1,
1207                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1208                   journal, inode->i_sb->s_id, inode->i_ino,
1209                   (long long) inode->i_size,
1210                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1211
1212         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1213         journal->j_blocksize = inode->i_sb->s_blocksize;
1214         jbd2_stats_proc_init(journal);
1215
1216         /* journal descriptor can store up to n blocks -bzzz */
1217         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1218         journal->j_wbufsize = n;
1219         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1220         if (!journal->j_wbuf) {
1221                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1222                         __func__);
1223                 goto out_err;
1224         }
1225
1226         err = jbd2_journal_bmap(journal, 0, &blocknr);
1227         /* If that failed, give up */
1228         if (err) {
1229                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1230                        __func__);
1231                 goto out_err;
1232         }
1233
1234         bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1235         if (!bh) {
1236                 printk(KERN_ERR
1237                        "%s: Cannot get buffer for journal superblock\n",
1238                        __func__);
1239                 goto out_err;
1240         }
1241         journal->j_sb_buffer = bh;
1242         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1243
1244         return journal;
1245 out_err:
1246         kfree(journal->j_wbuf);
1247         jbd2_stats_proc_exit(journal);
1248         kfree(journal);
1249         return NULL;
1250 }
1251
1252 /*
1253  * If the journal init or create aborts, we need to mark the journal
1254  * superblock as being NULL to prevent the journal destroy from writing
1255  * back a bogus superblock.
1256  */
1257 static void journal_fail_superblock (journal_t *journal)
1258 {
1259         struct buffer_head *bh = journal->j_sb_buffer;
1260         brelse(bh);
1261         journal->j_sb_buffer = NULL;
1262 }
1263
1264 /*
1265  * Given a journal_t structure, initialise the various fields for
1266  * startup of a new journaling session.  We use this both when creating
1267  * a journal, and after recovering an old journal to reset it for
1268  * subsequent use.
1269  */
1270
1271 static int journal_reset(journal_t *journal)
1272 {
1273         journal_superblock_t *sb = journal->j_superblock;
1274         unsigned long long first, last;
1275
1276         first = be32_to_cpu(sb->s_first);
1277         last = be32_to_cpu(sb->s_maxlen);
1278         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1279                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1280                        first, last);
1281                 journal_fail_superblock(journal);
1282                 return -EINVAL;
1283         }
1284
1285         journal->j_first = first;
1286         journal->j_last = last;
1287
1288         journal->j_head = first;
1289         journal->j_tail = first;
1290         journal->j_free = last - first;
1291
1292         journal->j_tail_sequence = journal->j_transaction_sequence;
1293         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1294         journal->j_commit_request = journal->j_commit_sequence;
1295
1296         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1297
1298         /*
1299          * As a special case, if the on-disk copy is already marked as needing
1300          * no recovery (s_start == 0), then we can safely defer the superblock
1301          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1302          * attempting a write to a potential-readonly device.
1303          */
1304         if (sb->s_start == 0) {
1305                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1306                         "(start %ld, seq %d, errno %d)\n",
1307                         journal->j_tail, journal->j_tail_sequence,
1308                         journal->j_errno);
1309                 journal->j_flags |= JBD2_FLUSHED;
1310         } else {
1311                 /* Lock here to make assertions happy... */
1312                 mutex_lock(&journal->j_checkpoint_mutex);
1313                 /*
1314                  * Update log tail information. We use WRITE_FUA since new
1315                  * transaction will start reusing journal space and so we
1316                  * must make sure information about current log tail is on
1317                  * disk before that.
1318                  */
1319                 jbd2_journal_update_sb_log_tail(journal,
1320                                                 journal->j_tail_sequence,
1321                                                 journal->j_tail,
1322                                                 WRITE_FUA);
1323                 mutex_unlock(&journal->j_checkpoint_mutex);
1324         }
1325         return jbd2_journal_start_thread(journal);
1326 }
1327
1328 static void jbd2_write_superblock(journal_t *journal, int write_op)
1329 {
1330         struct buffer_head *bh = journal->j_sb_buffer;
1331         journal_superblock_t *sb = journal->j_superblock;
1332         int ret;
1333
1334         trace_jbd2_write_superblock(journal, write_op);
1335         if (!(journal->j_flags & JBD2_BARRIER))
1336                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1337         lock_buffer(bh);
1338         if (buffer_write_io_error(bh)) {
1339                 /*
1340                  * Oh, dear.  A previous attempt to write the journal
1341                  * superblock failed.  This could happen because the
1342                  * USB device was yanked out.  Or it could happen to
1343                  * be a transient write error and maybe the block will
1344                  * be remapped.  Nothing we can do but to retry the
1345                  * write and hope for the best.
1346                  */
1347                 printk(KERN_ERR "JBD2: previous I/O error detected "
1348                        "for journal superblock update for %s.\n",
1349                        journal->j_devname);
1350                 clear_buffer_write_io_error(bh);
1351                 set_buffer_uptodate(bh);
1352         }
1353         jbd2_superblock_csum_set(journal, sb);
1354         get_bh(bh);
1355         bh->b_end_io = end_buffer_write_sync;
1356         ret = submit_bh(write_op, bh);
1357         wait_on_buffer(bh);
1358         if (buffer_write_io_error(bh)) {
1359                 clear_buffer_write_io_error(bh);
1360                 set_buffer_uptodate(bh);
1361                 ret = -EIO;
1362         }
1363         if (ret) {
1364                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1365                        "journal superblock for %s.\n", ret,
1366                        journal->j_devname);
1367         }
1368 }
1369
1370 /**
1371  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1372  * @journal: The journal to update.
1373  * @tail_tid: TID of the new transaction at the tail of the log
1374  * @tail_block: The first block of the transaction at the tail of the log
1375  * @write_op: With which operation should we write the journal sb
1376  *
1377  * Update a journal's superblock information about log tail and write it to
1378  * disk, waiting for the IO to complete.
