Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207                 wait_transaction_locked(journal);
208                 return 1;
209         }
210
211         /*
212          * The commit code assumes that it can get enough log space
213          * without forcing a checkpoint.  This is *critical* for
214          * correctness: a checkpoint of a buffer which is also
215          * associated with a committing transaction creates a deadlock,
216          * so commit simply cannot force through checkpoints.
217          *
218          * We must therefore ensure the necessary space in the journal
219          * *before* starting to dirty potentially checkpointed buffers
220          * in the new transaction.
221          */
222         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223                 atomic_sub(total, &t->t_outstanding_credits);
224                 read_unlock(&journal->j_state_lock);
225                 write_lock(&journal->j_state_lock);
226                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227                         __jbd2_log_wait_for_space(journal);
228                 write_unlock(&journal->j_state_lock);
229                 return 1;
230         }
231
232         /* No reservation? We are done... */
233         if (!rsv_blocks)
234                 return 0;
235
236         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237         /* We allow at most half of a transaction to be reserved */
238         if (needed > journal->j_max_transaction_buffers / 2) {
239                 sub_reserved_credits(journal, rsv_blocks);
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 wait_event(journal->j_wait_reserved,
243                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
244                          <= journal->j_max_transaction_buffers / 2);
245                 return 1;
246         }
247         return 0;
248 }
249
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258                              gfp_t gfp_mask)
259 {
260         transaction_t   *transaction, *new_transaction = NULL;
261         int             blocks = handle->h_buffer_credits;
262         int             rsv_blocks = 0;
263         unsigned long ts = jiffies;
264
265         /*
266          * 1/2 of transaction can be reserved so we can practically handle
267          * only 1/2 of maximum transaction size per operation
268          */
269         if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271                        current->comm, blocks,
272                        journal->j_max_transaction_buffers / 2);
273                 return -ENOSPC;
274         }
275
276         if (handle->h_rsv_handle)
277                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279 alloc_transaction:
280         if (!journal->j_running_transaction) {
281                 /*
282                  * If __GFP_FS is not present, then we may be being called from
283                  * inside the fs writeback layer, so we MUST NOT fail.
284                  */
285                 if ((gfp_mask & __GFP_FS) == 0)
286                         gfp_mask |= __GFP_NOFAIL;
287                 new_transaction = kmem_cache_zalloc(transaction_cache,
288                                                     gfp_mask);
289                 if (!new_transaction)
290                         return -ENOMEM;
291         }
292
293         jbd_debug(3, "New handle %p going live.\n", handle);
294
295         /*
296          * We need to hold j_state_lock until t_updates has been incremented,
297          * for proper journal barrier handling
298          */
299 repeat:
300         read_lock(&journal->j_state_lock);
301         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
302         if (is_journal_aborted(journal) ||
303             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
304                 read_unlock(&journal->j_state_lock);
305                 jbd2_journal_free_transaction(new_transaction);
306                 return -EROFS;
307         }
308
309         /*
310          * Wait on the journal's transaction barrier if necessary. Specifically
311          * we allow reserved handles to proceed because otherwise commit could
312          * deadlock on page writeback not being able to complete.
313          */
314         if (!handle->h_reserved && journal->j_barrier_count) {
315                 read_unlock(&journal->j_state_lock);
316                 wait_event(journal->j_wait_transaction_locked,
317                                 journal->j_barrier_count == 0);
318                 goto repeat;
319         }
320
321         if (!journal->j_running_transaction) {
322                 read_unlock(&journal->j_state_lock);
323                 if (!new_transaction)
324                         goto alloc_transaction;
325                 write_lock(&journal->j_state_lock);
326                 if (!journal->j_running_transaction &&
327                     (handle->h_reserved || !journal->j_barrier_count)) {
328                         jbd2_get_transaction(journal, new_transaction);
329                         new_transaction = NULL;
330                 }
331                 write_unlock(&journal->j_state_lock);
332                 goto repeat;
333         }
334
335         transaction = journal->j_running_transaction;
336
337         if (!handle->h_reserved) {
338                 /* We may have dropped j_state_lock - restart in that case */
339                 if (add_transaction_credits(journal, blocks, rsv_blocks))
340                         goto repeat;
341         } else {
342                 /*
343                  * We have handle reserved so we are allowed to join T_LOCKED
344                  * transaction and we don't have to check for transaction size
345                  * and journal space.
346                  */
347                 sub_reserved_credits(journal, blocks);
348                 handle->h_reserved = 0;
349         }
350
351         /* OK, account for the buffers that this operation expects to
352          * use and add the handle to the running transaction. 
353          */
354         update_t_max_wait(transaction, ts);
355         handle->h_transaction = transaction;
356         handle->h_requested_credits = blocks;
357         handle->h_start_jiffies = jiffies;
358         atomic_inc(&transaction->t_updates);
359         atomic_inc(&transaction->t_handle_count);
360         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
361                   handle, blocks,
362                   atomic_read(&transaction->t_outstanding_credits),
363                   jbd2_log_space_left(journal));
364         read_unlock(&journal->j_state_lock);
365         current->journal_info = handle;
366
367         lock_map_acquire(&handle->h_lockdep_map);
368         jbd2_journal_free_transaction(new_transaction);
369         return 0;
370 }
371
372 static struct lock_class_key jbd2_handle_key;
373
374 /* Allocate a new handle.  This should probably be in a slab... */
375 static handle_t *new_handle(int nblocks)
376 {
377         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
378         if (!handle)
379                 return NULL;
380         handle->h_buffer_credits = nblocks;
381         handle->h_ref = 1;
382
383         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
384                                                 &jbd2_handle_key, 0);
385
386         return handle;
387 }
388
389 /**
390  * handle_t *jbd2_journal_start() - Obtain a new handle.
391  * @journal: Journal to start transaction on.
392  * @nblocks: number of block buffer we might modify
393  *
394  * We make sure that the transaction can guarantee at least nblocks of
395  * modified buffers in the log.  We block until the log can guarantee
396  * that much space. Additionally, if rsv_blocks > 0, we also create another
397  * handle with rsv_blocks reserved blocks in the journal. This handle is
398  * is stored in h_rsv_handle. It is not attached to any particular transaction
399  * and thus doesn't block transaction commit. If the caller uses this reserved
400  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
401  * on the parent handle will dispose the reserved one. Reserved handle has to
402  * be converted to a normal handle using jbd2_journal_start_reserved() before
403  * it can be used.
404  *
405  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
406  * on failure.
407  */
408 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
409                               gfp_t gfp_mask, unsigned int type,
410                               unsigned int line_no)
411 {
412         handle_t *handle = journal_current_handle();
413         int err;
414
415         if (!journal)
416                 return ERR_PTR(-EROFS);
417
418         if (handle) {
419                 J_ASSERT(handle->h_transaction->t_journal == journal);
420                 handle->h_ref++;
421                 return handle;
422         }
423
424         handle = new_handle(nblocks);
425         if (!handle)
426                 return ERR_PTR(-ENOMEM);
427         if (rsv_blocks) {
428                 handle_t *rsv_handle;
429
430                 rsv_handle = new_handle(rsv_blocks);
431                 if (!rsv_handle) {
432                         jbd2_free_handle(handle);
433                         return ERR_PTR(-ENOMEM);
434                 }
435                 rsv_handle->h_reserved = 1;
436                 rsv_handle->h_journal = journal;
437                 handle->h_rsv_handle = rsv_handle;
438         }
439
440         err = start_this_handle(journal, handle, gfp_mask);
441         if (err < 0) {
442                 if (handle->h_rsv_handle)
443                         jbd2_free_handle(handle->h_rsv_handle);
444                 jbd2_free_handle(handle);
445                 return ERR_PTR(err);
446         }
447         handle->h_type = type;
448         handle->h_line_no = line_no;
449         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
450                                 handle->h_transaction->t_tid, type,
451                                 line_no, nblocks);
452         return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455
456
457 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
458 {
459         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
460 }
461 EXPORT_SYMBOL(jbd2_journal_start);
462
463 void jbd2_journal_free_reserved(handle_t *handle)
464 {
465         journal_t *journal = handle->h_journal;
466
467         WARN_ON(!handle->h_reserved);
468         sub_reserved_credits(journal, handle->h_buffer_credits);
469         jbd2_free_handle(handle);
470 }
471 EXPORT_SYMBOL(jbd2_journal_free_reserved);
472
473 /**
474  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
475  * @handle: handle to start
476  *
477  * Start handle that has been previously reserved with jbd2_journal_reserve().
478  * This attaches @handle to the running transaction (or creates one if there's
479  * not transaction running). Unlike jbd2_journal_start() this function cannot
480  * block on journal commit, checkpointing, or similar stuff. It can block on
481  * memory allocation or frozen journal though.
482  *
483  * Return 0 on success, non-zero on error - handle is freed in that case.
484  */
485 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
486                                 unsigned int line_no)
487 {
488         journal_t *journal = handle->h_journal;
489         int ret = -EIO;
490
491         if (WARN_ON(!handle->h_reserved)) {
492                 /* Someone passed in normal handle? Just stop it. */
493                 jbd2_journal_stop(handle);
494                 return ret;
495         }
496         /*
497          * Usefulness of mixing of reserved and unreserved handles is
498          * questionable. So far nobody seems to need it so just error out.
499          */
500         if (WARN_ON(current->journal_info)) {
501                 jbd2_journal_free_reserved(handle);
502                 return ret;
503         }
504
505         handle->h_journal = NULL;
506         /*
507          * GFP_NOFS is here because callers are likely from writeback or
508          * similarly constrained call sites
509          */
510         ret = start_this_handle(journal, handle, GFP_NOFS);
511         if (ret < 0) {
512                 jbd2_journal_free_reserved(handle);
513                 return ret;
514         }
515         handle->h_type = type;
516         handle->h_line_no = line_no;
517         return 0;
518 }
519 EXPORT_SYMBOL(jbd2_journal_start_reserved);
520
521 /**
522  * int jbd2_journal_extend() - extend buffer credits.
523  * @handle:  handle to 'extend'
524  * @nblocks: nr blocks to try to extend by.