1379  */
1380 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1381                                      unsigned long tail_block, int write_op)
1382 {
1383         journal_superblock_t *sb = journal->j_superblock;
1384
1385         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1386         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1387                   tail_block, tail_tid);
1388
1389         sb->s_sequence = cpu_to_be32(tail_tid);
1390         sb->s_start    = cpu_to_be32(tail_block);
1391
1392         jbd2_write_superblock(journal, write_op);
1393
1394         /* Log is no longer empty */
1395         write_lock(&journal->j_state_lock);
1396         WARN_ON(!sb->s_sequence);
1397         journal->j_flags &= ~JBD2_FLUSHED;
1398         write_unlock(&journal->j_state_lock);
1399 }
1400
1401 /**
1402  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1403  * @journal: The journal to update.
1404  *
1405  * Update a journal's dynamic superblock fields to show that journal is empty.
1406  * Write updated superblock to disk waiting for IO to complete.
1407  */
1408 static void jbd2_mark_journal_empty(journal_t *journal)
1409 {
1410         journal_superblock_t *sb = journal->j_superblock;
1411
1412         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1413         read_lock(&journal->j_state_lock);
1414         /* Is it already empty? */
1415         if (sb->s_start == 0) {
1416                 read_unlock(&journal->j_state_lock);
1417                 return;
1418         }
1419         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1420                   journal->j_tail_sequence);
1421
1422         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1423         sb->s_start    = cpu_to_be32(0);
1424         read_unlock(&journal->j_state_lock);
1425
1426         jbd2_write_superblock(journal, WRITE_FUA);
1427
1428         /* Log is no longer empty */
1429         write_lock(&journal->j_state_lock);
1430         journal->j_flags |= JBD2_FLUSHED;
1431         write_unlock(&journal->j_state_lock);
1432 }
1433
1434
1435 /**
1436  * jbd2_journal_update_sb_errno() - Update error in the journal.
1437  * @journal: The journal to update.
1438  *
1439  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1440  * to complete.
1441  */
1442 void jbd2_journal_update_sb_errno(journal_t *journal)
1443 {
1444         journal_superblock_t *sb = journal->j_superblock;
1445
1446         read_lock(&journal->j_state_lock);
1447         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1448                   journal->j_errno);
1449         sb->s_errno    = cpu_to_be32(journal->j_errno);
1450         read_unlock(&journal->j_state_lock);
1451
1452         jbd2_write_superblock(journal, WRITE_SYNC);
1453 }
1454 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1455
1456 /*
1457  * Read the superblock for a given journal, performing initial
1458  * validation of the format.
1459  */
1460 static int journal_get_superblock(journal_t *journal)
1461 {
1462         struct buffer_head *bh;
1463         journal_superblock_t *sb;
1464         int err = -EIO;
1465
1466         bh = journal->j_sb_buffer;
1467
1468         J_ASSERT(bh != NULL);
1469         if (!buffer_uptodate(bh)) {
1470                 ll_rw_block(READ, 1, &bh);
1471                 wait_on_buffer(bh);
1472                 if (!buffer_uptodate(bh)) {
1473                         printk(KERN_ERR
1474                                 "JBD2: IO error reading journal superblock\n");
1475                         goto out;
1476                 }
1477         }
1478
1479         if (buffer_verified(bh))
1480                 return 0;
1481
1482         sb = journal->j_superblock;
1483
1484         err = -EINVAL;
1485
1486         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1487             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1488                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1489                 goto out;
1490         }
1491
1492         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1493         case JBD2_SUPERBLOCK_V1:
1494                 journal->j_format_version = 1;
1495                 break;
1496         case JBD2_SUPERBLOCK_V2:
1497                 journal->j_format_version = 2;
1498                 break;
1499         default:
1500                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1501                 goto out;
1502         }
1503
1504         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1505                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1506         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1507                 printk(KERN_WARNING "JBD2: journal file too short\n");
1508                 goto out;
1509         }
1510
1511         if (be32_to_cpu(sb->s_first) == 0 ||
1512             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1513                 printk(KERN_WARNING
1514                         "JBD2: Invalid start block of journal: %u\n",
1515                         be32_to_cpu(sb->s_first));
1516                 goto out;
1517         }
1518
1519         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2) &&
1520             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1521                 /* Can't have checksum v2 and v3 at the same time! */
1522                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1523                        "at the same time!\n");
1524                 goto out;
1525         }
1526
1527         if (jbd2_journal_has_csum_v2or3(journal) &&
1528             JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM)) {
1529                 /* Can't have checksum v1 and v2 on at the same time! */
1530                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1531                        "at the same time!\n");
1532                 goto out;
1533         }
1534
1535         if (!jbd2_verify_csum_type(journal, sb)) {
1536                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1537                 goto out;
1538         }
1539
1540         /* Load the checksum driver */
1541         if (jbd2_journal_has_csum_v2or3(journal)) {
1542                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1543                 if (IS_ERR(journal->j_chksum_driver)) {
1544                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1545                         err = PTR_ERR(journal->j_chksum_driver);
1546                         journal->j_chksum_driver = NULL;
1547                         goto out;
1548                 }
1549         }
1550
1551         /* Check superblock checksum */
1552         if (!jbd2_superblock_csum_verify(journal, sb)) {
1553                 printk(KERN_ERR "JBD2: journal checksum error\n");
1554                 goto out;
1555         }
1556
1557         /* Precompute checksum seed for all metadata */
1558         if (jbd2_journal_has_csum_v2or3(journal))
1559                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1560                                                    sizeof(sb->s_uuid));
1561
1562         set_buffer_verified(bh);
1563
1564         return 0;
1565
1566 out:
1567         journal_fail_superblock(journal);
1568         return err;
1569 }
1570
1571 /*
1572  * Load the on-disk journal superblock and read the key fields into the
1573  * journal_t.