525  *
526  * Some transactions, such as large extends and truncates, can be done
527  * atomically all at once or in several stages.  The operation requests
528  * a credit for a number of buffer modications in advance, but can
529  * extend its credit if it needs more.
530  *
531  * jbd2_journal_extend tries to give the running handle more buffer credits.
532  * It does not guarantee that allocation - this is a best-effort only.
533  * The calling process MUST be able to deal cleanly with a failure to
534  * extend here.
535  *
536  * Return 0 on success, non-zero on failure.
537  *
538  * return code < 0 implies an error
539  * return code > 0 implies normal transaction-full status.
540  */
541 int jbd2_journal_extend(handle_t *handle, int nblocks)
542 {
543         transaction_t *transaction = handle->h_transaction;
544         journal_t *journal;
545         int result;
546         int wanted;
547
548         if (is_handle_aborted(handle))
549                 return -EROFS;
550         journal = transaction->t_journal;
551
552         result = 1;
553
554         read_lock(&journal->j_state_lock);
555
556         /* Don't extend a locked-down transaction! */
557         if (transaction->t_state != T_RUNNING) {
558                 jbd_debug(3, "denied handle %p %d blocks: "
559                           "transaction not running\n", handle, nblocks);
560                 goto error_out;
561         }
562
563         spin_lock(&transaction->t_handle_lock);
564         wanted = atomic_add_return(nblocks,
565                                    &transaction->t_outstanding_credits);
566
567         if (wanted > journal->j_max_transaction_buffers) {
568                 jbd_debug(3, "denied handle %p %d blocks: "
569                           "transaction too large\n", handle, nblocks);
570                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
571                 goto unlock;
572         }
573
574         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
575             jbd2_log_space_left(journal)) {
576                 jbd_debug(3, "denied handle %p %d blocks: "
577                           "insufficient log space\n", handle, nblocks);
578                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
579                 goto unlock;
580         }
581
582         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
583                                  transaction->t_tid,
584                                  handle->h_type, handle->h_line_no,
585                                  handle->h_buffer_credits,
586                                  nblocks);
587
588         handle->h_buffer_credits += nblocks;
589         handle->h_requested_credits += nblocks;
590         result = 0;
591
592         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
593 unlock:
594         spin_unlock(&transaction->t_handle_lock);
595 error_out:
596         read_unlock(&journal->j_state_lock);
597         return result;
598 }
599
600
601 /**
602  * int jbd2_journal_restart() - restart a handle .
603  * @handle:  handle to restart
604  * @nblocks: nr credits requested
605  *
606  * Restart a handle for a multi-transaction filesystem
607  * operation.
608  *
609  * If the jbd2_journal_extend() call above fails to grant new buffer credits
610  * to a running handle, a call to jbd2_journal_restart will commit the
611  * handle's transaction so far and reattach the handle to a new
612  * transaction capabable of guaranteeing the requested number of
613  * credits. We preserve reserved handle if there's any attached to the
614  * passed in handle.
615  */
616 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
617 {
618         transaction_t *transaction = handle->h_transaction;
619         journal_t *journal;
620         tid_t           tid;
621         int             need_to_start, ret;
622
623         /* If we've had an abort of any type, don't even think about
624          * actually doing the restart! */
625         if (is_handle_aborted(handle))
626                 return 0;
627         journal = transaction->t_journal;
628
629         /*
630          * First unlink the handle from its current transaction, and start the
631          * commit on that.
632          */
633         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
634         J_ASSERT(journal_current_handle() == handle);
635
636         read_lock(&journal->j_state_lock);
637         spin_lock(&transaction->t_handle_lock);
638         atomic_sub(handle->h_buffer_credits,
639                    &transaction->t_outstanding_credits);
640         if (handle->h_rsv_handle) {
641                 sub_reserved_credits(journal,
642                                      handle->h_rsv_handle->h_buffer_credits);
643         }
644         if (atomic_dec_and_test(&transaction->t_updates))
645                 wake_up(&journal->j_wait_updates);
646         tid = transaction->t_tid;
647         spin_unlock(&transaction->t_handle_lock);
648         handle->h_transaction = NULL;
649         current->journal_info = NULL;
650
651         jbd_debug(2, "restarting handle %p\n", handle);
652         need_to_start = !tid_geq(journal->j_commit_request, tid);
653         read_unlock(&journal->j_state_lock);
654         if (need_to_start)
655                 jbd2_log_start_commit(journal, tid);
656
657         lock_map_release(&handle->h_lockdep_map);
658         handle->h_buffer_credits = nblocks;
659         ret = start_this_handle(journal, handle, gfp_mask);
660         return ret;
661 }
662 EXPORT_SYMBOL(jbd2__journal_restart);
663
664
665 int jbd2_journal_restart(handle_t *handle, int nblocks)
666 {
667         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
668 }
669 EXPORT_SYMBOL(jbd2_journal_restart);
670
671 /**
672  * void jbd2_journal_lock_updates () - establish a transaction barrier.
673  * @journal:  Journal to establish a barrier on.
674  *
675  * This locks out any further updates from being started, and blocks
676  * until all existing updates have completed, returning only once the
677  * journal is in a quiescent state with no updates running.
678  *
679  * The journal lock should not be held on entry.
680  */
681 void jbd2_journal_lock_updates(journal_t *journal)
682 {
683         DEFINE_WAIT(wait);
684
685         write_lock(&journal->j_state_lock);
686         ++journal->j_barrier_count;
687
688         /* Wait until there are no reserved handles */
689         if (atomic_read(&journal->j_reserved_credits)) {
690                 write_unlock(&journal->j_state_lock);
691                 wait_event(journal->j_wait_reserved,
692                            atomic_read(&journal->j_reserved_credits) == 0);
693                 write_lock(&journal->j_state_lock);
694         }
695
696         /* Wait until there are no running updates */
697         while (1) {
698                 transaction_t *transaction = journal->j_running_transaction;
699
700                 if (!transaction)
701                         break;
702
703                 spin_lock(&transaction->t_handle_lock);
704                 prepare_to_wait(&journal->j_wait_updates, &wait,
705                                 TASK_UNINTERRUPTIBLE);
706                 if (!atomic_read(&transaction->t_updates)) {
707                         spin_unlock(&transaction->t_handle_lock);
708                         finish_wait(&journal->j_wait_updates, &wait);
709                         break;
710                 }
711                 spin_unlock(&transaction->t_handle_lock);
712                 write_unlock(&journal->j_state_lock);
713                 schedule();
714                 finish_wait(&journal->j_wait_updates, &wait);
715                 write_lock(&journal->j_state_lock);
716         }
717         write_unlock(&journal->j_state_lock);
718
719         /*
720          * We have now established a barrier against other normal updates, but
721          * we also need to barrier against other jbd2_journal_lock_updates() calls
722          * to make sure that we serialise special journal-locked operations
723          * too.
724          */
725         mutex_lock(&journal->j_barrier);
726 }
727
728 /**
729  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
730  * @journal:  Journal to release the barrier on.
731  *
732  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
733  *
734  * Should be called without the journal lock held.
735  */
736 void jbd2_journal_unlock_updates (journal_t *journal)
737 {
738         J_ASSERT(journal->j_barrier_count != 0);
739
740         mutex_unlock(&journal->j_barrier);
741         write_lock(&journal->j_state_lock);
742         --journal->j_barrier_count;
743         write_unlock(&journal->j_state_lock);
744         wake_up(&journal->j_wait_transaction_locked);
745 }
746
747 static void warn_dirty_buffer(struct buffer_head *bh)
748 {
749         char b[BDEVNAME_SIZE];
750
751         printk(KERN_WARNING
752                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
753                "There's a risk of filesystem corruption in case of system "
754                "crash.\n",
755                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
756 }
757
758 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
759 static void jbd2_freeze_jh_data(struct journal_head *jh)
760 {
761         struct page *page;
762         int offset;
763         char *source;
764         struct buffer_head *bh = jh2bh(jh);
765
766         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
767         page = bh->b_page;
768         offset = offset_in_page(bh->b_data);
769         source = kmap_atomic(page);
770         /* Fire data frozen trigger just before we copy the data */
771         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
772         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
773         kunmap_atomic(source);
774
775         /*
776          * Now that the frozen data is saved off, we need to store any matching
777          * triggers.
778          */
779         jh->b_frozen_triggers = jh->b_triggers;
780 }
781
782 /*
783  * If the buffer is already part of the current transaction, then there
784  * is nothing we need to do.  If it is already part of a prior
785  * transaction which we are still committing to disk, then we need to
786  * make sure that we do not overwrite the old copy: we do copy-out to
787  * preserve the copy going to disk.  We also account the buffer against
788  * the handle's metadata buffer credits (unless the buffer is already
789  * part of the transaction, that is).
790  *
791  */
792 static int
793 do_get_write_access(handle_t *handle, struct journal_head *jh,
794                         int force_copy)
795 {
796         struct buffer_head *bh;
797         transaction_t *transaction = handle->h_transaction;
798         journal_t *journal;
799         int error;
800         char *frozen_buffer = NULL;
801         unsigned long start_lock, time_lock;
802
803         if (is_handle_aborted(handle))
804                 return -EROFS;
805         journal = transaction->t_journal;
806
807         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
808
809         JBUFFER_TRACE(jh, "entry");
810 repeat:
811         bh = jh2bh(jh);
812
813         /* @@@ Need to check for errors here at some point. */
814
815         start_lock = jiffies;
816         lock_buffer(bh);
817         jbd_lock_bh_state(bh);
818
819         /* If it takes too long to lock the buffer, trace it */
820         time_lock = jbd2_time_diff(start_lock, jiffies);
821         if (time_lock > HZ/10)
822                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
823                         jiffies_to_msecs(time_lock));
824
825         /* We now hold the buffer lock so it is safe to query the buffer
826          * state.  Is the buffer dirty?
827          *
828          * If so, there are two possibilities.  The buffer may be
829          * non-journaled, and undergoing a quite legitimate writeback.
830          * Otherwise, it is journaled, and we don't expect dirty buffers
831          * in that state (the buffers should be marked JBD_Dirty
832          * instead.)  So either the IO is being done under our own
833          * control and this is a bug, or it's a third party IO such as
834          * dump(8) (which may leave the buffer scheduled for read ---
835          * ie. locked but not dirty) or tune2fs (which may actually have
836          * the buffer dirtied, ugh.)  */
837
838         if (buffer_dirty(bh)) {
839                 /*
840                  * First question: is this buffer already part of the current
841                  * transaction or the existing committing transaction?
842                  */
843                 if (jh->b_transaction) {
844                         J_ASSERT_JH(jh,
845                                 jh->b_transaction == transaction ||
846                                 jh->b_transaction ==
847                                         journal->j_committing_transaction);
848                         if (jh->b_next_transaction)
849                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
850                                                         transaction);
851                         warn_dirty_buffer(bh);
852                 }
853                 /*
854                  * In any case we need to clean the dirty flag and we must
855                  * do it under the buffer lock to be sure we don't race
856                  * with running write-out.
857                  */
858                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
859                 clear_buffer_dirty(bh);
860                 set_buffer_jbddirty(bh);
861         }
862
863         unlock_buffer(bh);
864
865         error = -EROFS;
866         if (is_handle_aborted(handle)) {
867                 jbd_unlock_bh_state(bh);
868                 goto out;
869         }
870         error = 0;
871
872         /*
873          * The buffer is already part of this transaction if b_transaction or
874          * b_next_transaction points to it
875          */
876         if (jh->b_transaction == transaction ||
877             jh->b_next_transaction == transaction)
878                 goto done;
879
880         /*
881          * this is the first time this transaction is touching this buffer,
882          * reset the modified flag
883          */
884        jh->b_modified = 0;
885
886         /*
887          * If the buffer is not journaled right now, we need to make sure it
888          * doesn't get written to disk before the caller actually commits the
889          * new data
890          */
891         if (!jh->b_transaction) {
892                 JBUFFER_TRACE(jh, "no transaction");
893                 J_ASSERT_JH(jh, !jh->b_next_transaction);
894                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
895                 /*
896                  * Make sure all stores to jh (b_modified, b_frozen_data) are
897                  * visible before attaching it to the running transaction.
898                  * Paired with barrier in jbd2_write_access_granted()
899                  */
900                 smp_wmb();
901                 spin_lock(&journal->j_list_lock);
902                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
903                 spin_unlock(&journal->j_list_lock);
904                 goto done;
905         }
906         /*
907          * If there is already a copy-out version of this buffer, then we don't
908          * need to make another one
909          */
910         if (jh->b_frozen_data) {
911                 JBUFFER_TRACE(jh, "has frozen data");
912                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
913                 goto attach_next;
914         }
915
916         JBUFFER_TRACE(jh, "owned by older transaction");
917         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
918         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
919
920         /*
921          * There is one case we have to be very careful about.  If the
922          * committing transaction is currently writing this buffer out to disk
923          * and has NOT made a copy-out, then we cannot modify the buffer
924          * contents at all right now.  The essence of copy-out is that it is
925          * the extra copy, not the primary copy, which gets journaled.  If the
926          * primary copy is already going to disk then we cannot do copy-out
927          * here.
928          */
929         if (buffer_shadow(bh)) {
930                 JBUFFER_TRACE(jh, "on shadow: sleep");
931                 jbd_unlock_bh_state(bh);
932                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
933                 goto repeat;
934         }
935
936         /*
937          * Only do the copy if the currently-owning transaction still needs it.
938          * If buffer isn't on BJ_Metadata list, the committing transaction is
939          * past that stage (here we use the fact that BH_Shadow is set under
940          * bh_state lock together with refiling to BJ_Shadow list and at this
941          * point we know the buffer doesn't have BH_Shadow set).
942          *
943          * Subtle point, though: if this is a get_undo_access, then we will be
944          * relying on the frozen_data to contain the new value of the
945          * committed_data record after the transaction, so we HAVE to force the
946          * frozen_data copy in that case.
947          */
948         if (jh->b_jlist == BJ_Metadata || force_copy) {
949                 JBUFFER_TRACE(jh, "generate frozen data");
950                 if (!frozen_buffer) {
951                         JBUFFER_TRACE(jh, "allocate memory for buffer");
952                         jbd_unlock_bh_state(bh);
953                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
954                         if (!frozen_buffer) {
955                                 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
956                                        __func__);
957                                 JBUFFER_TRACE(jh, "oom!");
958                                 error = -ENOMEM;
959                                 goto out;
960                         }
961                         goto repeat;
962                 }
963                 jh->b_frozen_data = frozen_buffer;
964                 frozen_buffer = NULL;
965                 jbd2_freeze_jh_data(jh);
966         }
967 attach_next:
968         /*
969          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
970          * before attaching it to the running transaction. Paired with barrier
971          * in jbd2_write_access_granted()
972          */
973         smp_wmb();
974         jh->b_next_transaction = transaction;
975
976 done:
977         jbd_unlock_bh_state(bh);
978
979         /*
980          * If we are about to journal a buffer, then any revoke pending on it is
981          * no longer valid
982          */
983         jbd2_journal_cancel_revoke(handle, jh);
984
985 out:
986         if (unlikely(frozen_buffer))    /* It's usually NULL */
987                 jbd2_free(frozen_buffer, bh->b_size);
988
989         JBUFFER_TRACE(jh, "exit");
990         return error;
991 }
992
993 /* Fast check whether buffer is already attached to the required transaction */
994 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh)
995 {
996         struct journal_head *jh;
997         bool ret = false;
998
999         /* Dirty buffers require special handling... */
1000         if (buffer_dirty(bh))
1001                 return false;
1002
1003         /*
1004          * RCU protects us from dereferencing freed pages. So the checks we do
1005          * are guaranteed not to oops. However the jh slab object can get freed
1006          * & reallocated while we work with it. So we have to be careful. When
1007          * we see jh attached to the running transaction, we know it must stay
1008          * so until the transaction is committed. Thus jh won't be freed and
1009          * will be attached to the same bh while we run.  However it can
1010          * happen jh gets freed, reallocated, and attached to the transaction
1011          * just after we get pointer to it from bh. So we have to be careful
1012          * and recheck jh still belongs to our bh before we return success.
1013          */
1014         rcu_read_lock();
1015         if (!buffer_jbd(bh))
1016                 goto out;
1017         /* This should be bh2jh() but that doesn't work with inline functions */
1018         jh = READ_ONCE(bh->b_private);
1019         if (!jh)
1020                 goto out;
1021         if (jh->b_transaction != handle->h_transaction &&
1022             jh->b_next_transaction != handle->h_transaction)
1023                 goto out;
1024         /*
1025          * There are two reasons for the barrier here:
1026          * 1) Make sure to fetch b_bh after we did previous checks so that we
1027          * detect when jh went through free, realloc, attach to transaction
1028          * while we were checking. Paired with implicit barrier in that path.
1029          * 2) So that access to bh done after jbd2_write_access_granted()
1030          * doesn't get reordered and see inconsistent state of concurrent
1031          * do_get_write_access().
1032          */
1033         smp_mb();
1034         if (unlikely(jh->b_bh != bh))
1035                 goto out;
1036         ret = true;
1037 out:
1038         rcu_read_unlock();
1039         return ret;
1040 }
1041
1042 /**
1043  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1044  * @handle: transaction to add buffer modifications to
1045  * @bh:     bh to be used for metadata writes
1046  *
1047  * Returns an error code or 0 on success.
1048  *
1049  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1050  * because we're write()ing a buffer which is also part of a shared mapping.
1051  */
1052
1053 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1054 {
1055         struct journal_head *jh;
1056         int rc;
1057
1058         if (jbd2_write_access_granted(handle, bh))
1059                 return 0;
1060
1061         jh = jbd2_journal_add_journal_head(bh);
1062         /* We do not want to get caught playing with fields which the
1063          * log thread also manipulates.  Make sure that the buffer
1064          * completes any outstanding IO before proceeding. */
1065         rc = do_get_write_access(handle, jh, 0);
1066         jbd2_journal_put_journal_head(jh);
1067         return rc;
1068 }
1069
1070
1071 /*
1072  * When the user wants to journal a newly created buffer_head
1073  * (ie. getblk() returned a new buffer and we are going to populate it
1074  * manually rather than reading off disk), then we need to keep the
1075  * buffer_head locked until it has been completely filled with new
1076  * data.  In this case, we should be able to make the assertion that
1077  * the bh is not already part of an existing transaction.
1078  *
1079  * The buffer should already be locked by the caller by this point.
1080  * There is no lock ranking violation: it was a newly created,
1081  * unlocked buffer beforehand. */
1082
1083 /**
1084  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1085  * @handle: transaction to new buffer to
1086  * @bh: new buffer.
1087  *
1088  * Call this if you create a new bh.
1089  */
1090 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1091 {
1092         transaction_t *transaction = handle->h_transaction;
1093         journal_t *journal;
1094         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1095         int err;
1096
1097         jbd_debug(5, "journal_head %p\n", jh);
1098         err = -EROFS;
1099         if (is_handle_aborted(handle))
1100                 goto out;
1101         journal = transaction->t_journal;
1102         err = 0;
1103
1104         JBUFFER_TRACE(jh, "entry");
1105         /*
1106          * The buffer may already belong to this transaction due to pre-zeroing
1107          * in the filesystem's new_block code.  It may also be on the previous,
1108          * committing transaction's lists, but it HAS to be in Forget state in
1109          * that case: the transaction must have deleted the buffer for it to be
1110          * reused here.
1111          */
1112         jbd_lock_bh_state(bh);
1113         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1114                 jh->b_transaction == NULL ||
1115                 (jh->b_transaction == journal->j_committing_transaction &&
1116                           jh->b_jlist == BJ_Forget)));
1117
1118         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1119         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1120
1121         if (jh->b_transaction == NULL) {
1122                 /*
1123                  * Previous jbd2_journal_forget() could have left the buffer
1124                  * with jbddirty bit set because it was being committed. When
1125                  * the commit finished, we've filed the buffer for
1126                  * checkpointing and marked it dirty. Now we are reallocating
1127                  * the buffer so the transaction freeing it must have
1128                  * committed and so it's safe to clear the dirty bit.