1574  */
1575
1576 static int load_superblock(journal_t *journal)
1577 {
1578         int err;
1579         journal_superblock_t *sb;
1580
1581         err = journal_get_superblock(journal);
1582         if (err)
1583                 return err;
1584
1585         sb = journal->j_superblock;
1586
1587         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1588         journal->j_tail = be32_to_cpu(sb->s_start);
1589         journal->j_first = be32_to_cpu(sb->s_first);
1590         journal->j_last = be32_to_cpu(sb->s_maxlen);
1591         journal->j_errno = be32_to_cpu(sb->s_errno);
1592
1593         return 0;
1594 }
1595
1596
1597 /**
1598  * int jbd2_journal_load() - Read journal from disk.
1599  * @journal: Journal to act on.
1600  *
1601  * Given a journal_t structure which tells us which disk blocks contain
1602  * a journal, read the journal from disk to initialise the in-memory
1603  * structures.
1604  */
1605 int jbd2_journal_load(journal_t *journal)
1606 {
1607         int err;
1608         journal_superblock_t *sb;
1609
1610         err = load_superblock(journal);
1611         if (err)
1612                 return err;
1613
1614         sb = journal->j_superblock;
1615         /* If this is a V2 superblock, then we have to check the
1616          * features flags on it. */
1617
1618         if (journal->j_format_version >= 2) {
1619                 if ((sb->s_feature_ro_compat &
1620                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1621                     (sb->s_feature_incompat &
1622                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1623                         printk(KERN_WARNING
1624                                 "JBD2: Unrecognised features on journal\n");
1625                         return -EINVAL;
1626                 }
1627         }
1628
1629         /*
1630          * Create a slab for this blocksize
1631          */
1632         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1633         if (err)
1634                 return err;
1635
1636         /* Let the recovery code check whether it needs to recover any
1637          * data from the journal. */
1638         if (jbd2_journal_recover(journal))
1639                 goto recovery_error;
1640
1641         if (journal->j_failed_commit) {
1642                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1643                        "is corrupt.\n", journal->j_failed_commit,
1644                        journal->j_devname);
1645                 return -EIO;
1646         }
1647
1648         /* OK, we've finished with the dynamic journal bits:
1649          * reinitialise the dynamic contents of the superblock in memory
1650          * and reset them on disk. */
1651         if (journal_reset(journal))
1652                 goto recovery_error;
1653
1654         journal->j_flags &= ~JBD2_ABORT;
1655         journal->j_flags |= JBD2_LOADED;
1656         return 0;
1657
1658 recovery_error:
1659         printk(KERN_WARNING "JBD2: recovery failed\n");
1660         return -EIO;
1661 }
1662
1663 /**
1664  * void jbd2_journal_destroy() - Release a journal_t structure.
1665  * @journal: Journal to act on.
1666  *
1667  * Release a journal_t structure once it is no longer in use by the
1668  * journaled object.
1669  * Return <0 if we couldn't clean up the journal.
1670  */
1671 int jbd2_journal_destroy(journal_t *journal)
1672 {
1673         int err = 0;
1674
1675         /* Wait for the commit thread to wake up and die. */
1676         journal_kill_thread(journal);
1677
1678         /* Force a final log commit */
1679         if (journal->j_running_transaction)
1680                 jbd2_journal_commit_transaction(journal);
1681
1682         /* Force any old transactions to disk */
1683
1684         /* Totally anal locking here... */
1685         spin_lock(&journal->j_list_lock);
1686         while (journal->j_checkpoint_transactions != NULL) {
1687                 spin_unlock(&journal->j_list_lock);
1688                 mutex_lock(&journal->j_checkpoint_mutex);
1689                 jbd2_log_do_checkpoint(journal);
1690                 mutex_unlock(&journal->j_checkpoint_mutex);
1691                 spin_lock(&journal->j_list_lock);
1692         }
1693
1694         J_ASSERT(journal->j_running_transaction == NULL);
1695         J_ASSERT(journal->j_committing_transaction == NULL);
1696         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1697         spin_unlock(&journal->j_list_lock);
1698
1699         if (journal->j_sb_buffer) {
1700                 if (!is_journal_aborted(journal)) {
1701                         mutex_lock(&journal->j_checkpoint_mutex);
1702                         jbd2_mark_journal_empty(journal);
1703                         mutex_unlock(&journal->j_checkpoint_mutex);
1704                 } else
1705                         err = -EIO;
1706                 brelse(journal->j_sb_buffer);
1707         }
1708
1709         if (journal->j_proc_entry)
1710                 jbd2_stats_proc_exit(journal);
1711         iput(journal->j_inode);
1712         if (journal->j_revoke)
1713                 jbd2_journal_destroy_revoke(journal);
1714         if (journal->j_chksum_driver)
1715                 crypto_free_shash(journal->j_chksum_driver);
1716         kfree(journal->j_wbuf);
1717         kfree(journal);
1718
1719         return err;
1720 }
1721
1722
1723 /**
1724  *int jbd2_journal_check_used_features () - Check if features specified are used.
1725  * @journal: Journal to check.
1726  * @compat: bitmask of compatible features
1727  * @ro: bitmask of features that force read-only mount
1728  * @incompat: bitmask of incompatible features
1729  *
1730  * Check whether the journal uses all of a given set of
1731  * features.  Return true (non-zero) if it does.