1129                  */
1130                 clear_buffer_dirty(jh2bh(jh));
1131                 /* first access by this transaction */
1132                 jh->b_modified = 0;
1133
1134                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1135                 spin_lock(&journal->j_list_lock);
1136                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1137         } else if (jh->b_transaction == journal->j_committing_transaction) {
1138                 /* first access by this transaction */
1139                 jh->b_modified = 0;
1140
1141                 JBUFFER_TRACE(jh, "set next transaction");
1142                 spin_lock(&journal->j_list_lock);
1143                 jh->b_next_transaction = transaction;
1144         }
1145         spin_unlock(&journal->j_list_lock);
1146         jbd_unlock_bh_state(bh);
1147
1148         /*
1149          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1150          * blocks which contain freed but then revoked metadata.  We need
1151          * to cancel the revoke in case we end up freeing it yet again
1152          * and the reallocating as data - this would cause a second revoke,
1153          * which hits an assertion error.
1154          */
1155         JBUFFER_TRACE(jh, "cancelling revoke");
1156         jbd2_journal_cancel_revoke(handle, jh);
1157 out:
1158         jbd2_journal_put_journal_head(jh);
1159         return err;
1160 }
1161
1162 /**
1163  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1164  *     non-rewindable consequences
1165  * @handle: transaction
1166  * @bh: buffer to undo
1167  *
1168  * Sometimes there is a need to distinguish between metadata which has
1169  * been committed to disk and that which has not.  The ext3fs code uses
1170  * this for freeing and allocating space, we have to make sure that we
1171  * do not reuse freed space until the deallocation has been committed,
1172  * since if we overwrote that space we would make the delete
1173  * un-rewindable in case of a crash.
1174  *
1175  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1176  * buffer for parts of non-rewindable operations such as delete
1177  * operations on the bitmaps.  The journaling code must keep a copy of
1178  * the buffer's contents prior to the undo_access call until such time
1179  * as we know that the buffer has definitely been committed to disk.
1180  *
1181  * We never need to know which transaction the committed data is part
1182  * of, buffers touched here are guaranteed to be dirtied later and so
1183  * will be committed to a new transaction in due course, at which point
1184  * we can discard the old committed data pointer.
1185  *
1186  * Returns error number or 0 on success.
1187  */
1188 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1189 {
1190         int err;
1191         struct journal_head *jh;
1192         char *committed_data = NULL;
1193
1194         JBUFFER_TRACE(jh, "entry");
1195         if (jbd2_write_access_granted(handle, bh))
1196                 return 0;
1197
1198         jh = jbd2_journal_add_journal_head(bh);
1199         /*
1200          * Do this first --- it can drop the journal lock, so we want to
1201          * make sure that obtaining the committed_data is done
1202          * atomically wrt. completion of any outstanding commits.
1203          */
1204         err = do_get_write_access(handle, jh, 1);
1205         if (err)
1206                 goto out;
1207
1208 repeat:
1209         if (!jh->b_committed_data) {
1210                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1211                 if (!committed_data) {
1212                         printk(KERN_ERR "%s: No memory for committed data\n",
1213                                 __func__);
1214                         err = -ENOMEM;
1215                         goto out;
1216                 }
1217         }
1218
1219         jbd_lock_bh_state(bh);
1220         if (!jh->b_committed_data) {
1221                 /* Copy out the current buffer contents into the
1222                  * preserved, committed copy. */
1223                 JBUFFER_TRACE(jh, "generate b_committed data");
1224                 if (!committed_data) {
1225                         jbd_unlock_bh_state(bh);
1226                         goto repeat;
1227                 }
1228
1229                 jh->b_committed_data = committed_data;
1230                 committed_data = NULL;
1231                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1232         }
1233         jbd_unlock_bh_state(bh);
1234 out:
1235         jbd2_journal_put_journal_head(jh);
1236         if (unlikely(committed_data))
1237                 jbd2_free(committed_data, bh->b_size);
1238         return err;
1239 }
1240
1241 /**
1242  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1243  * @bh: buffer to trigger on
1244  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1245  *
1246  * Set any triggers on this journal_head.  This is always safe, because
1247  * triggers for a committing buffer will be saved off, and triggers for
1248  * a running transaction will match the buffer in that transaction.
1249  *
1250  * Call with NULL to clear the triggers.
1251  */
1252 void jbd2_journal_set_triggers(struct buffer_head *bh,
1253                                struct jbd2_buffer_trigger_type *type)
1254 {
1255         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1256
1257         if (WARN_ON(!jh))
1258                 return;
1259         jh->b_triggers = type;
1260         jbd2_journal_put_journal_head(jh);
1261 }
1262
1263 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1264                                 struct jbd2_buffer_trigger_type *triggers)
1265 {
1266         struct buffer_head *bh = jh2bh(jh);
1267
1268         if (!triggers || !triggers->t_frozen)
1269                 return;
1270
1271         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1272 }
1273
1274 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1275                                struct jbd2_buffer_trigger_type *triggers)
1276 {
1277         if (!triggers || !triggers->t_abort)
1278                 return;
1279
1280         triggers->t_abort(triggers, jh2bh(jh));
1281 }
1282
1283 /**
1284  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1285  * @handle: transaction to add buffer to.
1286  * @bh: buffer to mark
1287  *
1288  * mark dirty metadata which needs to be journaled as part of the current
1289  * transaction.
1290  *
1291  * The buffer must have previously had jbd2_journal_get_write_access()
1292  * called so that it has a valid journal_head attached to the buffer
1293  * head.
1294  *
1295  * The buffer is placed on the transaction's metadata list and is marked
1296  * as belonging to the transaction.
1297  *
1298  * Returns error number or 0 on success.
1299  *
1300  * Special care needs to be taken if the buffer already belongs to the
1301  * current committing transaction (in which case we should have frozen
1302  * data present for that commit).  In that case, we don't relink the
1303  * buffer: that only gets done when the old transaction finally
1304  * completes its commit.
1305  */
1306 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1307 {
1308         transaction_t *transaction = handle->h_transaction;
1309         journal_t *journal;
1310         struct journal_head *jh;
1311         int ret = 0;
1312
1313         if (is_handle_aborted(handle))
1314                 return -EROFS;
1315         if (!buffer_jbd(bh)) {
1316                 ret = -EUCLEAN;
1317                 goto out;
1318         }
1319         /*
1320          * We don't grab jh reference here since the buffer must be part
1321          * of the running transaction.
1322          */
1323         jh = bh2jh(bh);
1324         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1325                         jh->b_next_transaction == transaction);
1326         if (jh->b_modified == 1) {
1327                 /*
1328                  * If it's in our transaction it must be in BJ_Metadata list.
1329                  * The assertion is unreliable since we may see jh in
1330                  * inconsistent state unless we grab bh_state lock. But this
1331                  * is crutial to catch bugs so let's do a reliable check until
1332                  * the lockless handling is fully proven.
1333                  */
1334                 if (jh->b_transaction == transaction &&
1335                     jh->b_jlist != BJ_Metadata) {
1336                         jbd_lock_bh_state(bh);
1337                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1338                                         jh->b_jlist == BJ_Metadata);
1339                         jbd_unlock_bh_state(bh);
1340                 }
1341                 goto out;
1342         }
1343
1344         journal = transaction->t_journal;
1345         jbd_debug(5, "journal_head %p\n", jh);
1346         JBUFFER_TRACE(jh, "entry");
1347
1348         jbd_lock_bh_state(bh);
1349
1350         if (jh->b_modified == 0) {
1351                 /*
1352                  * This buffer's got modified and becoming part
1353                  * of the transaction. This needs to be done
1354                  * once a transaction -bzzz
1355                  */
1356                 jh->b_modified = 1;
1357                 if (handle->h_buffer_credits <= 0) {
1358                         ret = -ENOSPC;
1359                         goto out_unlock_bh;
1360                 }
1361                 handle->h_buffer_credits--;
1362         }
1363
1364         /*
1365          * fastpath, to avoid expensive locking.  If this buffer is already
1366          * on the running transaction's metadata list there is nothing to do.
1367          * Nobody can take it off again because there is a handle open.
1368          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1369          * result in this test being false, so we go in and take the locks.
1370          */
1371         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1372                 JBUFFER_TRACE(jh, "fastpath");
1373                 if (unlikely(jh->b_transaction !=
1374                              journal->j_running_transaction)) {
1375                         printk(KERN_ERR "JBD2: %s: "
1376                                "jh->b_transaction (%llu, %p, %u) != "
1377                                "journal->j_running_transaction (%p, %u)\n",
1378                                journal->j_devname,
1379                                (unsigned long long) bh->b_blocknr,
1380                                jh->b_transaction,
1381                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1382                                journal->j_running_transaction,
1383                                journal->j_running_transaction ?
1384                                journal->j_running_transaction->t_tid : 0);
1385                         ret = -EINVAL;
1386                 }
1387                 goto out_unlock_bh;
1388         }
1389
1390         set_buffer_jbddirty(bh);
1391
1392         /*
1393          * Metadata already on the current transaction list doesn't
1394          * need to be filed.  Metadata on another transaction's list must
1395          * be committing, and will be refiled once the commit completes:
1396          * leave it alone for now.
1397          */
1398         if (jh->b_transaction != transaction) {
1399                 JBUFFER_TRACE(jh, "already on other transaction");
1400                 if (unlikely(((jh->b_transaction !=
1401                                journal->j_committing_transaction)) ||
1402                              (jh->b_next_transaction != transaction))) {
1403                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1404                                "bad jh for block %llu: "
1405                                "transaction (%p, %u), "
1406                                "jh->b_transaction (%p, %u), "
1407                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1408                                journal->j_devname,
1409                                (unsigned long long) bh->b_blocknr,
1410                                transaction, transaction->t_tid,
1411                                jh->b_transaction,
1412                                jh->b_transaction ?
1413                                jh->b_transaction->t_tid : 0,
1414                                jh->b_next_transaction,
1415                                jh->b_next_transaction ?
1416                                jh->b_next_transaction->t_tid : 0,
1417                                jh->b_jlist);
1418                         WARN_ON(1);
1419                         ret = -EINVAL;
1420                 }
1421                 /* And this case is illegal: we can't reuse another
1422                  * transaction's data buffer, ever. */
1423                 goto out_unlock_bh;
1424         }
1425
1426         /* That test should have eliminated the following case: */
1427         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1428
1429         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1430         spin_lock(&journal->j_list_lock);
1431         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1432         spin_unlock(&journal->j_list_lock);
1433 out_unlock_bh:
1434         jbd_unlock_bh_state(bh);
1435 out:
1436         JBUFFER_TRACE(jh, "exit");
1437         return ret;
1438 }
1439
1440 /**
1441  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1442  * @handle: transaction handle
1443  * @bh:     bh to 'forget'
1444  *
1445  * We can only do the bforget if there are no commits pending against the
1446  * buffer.  If the buffer is dirty in the current running transaction we
1447  * can safely unlink it.
1448  *
1449  * bh may not be a journalled buffer at all - it may be a non-JBD
1450  * buffer which came off the hashtable.  Check for this.
1451  *
1452  * Decrements bh->b_count by one.
1453  *
1454  * Allow this call even if the handle has aborted --- it may be part of
1455  * the caller's cleanup after an abort.
1456  */
1457 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1458 {
1459         transaction_t *transaction = handle->h_transaction;
1460         journal_t *journal;
1461         struct journal_head *jh;
1462         int drop_reserve = 0;
1463         int err = 0;
1464         int was_modified = 0;
1465
1466         if (is_handle_aborted(handle))
1467                 return -EROFS;
1468         journal = transaction->t_journal;
1469
1470         BUFFER_TRACE(bh, "entry");
1471
1472         jbd_lock_bh_state(bh);
1473
1474         if (!buffer_jbd(bh))
1475                 goto not_jbd;
1476         jh = bh2jh(bh);
1477
1478         /* Critical error: attempting to delete a bitmap buffer, maybe?
1479          * Don't do any jbd operations, and return an error. */
1480         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1481                          "inconsistent data on disk")) {
1482                 err = -EIO;
1483                 goto not_jbd;
1484         }
1485
1486         /* keep track of whether or not this transaction modified us */
1487         was_modified = jh->b_modified;
1488
1489         /*
1490          * The buffer's going from the transaction, we must drop
1491          * all references -bzzz
1492          */
1493         jh->b_modified = 0;
1494
1495         if (jh->b_transaction == transaction) {
1496                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1497
1498                 /* If we are forgetting a buffer which is already part
1499                  * of this transaction, then we can just drop it from
1500                  * the transaction immediately. */
1501                 clear_buffer_dirty(bh);
1502                 clear_buffer_jbddirty(bh);
1503
1504                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1505
1506                 /*
1507                  * we only want to drop a reference if this transaction
1508                  * modified the buffer
1509                  */
1510                 if (was_modified)
1511                         drop_reserve = 1;
1512
1513                 /*
1514                  * We are no longer going to journal this buffer.
1515                  * However, the commit of this transaction is still
1516                  * important to the buffer: the delete that we are now
1517                  * processing might obsolete an old log entry, so by
1518                  * committing, we can satisfy the buffer's checkpoint.
1519                  *
1520                  * So, if we have a checkpoint on the buffer, we should
1521                  * now refile the buffer on our BJ_Forget list so that
1522                  * we know to remove the checkpoint after we commit.
1523                  */
1524
1525                 spin_lock(&journal->j_list_lock);
1526                 if (jh->b_cp_transaction) {
1527                         __jbd2_journal_temp_unlink_buffer(jh);
1528                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1529                 } else {
1530                         __jbd2_journal_unfile_buffer(jh);
1531                         if (!buffer_jbd(bh)) {
1532                                 spin_unlock(&journal->j_list_lock);
1533                                 jbd_unlock_bh_state(bh);
1534                                 __bforget(bh);
1535                                 goto drop;
1536                         }
1537                 }
1538                 spin_unlock(&journal->j_list_lock);
1539         } else if (jh->b_transaction) {
1540                 J_ASSERT_JH(jh, (jh->b_transaction ==
1541                                  journal->j_committing_transaction));
1542                 /* However, if the buffer is still owned by a prior
1543                  * (committing) transaction, we can't drop it yet... */
1544                 JBUFFER_TRACE(jh, "belongs to older transaction");
1545                 /* ... but we CAN drop it from the new transaction if we
1546                  * have also modified it since the original commit. */
1547
1548                 if (jh->b_next_transaction) {
1549                         J_ASSERT(jh->b_next_transaction == transaction);
1550                         spin_lock(&journal->j_list_lock);
1551                         jh->b_next_transaction = NULL;
1552                         spin_unlock(&journal->j_list_lock);
1553
1554                         /*
1555                          * only drop a reference if this transaction modified
1556                          * the buffer
1557                          */
1558                         if (was_modified)
1559                                 drop_reserve = 1;
1560                 }
1561         }
1562
1563 not_jbd:
1564         jbd_unlock_bh_state(bh);
1565         __brelse(bh);
1566 drop:
1567         if (drop_reserve) {
1568                 /* no need to reserve log space for this block -bzzz */
1569                 handle->h_buffer_credits++;
1570         }
1571         return err;
1572 }
1573
1574 /**
1575  * int jbd2_journal_stop() - complete a transaction
1576  * @handle: tranaction to complete.
1577  *
1578  * All done for a particular handle.
1579  *
1580  * There is not much action needed here.  We just return any remaining
1581  * buffer credits to the transaction and remove the handle.  The only
1582  * complication is that we need to start a commit operation if the
1583  * filesystem is marked for synchronous update.
1584  *
1585  * jbd2_journal_stop itself will not usually return an error, but it may
1586  * do so in unusual circumstances.  In particular, expect it to
1587  * return -EIO if a jbd2_journal_abort has been executed since the
1588  * transaction began.
1589  */
1590 int jbd2_journal_stop(handle_t *handle)
1591 {
1592         transaction_t *transaction = handle->h_transaction;
1593         journal_t *journal;
1594         int err = 0, wait_for_commit = 0;
1595         tid_t tid;
1596         pid_t pid;
1597
1598         if (!transaction) {
1599                 /*
1600                  * Handle is already detached from the transaction so
1601                  * there is nothing to do other than decrease a refcount,
1602                  * or free the handle if refcount drops to zero
1603                  */
1604                 if (--handle->h_ref > 0) {
1605                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1606                                                          handle->h_ref);
1607                         return err;
1608                 } else {
1609                         if (handle->h_rsv_handle)
1610                                 jbd2_free_handle(handle->h_rsv_handle);
1611                         goto free_and_exit;
1612                 }
1613         }
1614         journal = transaction->t_journal;
1615
1616         J_ASSERT(journal_current_handle() == handle);
1617
1618         if (is_handle_aborted(handle))
1619                 err = -EIO;
1620         else
1621                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1622
1623         if (--handle->h_ref > 0) {
1624                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1625                           handle->h_ref);
1626                 return err;
1627         }
1628
1629         jbd_debug(4, "Handle %p going down\n", handle);
1630         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1631                                 transaction->t_tid,
1632                                 handle->h_type, handle->h_line_no,
1633                                 jiffies - handle->h_start_jiffies,
1634                                 handle->h_sync, handle->h_requested_credits,
1635                                 (handle->h_requested_credits -
1636                                  handle->h_buffer_credits));
1637
1638         /*
1639          * Implement synchronous transaction batching.  If the handle
1640          * was synchronous, don't force a commit immediately.  Let's
1641          * yield and let another thread piggyback onto this
1642          * transaction.  Keep doing that while new threads continue to
1643          * arrive.  It doesn't cost much - we're about to run a commit
1644          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1645          * operations by 30x or more...
1646          *
1647          * We try and optimize the sleep time against what the
1648          * underlying disk can do, instead of having a static sleep
1649          * time.  This is useful for the case where our storage is so
1650          * fast that it is more optimal to go ahead and force a flush
1651          * and wait for the transaction to be committed than it is to
1652          * wait for an arbitrary amount of time for new writers to
1653          * join the transaction.  We achieve this by measuring how
1654          * long it takes to commit a transaction, and compare it with
1655          * how long this transaction has been running, and if run time
1656          * < commit time then we sleep for the delta and commit.  This
1657          * greatly helps super fast disks that would see slowdowns as
1658          * more threads started doing fsyncs.
1659          *
1660          * But don't do this if this process was the most recent one
1661          * to perform a synchronous write.  We do this to detect the
1662          * case where a single process is doing a stream of sync
1663          * writes.  No point in waiting for joiners in that case.
1664          *
1665          * Setting max_batch_time to 0 disables this completely.
1666          */
1667         pid = current->pid;
1668         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1669             journal->j_max_batch_time) {
1670                 u64 commit_time, trans_time;
1671
1672                 journal->j_last_sync_writer = pid;
1673
1674                 read_lock(&journal->j_state_lock);
1675                 commit_time = journal->j_average_commit_time;
1676                 read_unlock(&journal->j_state_lock);
1677
1678                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1679                                                    transaction->t_start_time));
1680
1681                 commit_time = max_t(u64, commit_time,
1682                                     1000*journal->j_min_batch_time);
1683                 commit_time = min_t(u64, commit_time,
1684                                     1000*journal->j_max_batch_time);
1685
1686                 if (trans_time < commit_time) {
1687                         ktime_t expires = ktime_add_ns(ktime_get(),
1688                                                        commit_time);
1689                         set_current_state(TASK_UNINTERRUPTIBLE);
1690                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1691                 }
1692         }
1693
1694         if (handle->h_sync)
1695                 transaction->t_synchronous_commit = 1;
1696         current->journal_info = NULL;
1697         atomic_sub(handle->h_buffer_credits,
1698                    &transaction->t_outstanding_credits);
1699
1700         /*
1701          * If the handle is marked SYNC, we need to set another commit
1702          * going!  We also want to force a commit if the current
1703          * transaction is occupying too much of the log, or if the
1704          * transaction is too old now.