1732  **/
1733
1734 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1735                                  unsigned long ro, unsigned long incompat)
1736 {
1737         journal_superblock_t *sb;
1738
1739         if (!compat && !ro && !incompat)
1740                 return 1;
1741         /* Load journal superblock if it is not loaded yet. */
1742         if (journal->j_format_version == 0 &&
1743             journal_get_superblock(journal) != 0)
1744                 return 0;
1745         if (journal->j_format_version == 1)
1746                 return 0;
1747
1748         sb = journal->j_superblock;
1749
1750         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1751             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1752             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1753                 return 1;
1754
1755         return 0;
1756 }
1757
1758 /**
1759  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1760  * @journal: Journal to check.
1761  * @compat: bitmask of compatible features
1762  * @ro: bitmask of features that force read-only mount
1763  * @incompat: bitmask of incompatible features
1764  *
1765  * Check whether the journaling code supports the use of
1766  * all of a given set of features on this journal.  Return true
1767  * (non-zero) if it can. */
1768
1769 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1770                                       unsigned long ro, unsigned long incompat)
1771 {
1772         if (!compat && !ro && !incompat)
1773                 return 1;
1774
1775         /* We can support any known requested features iff the
1776          * superblock is in version 2.  Otherwise we fail to support any
1777          * extended sb features. */
1778
1779         if (journal->j_format_version != 2)
1780                 return 0;
1781
1782         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1783             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1784             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1785                 return 1;
1786
1787         return 0;
1788 }
1789
1790 /**
1791  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1792  * @journal: Journal to act on.
1793  * @compat: bitmask of compatible features
1794  * @ro: bitmask of features that force read-only mount
1795  * @incompat: bitmask of incompatible features
1796  *
1797  * Mark a given journal feature as present on the
1798  * superblock.  Returns true if the requested features could be set.
1799  *
1800  */
1801
1802 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1803                           unsigned long ro, unsigned long incompat)
1804 {
1805 #define INCOMPAT_FEATURE_ON(f) \
1806                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1807 #define COMPAT_FEATURE_ON(f) \
1808                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1809         journal_superblock_t *sb;
1810
1811         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1812                 return 1;
1813
1814         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1815                 return 0;
1816
1817         /* If enabling v2 checksums, turn on v3 instead */
1818         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1819                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1820                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1821         }
1822
1823         /* Asking for checksumming v3 and v1?  Only give them v3. */
1824         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1825             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1826                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1827
1828         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1829                   compat, ro, incompat);
1830
1831         sb = journal->j_superblock;
1832
1833         /* If enabling v3 checksums, update superblock */
1834         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1835                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1836                 sb->s_feature_compat &=
1837                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1838
1839                 /* Load the checksum driver */
1840                 if (journal->j_chksum_driver == NULL) {
1841                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1842                                                                       0, 0);
1843                         if (IS_ERR(journal->j_chksum_driver)) {
1844                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1845                                        "driver.\n");
1846                                 journal->j_chksum_driver = NULL;
1847                                 return 0;
1848                         }
1849
1850                         /* Precompute checksum seed for all metadata */
1851                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1852                                                            sb->s_uuid,
1853                                                            sizeof(sb->s_uuid));
1854                 }
1855         }
1856
1857         /* If enabling v1 checksums, downgrade superblock */
1858         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1859                 sb->s_feature_incompat &=
1860                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1861                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1862
1863         sb->s_feature_compat    |= cpu_to_be32(compat);
1864         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1865         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1866
1867         return 1;
1868 #undef COMPAT_FEATURE_ON
1869 #undef INCOMPAT_FEATURE_ON
1870 }
1871
1872 /*
1873  * jbd2_journal_clear_features () - Clear a given journal feature in the
1874  *                                  superblock
1875  * @journal: Journal to act on.
1876  * @compat: bitmask of compatible features
1877  * @ro: bitmask of features that force read-only mount
1878  * @incompat: bitmask of incompatible features
1879  *
1880  * Clear a given journal feature as present on the
1881  * superblock.
1882  */
1883 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1884                                 unsigned long ro, unsigned long incompat)
1885 {
1886         journal_superblock_t *sb;
1887
1888         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1889                   compat, ro, incompat);
1890
1891         sb = journal->j_superblock;
1892
1893         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1894         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1895         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1896 }
1897 EXPORT_SYMBOL(jbd2_journal_clear_features);
1898
1899 /**
1900  * int jbd2_journal_flush () - Flush journal
1901  * @journal: Journal to act on.
1902  *
1903  * Flush all data for a given journal to disk and empty the journal.
1904  * Filesystems can use this when remounting readonly to ensure that
1905  * recovery does not need to happen on remount.
1906  */
1907
1908 int jbd2_journal_flush(journal_t *journal)
1909 {
1910         int err = 0;
1911         transaction_t *transaction = NULL;
1912
1913         write_lock(&journal->j_state_lock);
1914
1915         /* Force everything buffered to the log... */
1916         if (journal->j_running_transaction) {
1917                 transaction = journal->j_running_transaction;
1918                 __jbd2_log_start_commit(journal, transaction->t_tid);
1919         } else if (journal->j_committing_transaction)
1920                 transaction = journal->j_committing_transaction;
1921
1922         /* Wait for the log commit to complete... */
1923         if (transaction) {
1924                 tid_t tid = transaction->t_tid;
1925
1926                 write_unlock(&journal->j_state_lock);
1927                 jbd2_log_wait_commit(journal, tid);
1928         } else {
1929                 write_unlock(&journal->j_state_lock);
1930         }
1931
1932         /* ...and flush everything in the log out to disk. */
1933         spin_lock(&journal->j_list_lock);
1934         while (!err && journal->j_checkpoint_transactions != NULL) {
1935                 spin_unlock(&journal->j_list_lock);
1936                 mutex_lock(&journal->j_checkpoint_mutex);
1937                 err = jbd2_log_do_checkpoint(journal);
1938                 mutex_unlock(&journal->j_checkpoint_mutex);
1939                 spin_lock(&journal->j_list_lock);
1940         }
1941         spin_unlock(&journal->j_list_lock);
1942
1943         if (is_journal_aborted(journal))
1944                 return -EIO;
1945
1946         mutex_lock(&journal->j_checkpoint_mutex);
1947         jbd2_cleanup_journal_tail(journal);
1948
1949         /* Finally, mark the journal as really needing no recovery.