1705          */
1706         if (handle->h_sync ||
1707             (atomic_read(&transaction->t_outstanding_credits) >
1708              journal->j_max_transaction_buffers) ||
1709             time_after_eq(jiffies, transaction->t_expires)) {
1710                 /* Do this even for aborted journals: an abort still
1711                  * completes the commit thread, it just doesn't write
1712                  * anything to disk. */
1713
1714                 jbd_debug(2, "transaction too old, requesting commit for "
1715                                         "handle %p\n", handle);
1716                 /* This is non-blocking */
1717                 jbd2_log_start_commit(journal, transaction->t_tid);
1718
1719                 /*
1720                  * Special case: JBD2_SYNC synchronous updates require us
1721                  * to wait for the commit to complete.
1722                  */
1723                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1724                         wait_for_commit = 1;
1725         }
1726
1727         /*
1728          * Once we drop t_updates, if it goes to zero the transaction
1729          * could start committing on us and eventually disappear.  So
1730          * once we do this, we must not dereference transaction
1731          * pointer again.
1732          */
1733         tid = transaction->t_tid;
1734         if (atomic_dec_and_test(&transaction->t_updates)) {
1735                 wake_up(&journal->j_wait_updates);
1736                 if (journal->j_barrier_count)
1737                         wake_up(&journal->j_wait_transaction_locked);
1738         }
1739
1740         if (wait_for_commit)
1741                 err = jbd2_log_wait_commit(journal, tid);
1742
1743         lock_map_release(&handle->h_lockdep_map);
1744
1745         if (handle->h_rsv_handle)
1746                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1747 free_and_exit:
1748         jbd2_free_handle(handle);
1749         return err;
1750 }
1751
1752 /*
1753  *
1754  * List management code snippets: various functions for manipulating the
1755  * transaction buffer lists.
1756  *
1757  */
1758
1759 /*
1760  * Append a buffer to a transaction list, given the transaction's list head
1761  * pointer.
1762  *
1763  * j_list_lock is held.
1764  *
1765  * jbd_lock_bh_state(jh2bh(jh)) is held.
1766  */
1767
1768 static inline void
1769 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1770 {
1771         if (!*list) {
1772                 jh->b_tnext = jh->b_tprev = jh;
1773                 *list = jh;
1774         } else {
1775                 /* Insert at the tail of the list to preserve order */
1776                 struct journal_head *first = *list, *last = first->b_tprev;
1777                 jh->b_tprev = last;
1778                 jh->b_tnext = first;
1779                 last->b_tnext = first->b_tprev = jh;
1780         }
1781 }
1782
1783 /*
1784  * Remove a buffer from a transaction list, given the transaction's list
1785  * head pointer.
1786  *
1787  * Called with j_list_lock held, and the journal may not be locked.
1788  *
1789  * jbd_lock_bh_state(jh2bh(jh)) is held.
1790  */
1791
1792 static inline void
1793 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1794 {
1795         if (*list == jh) {
1796                 *list = jh->b_tnext;
1797                 if (*list == jh)
1798                         *list = NULL;
1799         }
1800         jh->b_tprev->b_tnext = jh->b_tnext;
1801         jh->b_tnext->b_tprev = jh->b_tprev;
1802 }
1803
1804 /*
1805  * Remove a buffer from the appropriate transaction list.
1806  *
1807  * Note that this function can *change* the value of
1808  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1809  * t_reserved_list.  If the caller is holding onto a copy of one of these
1810  * pointers, it could go bad.  Generally the caller needs to re-read the
1811  * pointer from the transaction_t.
1812  *
1813  * Called under j_list_lock.
1814  */
1815 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1816 {
1817         struct journal_head **list = NULL;
1818         transaction_t *transaction;
1819         struct buffer_head *bh = jh2bh(jh);
1820
1821         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1822         transaction = jh->b_transaction;
1823         if (transaction)
1824                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1825
1826         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1827         if (jh->b_jlist != BJ_None)
1828                 J_ASSERT_JH(jh, transaction != NULL);
1829
1830         switch (jh->b_jlist) {
1831         case BJ_None:
1832                 return;
1833         case BJ_Metadata:
1834                 transaction->t_nr_buffers--;
1835                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1836                 list = &transaction->t_buffers;
1837                 break;
1838         case BJ_Forget:
1839                 list = &transaction->t_forget;
1840                 break;
1841         case BJ_Shadow:
1842                 list = &transaction->t_shadow_list;
1843                 break;
1844         case BJ_Reserved:
1845                 list = &transaction->t_reserved_list;
1846                 break;
1847         }
1848
1849         __blist_del_buffer(list, jh);
1850         jh->b_jlist = BJ_None;
1851         if (test_clear_buffer_jbddirty(bh))
1852                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1853 }
1854
1855 /*
1856  * Remove buffer from all transactions.
1857  *
1858  * Called with bh_state lock and j_list_lock
1859  *
1860  * jh and bh may be already freed when this function returns.
1861  */
1862 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1863 {
1864         __jbd2_journal_temp_unlink_buffer(jh);
1865         jh->b_transaction = NULL;
1866         jbd2_journal_put_journal_head(jh);
1867 }
1868
1869 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1870 {
1871         struct buffer_head *bh = jh2bh(jh);
1872
1873         /* Get reference so that buffer cannot be freed before we unlock it */
1874         get_bh(bh);
1875         jbd_lock_bh_state(bh);
1876         spin_lock(&journal->j_list_lock);
1877         __jbd2_journal_unfile_buffer(jh);
1878         spin_unlock(&journal->j_list_lock);
1879         jbd_unlock_bh_state(bh);
1880         __brelse(bh);
1881 }
1882
1883 /*
1884  * Called from jbd2_journal_try_to_free_buffers().
1885  *
1886  * Called under jbd_lock_bh_state(bh)
1887  */
1888 static void
1889 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1890 {
1891         struct journal_head *jh;
1892
1893         jh = bh2jh(bh);
1894
1895         if (buffer_locked(bh) || buffer_dirty(bh))
1896                 goto out;
1897
1898         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1899                 goto out;
1900
1901         spin_lock(&journal->j_list_lock);
1902         if (jh->b_cp_transaction != NULL) {
1903                 /* written-back checkpointed metadata buffer */
1904                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1905                 __jbd2_journal_remove_checkpoint(jh);
1906         }
1907         spin_unlock(&journal->j_list_lock);
1908 out:
1909         return;
1910 }
1911
1912 /**
1913  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1914  * @journal: journal for operation
1915  * @page: to try and free
1916  * @gfp_mask: we use the mask to detect how hard should we try to release
1917  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1918  * release the buffers.
1919  *
1920  *
1921  * For all the buffers on this page,
1922  * if they are fully written out ordered data, move them onto BUF_CLEAN
1923  * so try_to_free_buffers() can reap them.
1924  *
1925  * This function returns non-zero if we wish try_to_free_buffers()
1926  * to be called. We do this if the page is releasable by try_to_free_buffers().
1927  * We also do it if the page has locked or dirty buffers and the caller wants
1928  * us to perform sync or async writeout.
1929  *
1930  * This complicates JBD locking somewhat.  We aren't protected by the
1931  * BKL here.  We wish to remove the buffer from its committing or
1932  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1933  *
1934  * This may *change* the value of transaction_t->t_datalist, so anyone
1935  * who looks at t_datalist needs to lock against this function.
1936  *
1937  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1938  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1939  * will come out of the lock with the buffer dirty, which makes it
1940  * ineligible for release here.
1941  *
1942  * Who else is affected by this?  hmm...  Really the only contender
1943  * is do_get_write_access() - it could be looking at the buffer while
1944  * journal_try_to_free_buffer() is changing its state.  But that
1945  * cannot happen because we never reallocate freed data as metadata
1946  * while the data is part of a transaction.  Yes?
1947  *
1948  * Return 0 on failure, 1 on success
1949  */
1950 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1951                                 struct page *page, gfp_t gfp_mask)
1952 {
1953         struct buffer_head *head;
1954         struct buffer_head *bh;
1955         int ret = 0;
1956
1957         J_ASSERT(PageLocked(page));
1958
1959         head = page_buffers(page);
1960         bh = head;
1961         do {
1962                 struct journal_head *jh;
1963
1964                 /*
1965                  * We take our own ref against the journal_head here to avoid
1966                  * having to add tons of locking around each instance of
1967                  * jbd2_journal_put_journal_head().
1968                  */
1969                 jh = jbd2_journal_grab_journal_head(bh);
1970                 if (!jh)
1971                         continue;
1972
1973                 jbd_lock_bh_state(bh);
1974                 __journal_try_to_free_buffer(journal, bh);
1975                 jbd2_journal_put_journal_head(jh);
1976                 jbd_unlock_bh_state(bh);
1977                 if (buffer_jbd(bh))
1978                         goto busy;
1979         } while ((bh = bh->b_this_page) != head);
1980
1981         ret = try_to_free_buffers(page);
1982
1983 busy:
1984         return ret;
1985 }
1986
1987 /*
1988  * This buffer is no longer needed.  If it is on an older transaction's
1989  * checkpoint list we need to record it on this transaction's forget list
1990  * to pin this buffer (and hence its checkpointing transaction) down until
1991  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1992  * release it.
1993  * Returns non-zero if JBD no longer has an interest in the buffer.
1994  *
1995  * Called under j_list_lock.
1996  *
1997  * Called under jbd_lock_bh_state(bh).
1998  */
1999 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2000 {
2001         int may_free = 1;
2002         struct buffer_head *bh = jh2bh(jh);
2003
2004         if (jh->b_cp_transaction) {
2005                 JBUFFER_TRACE(jh, "on running+cp transaction");
2006                 __jbd2_journal_temp_unlink_buffer(jh);
2007                 /*
2008                  * We don't want to write the buffer anymore, clear the
2009                  * bit so that we don't confuse checks in
2010                  * __journal_file_buffer
2011                  */
2012                 clear_buffer_dirty(bh);
2013                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2014                 may_free = 0;
2015         } else {
2016                 JBUFFER_TRACE(jh, "on running transaction");
2017                 __jbd2_journal_unfile_buffer(jh);
2018         }
2019         return may_free;
2020 }
2021
2022 /*
2023  * jbd2_journal_invalidatepage
2024  *
2025  * This code is tricky.  It has a number of cases to deal with.
2026  *
2027  * There are two invariants which this code relies on:
2028  *
2029  * i_size must be updated on disk before we start calling invalidatepage on the
2030  * data.
2031  *
2032  *  This is done in ext3 by defining an ext3_setattr method which
2033  *  updates i_size before truncate gets going.  By maintaining this
2034  *  invariant, we can be sure that it is safe to throw away any buffers
2035  *  attached to the current transaction: once the transaction commits,
2036  *  we know that the data will not be needed.
2037  *
2038  *  Note however that we can *not* throw away data belonging to the
2039  *  previous, committing transaction!
2040  *
2041  * Any disk blocks which *are* part of the previous, committing
2042  * transaction (and which therefore cannot be discarded immediately) are
2043  * not going to be reused in the new running transaction
2044  *
2045  *  The bitmap committed_data images guarantee this: any block which is
2046  *  allocated in one transaction and removed in the next will be marked
2047  *  as in-use in the committed_data bitmap, so cannot be reused until
2048  *  the next transaction to delete the block commits.  This means that
2049  *  leaving committing buffers dirty is quite safe: the disk blocks
2050  *  cannot be reallocated to a different file and so buffer aliasing is
2051  *  not possible.
2052  *
2053  *
2054  * The above applies mainly to ordered data mode.  In writeback mode we
2055  * don't make guarantees about the order in which data hits disk --- in
2056  * particular we don't guarantee that new dirty data is flushed before
2057  * transaction commit --- so it is always safe just to discard data
2058  * immediately in that mode.  --sct
2059  */
2060
2061 /*
2062  * The journal_unmap_buffer helper function returns zero if the buffer
2063  * concerned remains pinned as an anonymous buffer belonging to an older
2064  * transaction.
2065  *
2066  * We're outside-transaction here.  Either or both of j_running_transaction
2067  * and j_committing_transaction may be NULL.
2068  */
2069 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2070                                 int partial_page)
2071 {
2072         transaction_t *transaction;
2073         struct journal_head *jh;
2074         int may_free = 1;
2075
2076         BUFFER_TRACE(bh, "entry");
2077
2078         /*
2079          * It is safe to proceed here without the j_list_lock because the
2080          * buffers cannot be stolen by try_to_free_buffers as long as we are
2081          * holding the page lock. --sct
2082          */
2083
2084         if (!buffer_jbd(bh))
2085                 goto zap_buffer_unlocked;
2086
2087         /* OK, we have data buffer in journaled mode */
2088         write_lock(&journal->j_state_lock);
2089         jbd_lock_bh_state(bh);
2090         spin_lock(&journal->j_list_lock);
2091
2092         jh = jbd2_journal_grab_journal_head(bh);
2093         if (!jh)
2094                 goto zap_buffer_no_jh;
2095
2096         /*
2097          * We cannot remove the buffer from checkpoint lists until the
2098          * transaction adding inode to orphan list (let's call it T)
2099          * is committed.  Otherwise if the transaction changing the
2100          * buffer would be cleaned from the journal before T is
2101          * committed, a crash will cause that the correct contents of
2102          * the buffer will be lost.  On the other hand we have to
2103          * clear the buffer dirty bit at latest at the moment when the
2104          * transaction marking the buffer as freed in the filesystem
2105          * structures is committed because from that moment on the
2106          * block can be reallocated and used by a different page.
2107          * Since the block hasn't been freed yet but the inode has
2108          * already been added to orphan list, it is safe for us to add
2109          * the buffer to BJ_Forget list of the newest transaction.
2110          *
2111          * Also we have to clear buffer_mapped flag of a truncated buffer
2112          * because the buffer_head may be attached to the page straddling
2113          * i_size (can happen only when blocksize < pagesize) and thus the
2114          * buffer_head can be reused when the file is extended again. So we end
2115          * up keeping around invalidated buffers attached to transactions'
2116          * BJ_Forget list just to stop checkpointing code from cleaning up
2117          * the transaction this buffer was modified in.
2118          */
2119         transaction = jh->b_transaction;
2120         if (transaction == NULL) {
2121                 /* First case: not on any transaction.  If it
2122                  * has no checkpoint link, then we can zap it:
2123                  * it's a writeback-mode buffer so we don't care
2124                  * if it hits disk safely. */
2125                 if (!jh->b_cp_transaction) {
2126                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2127                         goto zap_buffer;
2128                 }
2129
2130                 if (!buffer_dirty(bh)) {
2131                         /* bdflush has written it.  We can drop it now */
2132                         goto zap_buffer;
2133                 }
2134
2135                 /* OK, it must be in the journal but still not
2136                  * written fully to disk: it's metadata or
2137                  * journaled data... */
2138
2139                 if (journal->j_running_transaction) {
2140                         /* ... and once the current transaction has
2141                          * committed, the buffer won't be needed any
2142                          * longer. */
2143                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2144                         may_free = __dispose_buffer(jh,
2145                                         journal->j_running_transaction);
2146                         goto zap_buffer;
2147                 } else {
2148                         /* There is no currently-running transaction. So the
2149                          * orphan record which we wrote for this file must have
2150                          * passed into commit.  We must attach this buffer to
2151                          * the committing transaction, if it exists. */
2152                         if (journal->j_committing_transaction) {
2153                                 JBUFFER_TRACE(jh, "give to committing trans");
2154                                 may_free = __dispose_buffer(jh,
2155                                         journal->j_committing_transaction);
2156                                 goto zap_buffer;
2157                         } else {
2158                                 /* The orphan record's transaction has
2159                                  * committed.  We can cleanse this buffer */
2160                                 clear_buffer_jbddirty(bh);
2161                                 goto zap_buffer;
2162                         }
2163                 }
2164         } else if (transaction == journal->j_committing_transaction) {
2165                 JBUFFER_TRACE(jh, "on committing transaction");
2166                 /*
2167                  * The buffer is committing, we simply cannot touch
2168                  * it. If the page is straddling i_size we have to wait
2169                  * for commit and try again.
2170                  */
2171                 if (partial_page) {
2172                         jbd2_journal_put_journal_head(jh);
2173                         spin_unlock(&journal->j_list_lock);
2174                         jbd_unlock_bh_state(bh);
2175                         write_unlock(&journal->j_state_lock);
2176                         return -EBUSY;
2177                 }
2178                 /*
2179                  * OK, buffer won't be reachable after truncate. We just set
2180                  * j_next_transaction to the running transaction (if there is
2181                  * one) and mark buffer as freed so that commit code knows it
2182                  * should clear dirty bits when it is done with the buffer.
2183                  */
2184                 set_buffer_freed(bh);
2185                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2186                         jh->b_next_transaction = journal->j_running_transaction;
2187                 jbd2_journal_put_journal_head(jh);
2188                 spin_unlock(&journal->j_list_lock);
2189                 jbd_unlock_bh_state(bh);
2190                 write_unlock(&journal->j_state_lock);
2191                 return 0;
2192         } else {
2193                 /* Good, the buffer belongs to the running transaction.
2194                  * We are writing our own transaction's data, not any
2195                  * previous one's, so it is safe to throw it away
2196                  * (remember that we expect the filesystem to have set
2197                  * i_size already for this truncate so recovery will not
2198                  * expose the disk blocks we are discarding here.) */
2199                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2200                 JBUFFER_TRACE(jh, "on running transaction");
2201                 may_free = __dispose_buffer(jh, transaction);
2202         }
2203
2204 zap_buffer:
2205         /*
2206          * This is tricky. Although the buffer is truncated, it may be reused
2207          * if blocksize < pagesize and it is attached to the page straddling
2208          * EOF. Since the buffer might have been added to BJ_Forget list of the
2209          * running transaction, journal_get_write_access() won't clear
2210          * b_modified and credit accounting gets confused. So clear b_modified
2211          * here.
2212          */
2213         jh->b_modified = 0;
2214         jbd2_journal_put_journal_head(jh);
2215 zap_buffer_no_jh:
2216         spin_unlock(&journal->j_list_lock);
2217         jbd_unlock_bh_state(bh);
2218         write_unlock(&journal->j_state_lock);
2219 zap_buffer_unlocked:
2220         clear_buffer_dirty(bh);
2221         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2222         clear_buffer_mapped(bh);
2223         clear_buffer_req(bh);
2224         clear_buffer_new(bh);
2225         clear_buffer_delay(bh);
2226         clear_buffer_unwritten(bh);
2227         bh->b_bdev = NULL;
2228         return may_free;
2229 }
2230
2231 /**
2232  * void jbd2_journal_invalidatepage()
2233  * @journal: journal to use for flush...
2234  * @page:    page to flush
2235  * @offset:  start of the range to invalidate
2236  * @length:  length of the range to invalidate
2237  *
2238  * Reap page buffers containing data after in the specified range in page.
2239  * Can return -EBUSY if buffers are part of the committing transaction and
2240  * the page is straddling i_size. Caller then has to wait for current commit
2241  * and try again.
2242  */
2243 int jbd2_journal_invalidatepage(journal_t *journal,
2244                                 struct page *page,
2245                                 unsigned int offset,
2246                                 unsigned int length)
2247 {
2248         struct buffer_head *head, *bh, *next;
2249         unsigned int stop = offset + length;
2250         unsigned int curr_off = 0;
2251         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2252         int may_free = 1;
2253         int ret = 0;
2254
2255         if (!PageLocked(page))
2256                 BUG();
2257         if (!page_has_buffers(page))
2258                 return 0;
2259
2260         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2261
2262         /* We will potentially be playing with lists other than just the
2263          * data lists (especially for journaled data mode), so be
2264          * cautious in our locking. */
2265
2266         head = bh = page_buffers(page);
2267         do {
2268                 unsigned int next_off = curr_off + bh->b_size;
2269                 next = bh->b_this_page;
2270
2271                 if (next_off > stop)
2272                         return 0;
2273
2274                 if (offset <= curr_off) {
2275                         /* This block is wholly outside the truncation point */
2276                         lock_buffer(bh);
2277                         ret = journal_unmap_buffer(journal, bh, partial_page);
2278                         unlock_buffer(bh);
2279                         if (ret < 0)
2280                                 return ret;
2281                         may_free &= ret;
2282                 }
2283                 curr_off = next_off;
2284                 bh = next;
2285
2286         } while (bh != head);
2287
2288         if (!partial_page) {
2289                 if (may_free && try_to_free_buffers(page))
2290                         J_ASSERT(!page_has_buffers(page));
2291         }
2292         return 0;
2293 }
2294
2295 /*
2296  * File a buffer on the given transaction list.