1950          * This sets s_start==0 in the underlying superblock, which is
1951          * the magic code for a fully-recovered superblock.  Any future
1952          * commits of data to the journal will restore the current
1953          * s_start value. */
1954         jbd2_mark_journal_empty(journal);
1955         mutex_unlock(&journal->j_checkpoint_mutex);
1956         write_lock(&journal->j_state_lock);
1957         J_ASSERT(!journal->j_running_transaction);
1958         J_ASSERT(!journal->j_committing_transaction);
1959         J_ASSERT(!journal->j_checkpoint_transactions);
1960         J_ASSERT(journal->j_head == journal->j_tail);
1961         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1962         write_unlock(&journal->j_state_lock);
1963         return 0;
1964 }
1965
1966 /**
1967  * int jbd2_journal_wipe() - Wipe journal contents
1968  * @journal: Journal to act on.
1969  * @write: flag (see below)
1970  *
1971  * Wipe out all of the contents of a journal, safely.  This will produce
1972  * a warning if the journal contains any valid recovery information.
1973  * Must be called between journal_init_*() and jbd2_journal_load().
1974  *
1975  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1976  * we merely suppress recovery.
1977  */
1978
1979 int jbd2_journal_wipe(journal_t *journal, int write)
1980 {
1981         int err = 0;
1982
1983         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1984
1985         err = load_superblock(journal);
1986         if (err)
1987                 return err;
1988
1989         if (!journal->j_tail)
1990                 goto no_recovery;
1991
1992         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1993                 write ? "Clearing" : "Ignoring");
1994
1995         err = jbd2_journal_skip_recovery(journal);
1996         if (write) {
1997                 /* Lock to make assertions happy... */
1998                 mutex_lock(&journal->j_checkpoint_mutex);
1999                 jbd2_mark_journal_empty(journal);
2000                 mutex_unlock(&journal->j_checkpoint_mutex);
2001         }
2002
2003  no_recovery:
2004         return err;
2005 }
2006
2007 /*
2008  * Journal abort has very specific semantics, which we describe
2009  * for journal abort.
2010  *
2011  * Two internal functions, which provide abort to the jbd layer
2012  * itself are here.
2013  */
2014
2015 /*
2016  * Quick version for internal journal use (doesn't lock the journal).
2017  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2018  * and don't attempt to make any other journal updates.
2019  */
2020 void __jbd2_journal_abort_hard(journal_t *journal)
2021 {
2022         transaction_t *transaction;
2023
2024         if (journal->j_flags & JBD2_ABORT)
2025                 return;
2026
2027         printk(KERN_ERR "Aborting journal on device %s.\n",
2028                journal->j_devname);
2029
2030         write_lock(&journal->j_state_lock);
2031         journal->j_flags |= JBD2_ABORT;
2032         transaction = journal->j_running_transaction;
2033         if (transaction)
2034                 __jbd2_log_start_commit(journal, transaction->t_tid);
2035         write_unlock(&journal->j_state_lock);
2036 }
2037
2038 /* Soft abort: record the abort error status in the journal superblock,
2039  * but don't do any other IO. */
2040 static void __journal_abort_soft (journal_t *journal, int errno)
2041 {
2042         if (journal->j_flags & JBD2_ABORT)
2043                 return;
2044
2045         if (!journal->j_errno)
2046                 journal->j_errno = errno;
2047
2048         __jbd2_journal_abort_hard(journal);
2049
2050         if (errno)
2051                 jbd2_journal_update_sb_errno(journal);
2052 }
2053
2054 /**
2055  * void jbd2_journal_abort () - Shutdown the journal immediately.
2056  * @journal: the journal to shutdown.
2057  * @errno:   an error number to record in the journal indicating
2058  *           the reason for the shutdown.
2059  *
2060  * Perform a complete, immediate shutdown of the ENTIRE
2061  * journal (not of a single transaction).  This operation cannot be
2062  * undone without closing and reopening the journal.
2063  *
2064  * The jbd2_journal_abort function is intended to support higher level error
2065  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2066  * mode.
2067  *
2068  * Journal abort has very specific semantics.  Any existing dirty,
2069  * unjournaled buffers in the main filesystem will still be written to
2070  * disk by bdflush, but the journaling mechanism will be suspended
2071  * immediately and no further transaction commits will be honoured.
2072  *
2073  * Any dirty, journaled buffers will be written back to disk without
2074  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2075  * filesystem, but we _do_ attempt to leave as much data as possible
2076  * behind for fsck to use for cleanup.
2077  *
2078  * Any attempt to get a new transaction handle on a journal which is in
2079  * ABORT state will just result in an -EROFS error return.  A
2080  * jbd2_journal_stop on an existing handle will return -EIO if we have
2081  * entered abort state during the update.
2082  *
2083  * Recursive transactions are not disturbed by journal abort until the
2084  * final jbd2_journal_stop, which will receive the -EIO error.
2085  *
2086  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2087  * which will be recorded (if possible) in the journal superblock.  This
2088  * allows a client to record failure conditions in the middle of a
2089  * transaction without having to complete the transaction to record the
2090  * failure to disk.  ext3_error, for example, now uses this
2091  * functionality.
2092  *
2093  * Errors which originate from within the journaling layer will NOT
2094  * supply an errno; a null errno implies that absolutely no further
2095  * writes are done to the journal (unless there are any already in
2096  * progress).
2097  *
2098  */
2099
2100 void jbd2_journal_abort(journal_t *journal, int errno)
2101 {
2102         __journal_abort_soft(journal, errno);
2103 }
2104
2105 /**
2106  * int jbd2_journal_errno () - returns the journal's error state.
2107  * @journal: journal to examine.
2108  *
2109  * This is the errno number set with jbd2_journal_abort(), the last
2110  * time the journal was mounted - if the journal was stopped
2111  * without calling abort this will be 0.
2112  *
2113  * If the journal has been aborted on this mount time -EROFS will
2114  * be returned.
2115  */
2116 int jbd2_journal_errno(journal_t *journal)
2117 {
2118         int err;
2119
2120         read_lock(&journal->j_state_lock);
2121         if (journal->j_flags & JBD2_ABORT)
2122                 err = -EROFS;
2123         else
2124                 err = journal->j_errno;
2125         read_unlock(&journal->j_state_lock);
2126         return err;
2127 }
2128
2129 /**
2130  * int jbd2_journal_clear_err () - clears the journal's error state
2131  * @journal: journal to act on.
2132  *
2133  * An error must be cleared or acked to take a FS out of readonly
2134  * mode.
2135  */
2136 int jbd2_journal_clear_err(journal_t *journal)
2137 {
2138         int err = 0;
2139
2140         write_lock(&journal->j_state_lock);
2141         if (journal->j_flags & JBD2_ABORT)
2142                 err = -EROFS;
2143         else
2144                 journal->j_errno = 0;
2145         write_unlock(&journal->j_state_lock);
2146         return err;
2147 }
2148
2149 /**
2150  * void jbd2_journal_ack_err() - Ack journal err.
2151  * @journal: journal to act on.
2152  *
2153  * An error must be cleared or acked to take a FS out of readonly
2154  * mode.
2155  */
2156 void jbd2_journal_ack_err(journal_t *journal)
2157 {
2158         write_lock(&journal->j_state_lock);
2159         if (journal->j_errno)
2160                 journal->j_flags |= JBD2_ACK_ERR;
2161         write_unlock(&journal->j_state_lock);
2162 }
2163
2164 int jbd2_journal_blocks_per_page(struct inode *inode)
2165 {
2166         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2167 }
2168
2169 /*
2170  * helper functions to deal with 32 or 64bit block numbers.
2171  */
2172 size_t journal_tag_bytes(journal_t *journal)
2173 {
2174         size_t sz;
2175
2176         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V3))
2177                 return sizeof(journal_block_tag3_t);
2178
2179         sz = sizeof(journal_block_tag_t);
2180
2181         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2182                 sz += sizeof(__u16);
2183
2184         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2185                 return sz;
2186         else
2187                 return sz - sizeof(__u32);
2188 }
2189
2190 /*
2191  * JBD memory management
2192  *
2193  * These functions are used to allocate block-sized chunks of memory
2194  * used for making copies of buffer_head data.  Very often it will be
2195  * page-sized chunks of data, but sometimes it will be in
2196  * sub-page-size chunks.  (For example, 16k pages on Power systems
2197  * with a 4k block file system.)  For blocks smaller than a page, we
2198  * use a SLAB allocator.  There are slab caches for each block size,
2199  * which are allocated at mount time, if necessary, and we only free
2200  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2201  * this reason we don't need to a mutex to protect access to
2202  * jbd2_slab[] allocating or releasing memory; only in
2203  * jbd2_journal_create_slab().
2204  */
2205 #define JBD2_MAX_SLABS 8
2206 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2207
2208 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2209         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2210         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2211 };
2212
2213
2214 static void jbd2_journal_destroy_slabs(void)
2215 {
2216         int i;
2217
2218         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2219                 if (jbd2_slab[i])
2220                         kmem_cache_destroy(jbd2_slab[i]);
2221                 jbd2_slab[i] = NULL;
2222         }
2223 }
2224
2225 static int jbd2_journal_create_slab(size_t size)
2226 {
2227         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2228         int i = order_base_2(size) - 10;
2229         size_t slab_size;
2230
2231         if (size == PAGE_SIZE)
2232                 return 0;
2233
2234         if (i >= JBD2_MAX_SLABS)
2235                 return -EINVAL;
2236
2237         if (unlikely(i < 0))
2238                 i = 0;
2239         mutex_lock(&jbd2_slab_create_mutex);
2240         if (jbd2_slab[i]) {
2241                 mutex_unlock(&jbd2_slab_create_mutex);
2242                 return 0;       /* Already created */
2243         }
2244
2245         slab_size = 1 << (i+10);
2246         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2247                                          slab_size, 0, NULL);
2248         mutex_unlock(&jbd2_slab_create_mutex);
2249         if (!jbd2_slab[i]) {
2250                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2251                 return -ENOMEM;
2252         }
2253         return 0;
2254 }
2255
2256 static struct kmem_cache *get_slab(size_t size)
2257 {
2258         int i = order_base_2(size) - 10;
2259
2260         BUG_ON(i >= JBD2_MAX_SLABS);
2261         if (unlikely(i < 0))
2262                 i = 0;
2263         BUG_ON(jbd2_slab[i] == NULL);
2264         return jbd2_slab[i];
2265 }
2266
2267 void *jbd2_alloc(size_t size, gfp_t flags)
2268 {
2269         void *ptr;
2270
2271         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2272
2273         flags |= __GFP_REPEAT;
2274         if (size == PAGE_SIZE)
2275                 ptr = (void *)__get_free_pages(flags, 0);
2276         else if (size > PAGE_SIZE) {
2277                 int order = get_order(size);
2278
2279                 if (order < 3)
2280                         ptr = (void *)__get_free_pages(flags, order);
2281                 else
2282                         ptr = vmalloc(size);
2283         } else
2284                 ptr = kmem_cache_alloc(get_slab(size), flags);
2285
2286         /* Check alignment; SLUB has gotten this wrong in the past,
2287          * and this can lead to user data corruption! */
2288         BUG_ON(((unsigned long) ptr) & (size-1));
2289
2290         return ptr;
2291 }
2292
2293 void jbd2_free(void *ptr, size_t size)
2294 {
2295         if (size == PAGE_SIZE) {
2296                 free_pages((unsigned long)ptr, 0);
2297                 return;
2298         }
2299         if (size > PAGE_SIZE) {
2300                 int order = get_order(size);
2301
2302                 if (order < 3)
2303                         free_pages((unsigned long)ptr, order);
2304                 else
2305                         vfree(ptr);
2306                 return;
2307         }
2308         kmem_cache_free(get_slab(size), ptr);