2297  */
2298 void __jbd2_journal_file_buffer(struct journal_head *jh,
2299                         transaction_t *transaction, int jlist)
2300 {
2301         struct journal_head **list = NULL;
2302         int was_dirty = 0;
2303         struct buffer_head *bh = jh2bh(jh);
2304
2305         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2306         assert_spin_locked(&transaction->t_journal->j_list_lock);
2307
2308         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2309         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2310                                 jh->b_transaction == NULL);
2311
2312         if (jh->b_transaction && jh->b_jlist == jlist)
2313                 return;
2314
2315         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2316             jlist == BJ_Shadow || jlist == BJ_Forget) {
2317                 /*
2318                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2319                  * instead of buffer_dirty. We should not see a dirty bit set
2320                  * here because we clear it in do_get_write_access but e.g.
2321                  * tune2fs can modify the sb and set the dirty bit at any time
2322                  * so we try to gracefully handle that.
2323                  */
2324                 if (buffer_dirty(bh))
2325                         warn_dirty_buffer(bh);
2326                 if (test_clear_buffer_dirty(bh) ||
2327                     test_clear_buffer_jbddirty(bh))
2328                         was_dirty = 1;
2329         }
2330
2331         if (jh->b_transaction)
2332                 __jbd2_journal_temp_unlink_buffer(jh);
2333         else
2334                 jbd2_journal_grab_journal_head(bh);
2335         jh->b_transaction = transaction;
2336
2337         switch (jlist) {
2338         case BJ_None:
2339                 J_ASSERT_JH(jh, !jh->b_committed_data);
2340                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2341                 return;
2342         case BJ_Metadata:
2343                 transaction->t_nr_buffers++;
2344                 list = &transaction->t_buffers;
2345                 break;
2346         case BJ_Forget:
2347                 list = &transaction->t_forget;
2348                 break;
2349         case BJ_Shadow:
2350                 list = &transaction->t_shadow_list;
2351                 break;
2352         case BJ_Reserved:
2353                 list = &transaction->t_reserved_list;
2354                 break;
2355         }
2356
2357         __blist_add_buffer(list, jh);
2358         jh->b_jlist = jlist;
2359
2360         if (was_dirty)
2361                 set_buffer_jbddirty(bh);
2362 }
2363
2364 void jbd2_journal_file_buffer(struct journal_head *jh,
2365                                 transaction_t *transaction, int jlist)
2366 {
2367         jbd_lock_bh_state(jh2bh(jh));
2368         spin_lock(&transaction->t_journal->j_list_lock);
2369         __jbd2_journal_file_buffer(jh, transaction, jlist);
2370         spin_unlock(&transaction->t_journal->j_list_lock);
2371         jbd_unlock_bh_state(jh2bh(jh));
2372 }
2373
2374 /*
2375  * Remove a buffer from its current buffer list in preparation for
2376  * dropping it from its current transaction entirely.  If the buffer has
2377  * already started to be used by a subsequent transaction, refile the
2378  * buffer on that transaction's metadata list.
2379  *
2380  * Called under j_list_lock
2381  * Called under jbd_lock_bh_state(jh2bh(jh))
2382  *
2383  * jh and bh may be already free when this function returns
2384  */
2385 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2386 {
2387         int was_dirty, jlist;
2388         struct buffer_head *bh = jh2bh(jh);
2389
2390         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2391         if (jh->b_transaction)
2392                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2393
2394         /* If the buffer is now unused, just drop it. */
2395         if (jh->b_next_transaction == NULL) {
2396                 __jbd2_journal_unfile_buffer(jh);
2397                 return;
2398         }
2399
2400         /*
2401          * It has been modified by a later transaction: add it to the new
2402          * transaction's metadata list.
2403          */
2404
2405         was_dirty = test_clear_buffer_jbddirty(bh);
2406         __jbd2_journal_temp_unlink_buffer(jh);
2407         /*
2408          * We set b_transaction here because b_next_transaction will inherit
2409          * our jh reference and thus __jbd2_journal_file_buffer() must not
2410          * take a new one.
2411          */
2412         jh->b_transaction = jh->b_next_transaction;
2413         jh->b_next_transaction = NULL;
2414         if (buffer_freed(bh))
2415                 jlist = BJ_Forget;
2416         else if (jh->b_modified)
2417                 jlist = BJ_Metadata;
2418         else
2419                 jlist = BJ_Reserved;
2420         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2421         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2422
2423         if (was_dirty)
2424                 set_buffer_jbddirty(bh);
2425 }
2426
2427 /*
2428  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2429  * bh reference so that we can safely unlock bh.
2430  *
2431  * The jh and bh may be freed by this call.
2432  */
2433 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2434 {
2435         struct buffer_head *bh = jh2bh(jh);
2436
2437         /* Get reference so that buffer cannot be freed before we unlock it */
2438         get_bh(bh);
2439         jbd_lock_bh_state(bh);
2440         spin_lock(&journal->j_list_lock);
2441         __jbd2_journal_refile_buffer(jh);
2442         jbd_unlock_bh_state(bh);
2443         spin_unlock(&journal->j_list_lock);
2444         __brelse(bh);
2445 }
2446
2447 /*
2448  * File inode in the inode list of the handle's transaction
2449  */
2450 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2451 {
2452         transaction_t *transaction = handle->h_transaction;
2453         journal_t *journal;
2454
2455         if (is_handle_aborted(handle))
2456                 return -EROFS;
2457         journal = transaction->t_journal;
2458
2459         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2460                         transaction->t_tid);
2461
2462         /*
2463          * First check whether inode isn't already on the transaction's
2464          * lists without taking the lock. Note that this check is safe
2465          * without the lock as we cannot race with somebody removing inode
2466          * from the transaction. The reason is that we remove inode from the
2467          * transaction only in journal_release_jbd_inode() and when we commit
2468          * the transaction. We are guarded from the first case by holding
2469          * a reference to the inode. We are safe against the second case
2470          * because if jinode->i_transaction == transaction, commit code
2471          * cannot touch the transaction because we hold reference to it,
2472          * and if jinode->i_next_transaction == transaction, commit code
2473          * will only file the inode where we want it.
2474          */
2475         if (jinode->i_transaction == transaction ||
2476             jinode->i_next_transaction == transaction)
2477                 return 0;
2478
2479         spin_lock(&journal->j_list_lock);
2480
2481         if (jinode->i_transaction == transaction ||
2482             jinode->i_next_transaction == transaction)
2483                 goto done;
2484
2485         /*
2486          * We only ever set this variable to 1 so the test is safe. Since
2487          * t_need_data_flush is likely to be set, we do the test to save some
2488          * cacheline bouncing
2489          */
2490         if (!transaction->t_need_data_flush)
2491                 transaction->t_need_data_flush = 1;
2492         /* On some different transaction's list - should be
2493          * the committing one */
2494         if (jinode->i_transaction) {
2495                 J_ASSERT(jinode->i_next_transaction == NULL);
2496                 J_ASSERT(jinode->i_transaction ==
2497                                         journal->j_committing_transaction);
2498                 jinode->i_next_transaction = transaction;
2499                 goto done;
2500         }
2501         /* Not on any transaction list... */
2502         J_ASSERT(!jinode->i_next_transaction);
2503         jinode->i_transaction = transaction;
2504         list_add(&jinode->i_list, &transaction->t_inode_list);
2505 done:
2506         spin_unlock(&journal->j_list_lock);
2507
2508         return 0;
2509 }
2510
2511 /*
2512  * File truncate and transaction commit interact with each other in a
2513  * non-trivial way.  If a transaction writing data block A is
2514  * committing, we cannot discard the data by truncate until we have
2515  * written them.  Otherwise if we crashed after the transaction with
2516  * write has committed but before the transaction with truncate has
2517  * committed, we could see stale data in block A.  This function is a
2518  * helper to solve this problem.  It starts writeout of the truncated
2519  * part in case it is in the committing transaction.
2520  *
2521  * Filesystem code must call this function when inode is journaled in
2522  * ordered mode before truncation happens and after the inode has been
2523  * placed on orphan list with the new inode size. The second condition
2524  * avoids the race that someone writes new data and we start
2525  * committing the transaction after this function has been called but
2526  * before a transaction for truncate is started (and furthermore it
2527  * allows us to optimize the case where the addition to orphan list
2528  * happens in the same transaction as write --- we don't have to write
2529  * any data in such case).
2530  */
2531 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2532                                         struct jbd2_inode *jinode,
2533                                         loff_t new_size)
2534 {
2535         transaction_t *inode_trans, *commit_trans;
2536         int ret = 0;
2537
2538         /* This is a quick check to avoid locking if not necessary */
2539         if (!jinode->i_transaction)
2540                 goto out;
2541         /* Locks are here just to force reading of recent values, it is
2542          * enough that the transaction was not committing before we started
2543          * a transaction adding the inode to orphan list */
2544         read_lock(&journal->j_state_lock);
2545         commit_trans = journal->j_committing_transaction;
2546         read_unlock(&journal->j_state_lock);
2547         spin_lock(&journal->j_list_lock);
2548         inode_trans = jinode->i_transaction;
2549         spin_unlock(&journal->j_list_lock);
2550         if (inode_trans == commit_trans) {
2551                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2552                         new_size, LLONG_MAX);
2553                 if (ret)
2554                         jbd2_journal_abort(journal, ret);
2555         }
2556 out:
2557         return ret;
2558 }