2309 };
2310
2311 /*
2312  * Journal_head storage management
2313  */
2314 static struct kmem_cache *jbd2_journal_head_cache;
2315 #ifdef CONFIG_JBD2_DEBUG
2316 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2317 #endif
2318
2319 static int jbd2_journal_init_journal_head_cache(void)
2320 {
2321         int retval;
2322
2323         J_ASSERT(jbd2_journal_head_cache == NULL);
2324         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2325                                 sizeof(struct journal_head),
2326                                 0,              /* offset */
2327                                 SLAB_TEMPORARY, /* flags */
2328                                 NULL);          /* ctor */
2329         retval = 0;
2330         if (!jbd2_journal_head_cache) {
2331                 retval = -ENOMEM;
2332                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2333         }
2334         return retval;
2335 }
2336
2337 static void jbd2_journal_destroy_journal_head_cache(void)
2338 {
2339         if (jbd2_journal_head_cache) {
2340                 kmem_cache_destroy(jbd2_journal_head_cache);
2341                 jbd2_journal_head_cache = NULL;
2342         }
2343 }
2344
2345 /*
2346  * journal_head splicing and dicing
2347  */
2348 static struct journal_head *journal_alloc_journal_head(void)
2349 {
2350         struct journal_head *ret;
2351
2352 #ifdef CONFIG_JBD2_DEBUG
2353         atomic_inc(&nr_journal_heads);
2354 #endif
2355         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2356         if (!ret) {
2357                 jbd_debug(1, "out of memory for journal_head\n");
2358                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2359                 while (!ret) {
2360                         yield();
2361                         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2362                 }
2363         }
2364         return ret;
2365 }
2366
2367 static void journal_free_journal_head(struct journal_head *jh)
2368 {
2369 #ifdef CONFIG_JBD2_DEBUG
2370         atomic_dec(&nr_journal_heads);
2371         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2372 #endif
2373         kmem_cache_free(jbd2_journal_head_cache, jh);
2374 }
2375
2376 /*
2377  * A journal_head is attached to a buffer_head whenever JBD has an
2378  * interest in the buffer.
2379  *
2380  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2381  * is set.  This bit is tested in core kernel code where we need to take
2382  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2383  * there.
2384  *
2385  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2386  *
2387  * When a buffer has its BH_JBD bit set it is immune from being released by
2388  * core kernel code, mainly via ->b_count.
2389  *
2390  * A journal_head is detached from its buffer_head when the journal_head's
2391  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2392  * transaction (b_cp_transaction) hold their references to b_jcount.
2393  *
2394  * Various places in the kernel want to attach a journal_head to a buffer_head
2395  * _before_ attaching the journal_head to a transaction.  To protect the
2396  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2397  * journal_head's b_jcount refcount by one.  The caller must call
2398  * jbd2_journal_put_journal_head() to undo this.
2399  *
2400  * So the typical usage would be:
2401  *
2402  *      (Attach a journal_head if needed.  Increments b_jcount)
2403  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2404  *      ...
2405  *      (Get another reference for transaction)
2406  *      jbd2_journal_grab_journal_head(bh);
2407  *      jh->b_transaction = xxx;
2408  *      (Put original reference)
2409  *      jbd2_journal_put_journal_head(jh);
2410  */
2411
2412 /*
2413  * Give a buffer_head a journal_head.
2414  *
2415  * May sleep.
2416  */
2417 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2418 {
2419         struct journal_head *jh;
2420         struct journal_head *new_jh = NULL;
2421
2422 repeat:
2423         if (!buffer_jbd(bh))
2424                 new_jh = journal_alloc_journal_head();
2425
2426         jbd_lock_bh_journal_head(bh);
2427         if (buffer_jbd(bh)) {
2428                 jh = bh2jh(bh);
2429         } else {
2430                 J_ASSERT_BH(bh,
2431                         (atomic_read(&bh->b_count) > 0) ||
2432                         (bh->b_page && bh->b_page->mapping));
2433
2434                 if (!new_jh) {
2435                         jbd_unlock_bh_journal_head(bh);
2436                         goto repeat;
2437                 }
2438
2439                 jh = new_jh;
2440                 new_jh = NULL;          /* We consumed it */
2441                 set_buffer_jbd(bh);
2442                 bh->b_private = jh;
2443                 jh->b_bh = bh;
2444                 get_bh(bh);
2445                 BUFFER_TRACE(bh, "added journal_head");
2446         }
2447         jh->b_jcount++;
2448         jbd_unlock_bh_journal_head(bh);
2449         if (new_jh)
2450                 journal_free_journal_head(new_jh);
2451         return bh->b_private;
2452 }
2453
2454 /*
2455  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2456  * having a journal_head, return NULL
2457  */
2458 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2459 {
2460         struct journal_head *jh = NULL;
2461
2462         jbd_lock_bh_journal_head(bh);
2463         if (buffer_jbd(bh)) {
2464                 jh = bh2jh(bh);
2465                 jh->b_jcount++;
2466         }
2467         jbd_unlock_bh_journal_head(bh);
2468         return jh;
2469 }
2470
2471 static void __journal_remove_journal_head(struct buffer_head *bh)
2472 {
2473         struct journal_head *jh = bh2jh(bh);
2474
2475         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2476         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2477         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2478         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2479         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2480         J_ASSERT_BH(bh, buffer_jbd(bh));
2481         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2482         BUFFER_TRACE(bh, "remove journal_head");
2483         if (jh->b_frozen_data) {
2484                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2485                 jbd2_free(jh->b_frozen_data, bh->b_size);
2486         }
2487         if (jh->b_committed_data) {
2488                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2489                 jbd2_free(jh->b_committed_data, bh->b_size);
2490         }
2491         bh->b_private = NULL;
2492         jh->b_bh = NULL;        /* debug, really */
2493         clear_buffer_jbd(bh);
2494         journal_free_journal_head(jh);
2495 }
2496
2497 /*
2498  * Drop a reference on the passed journal_head.  If it fell to zero then
2499  * release the journal_head from the buffer_head.
2500  */
2501 void jbd2_journal_put_journal_head(struct journal_head *jh)
2502 {
2503         struct buffer_head *bh = jh2bh(jh);
2504
2505         jbd_lock_bh_journal_head(bh);
2506         J_ASSERT_JH(jh, jh->b_jcount > 0);
2507         --jh->b_jcount;
2508         if (!jh->b_jcount) {
2509                 __journal_remove_journal_head(bh);
2510                 jbd_unlock_bh_journal_head(bh);
2511                 __brelse(bh);
2512         } else
2513                 jbd_unlock_bh_journal_head(bh);
2514 }
2515
2516 /*
2517  * Initialize jbd inode head
2518  */
2519 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2520 {
2521         jinode->i_transaction = NULL;
2522         jinode->i_next_transaction = NULL;
2523         jinode->i_vfs_inode = inode;
2524         jinode->i_flags = 0;
2525         INIT_LIST_HEAD(&jinode->i_list);
2526 }
2527
2528 /*
2529  * Function to be called before we start removing inode from memory (i.e.,
2530  * clear_inode() is a fine place to be called from). It removes inode from
2531  * transaction's lists.
2532  */
2533 void jbd2_journal_release_jbd_inode(journal_t *journal,
2534                                     struct jbd2_inode *jinode)
2535 {
2536         if (!journal)
2537                 return;
2538 restart:
2539         spin_lock(&journal->j_list_lock);
2540         /* Is commit writing out inode - we have to wait */
2541         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2542                 wait_queue_head_t *wq;
2543                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2544                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2545                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2546                 spin_unlock(&journal->j_list_lock);
2547                 schedule();
2548                 finish_wait(wq, &wait.wait);
2549                 goto restart;
2550         }
2551
2552         if (jinode->i_transaction) {
2553                 list_del(&jinode->i_list);
2554                 jinode->i_transaction = NULL;
2555         }
2556         spin_unlock(&journal->j_list_lock);
2557 }
2558
2559
2560 #ifdef CONFIG_PROC_FS
2561
2562 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2563
2564 static void __init jbd2_create_jbd_stats_proc_entry(void)
2565 {
2566         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2567 }
2568
2569 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2570 {
2571         if (proc_jbd2_stats)
2572                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2573 }
2574
2575 #else
2576
2577 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2578 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2579
2580 #endif
2581
2582 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2583
2584 static int __init jbd2_journal_init_handle_cache(void)
2585 {
2586         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2587         if (jbd2_handle_cache == NULL) {
2588                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2589                 return -ENOMEM;
2590         }
2591         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2592         if (jbd2_inode_cache == NULL) {
2593                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2594                 kmem_cache_destroy(jbd2_handle_cache);
2595                 return -ENOMEM;
2596         }
2597         return 0;
2598 }
2599
2600 static void jbd2_journal_destroy_handle_cache(void)
2601 {
2602         if (jbd2_handle_cache)
2603                 kmem_cache_destroy(jbd2_handle_cache);
2604         if (jbd2_inode_cache)
2605                 kmem_cache_destroy(jbd2_inode_cache);
2606
2607 }
2608
2609 /*
2610  * Module startup and shutdown
2611  */
2612
2613 static int __init journal_init_caches(void)
2614 {
2615         int ret;
2616
2617         ret = jbd2_journal_init_revoke_caches();
2618         if (ret == 0)
2619                 ret = jbd2_journal_init_journal_head_cache();
2620         if (ret == 0)
2621                 ret = jbd2_journal_init_handle_cache();
2622         if (ret == 0)
2623                 ret = jbd2_journal_init_transaction_cache();
2624         return ret;
2625 }
2626
2627 static void jbd2_journal_destroy_caches(void)
2628 {
2629         jbd2_journal_destroy_revoke_caches();
2630         jbd2_journal_destroy_journal_head_cache();
2631         jbd2_journal_destroy_handle_cache();
2632         jbd2_journal_destroy_transaction_cache();
2633         jbd2_journal_destroy_slabs();
2634 }
2635
2636 static int __init journal_init(void)
2637 {
2638         int ret;
2639
2640         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2641
2642         ret = journal_init_caches();
2643         if (ret == 0) {
2644                 jbd2_create_jbd_stats_proc_entry();
2645         } else {
2646                 jbd2_journal_destroy_caches();
2647         }
2648         return ret;
2649 }
2650
2651 static void __exit journal_exit(void)
2652 {
2653 #ifdef CONFIG_JBD2_DEBUG
2654         int n = atomic_read(&nr_journal_heads);
2655         if (n)
2656                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2657 #endif
2658         jbd2_remove_jbd_stats_proc_entry();
2659         jbd2_journal_destroy_caches();
2660 }
2661
2662 MODULE_LICENSE("GPL");
2663 module_init(journal_init);
2664 module_exit(journal_exit);
2665