4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
9 * 15May2002 Andrew Morton
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
15 #include <linux/kernel.h>
16 #include <linux/export.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
34 * I/O completion handler for multipage BIOs.
36 * The mpage code never puts partial pages into a BIO (except for end-of-file).
37 * If a page does not map to a contiguous run of blocks then it simply falls
38 * back to block_read_full_page().
40 * Why is this? If a page's completion depends on a number of different BIOs
41 * which can complete in any order (or at the same time) then determining the
42 * status of that page is hard. See end_buffer_async_read() for the details.
43 * There is no point in duplicating all that complexity.
45 static void mpage_end_io(struct bio *bio)
50 bio_for_each_segment_all(bv, bio, i) {
51 struct page *page = bv->bv_page;
52 page_endio(page, bio_data_dir(bio), bio->bi_error);
58 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
60 bio->bi_end_io = mpage_end_io;
61 guard_bio_eod(rw, bio);
67 mpage_alloc(struct block_device *bdev,
68 sector_t first_sector, int nr_vecs,
73 bio = bio_alloc(gfp_flags, nr_vecs);
75 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
76 while (!bio && (nr_vecs /= 2))
77 bio = bio_alloc(gfp_flags, nr_vecs);
82 bio->bi_iter.bi_sector = first_sector;
88 * support function for mpage_readpages. The fs supplied get_block might
89 * return an up to date buffer. This is used to map that buffer into
90 * the page, which allows readpage to avoid triggering a duplicate call
93 * The idea is to avoid adding buffers to pages that don't already have
94 * them. So when the buffer is up to date and the page size == block size,
95 * this marks the page up to date instead of adding new buffers.
98 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
100 struct inode *inode = page->mapping->host;
101 struct buffer_head *page_bh, *head;
104 if (!page_has_buffers(page)) {
106 * don't make any buffers if there is only one buffer on
107 * the page and the page just needs to be set up to date
109 if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
110 buffer_uptodate(bh)) {
111 SetPageUptodate(page);
114 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
116 head = page_buffers(page);
119 if (block == page_block) {
120 page_bh->b_state = bh->b_state;
121 page_bh->b_bdev = bh->b_bdev;
122 page_bh->b_blocknr = bh->b_blocknr;
125 page_bh = page_bh->b_this_page;
127 } while (page_bh != head);
131 * This is the worker routine which does all the work of mapping the disk
132 * blocks and constructs largest possible bios, submits them for IO if the
133 * blocks are not contiguous on the disk.
135 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
136 * represent the validity of its disk mapping and to decide when to do the next
140 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
141 sector_t *last_block_in_bio, struct buffer_head *map_bh,
142 unsigned long *first_logical_block, get_block_t get_block,
145 struct inode *inode = page->mapping->host;
146 const unsigned blkbits = inode->i_blkbits;
147 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
148 const unsigned blocksize = 1 << blkbits;
149 sector_t block_in_file;
151 sector_t last_block_in_file;
152 sector_t blocks[MAX_BUF_PER_PAGE];
154 unsigned first_hole = blocks_per_page;
155 struct block_device *bdev = NULL;
157 int fully_mapped = 1;
159 unsigned relative_block;
161 if (page_has_buffers(page))
164 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
165 last_block = block_in_file + nr_pages * blocks_per_page;
166 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
167 if (last_block > last_block_in_file)
168 last_block = last_block_in_file;
172 * Map blocks using the result from the previous get_blocks call first.
174 nblocks = map_bh->b_size >> blkbits;
175 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
176 block_in_file < (*first_logical_block + nblocks)) {
177 unsigned map_offset = block_in_file - *first_logical_block;
178 unsigned last = nblocks - map_offset;
180 for (relative_block = 0; ; relative_block++) {
181 if (relative_block == last) {
182 clear_buffer_mapped(map_bh);
185 if (page_block == blocks_per_page)
187 blocks[page_block] = map_bh->b_blocknr + map_offset +
192 bdev = map_bh->b_bdev;
196 * Then do more get_blocks calls until we are done with this page.
198 map_bh->b_page = page;
199 while (page_block < blocks_per_page) {
203 if (block_in_file < last_block) {
204 map_bh->b_size = (last_block-block_in_file) << blkbits;
205 if (get_block(inode, block_in_file, map_bh, 0))
207 *first_logical_block = block_in_file;
210 if (!buffer_mapped(map_bh)) {
212 if (first_hole == blocks_per_page)
213 first_hole = page_block;
219 /* some filesystems will copy data into the page during
220 * the get_block call, in which case we don't want to
221 * read it again. map_buffer_to_page copies the data
222 * we just collected from get_block into the page's buffers
223 * so readpage doesn't have to repeat the get_block call
225 if (buffer_uptodate(map_bh)) {
226 map_buffer_to_page(page, map_bh, page_block);
230 if (first_hole != blocks_per_page)
231 goto confused; /* hole -> non-hole */
233 /* Contiguous blocks? */
234 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
236 nblocks = map_bh->b_size >> blkbits;
237 for (relative_block = 0; ; relative_block++) {
238 if (relative_block == nblocks) {
239 clear_buffer_mapped(map_bh);
241 } else if (page_block == blocks_per_page)
243 blocks[page_block] = map_bh->b_blocknr+relative_block;
247 bdev = map_bh->b_bdev;
250 if (first_hole != blocks_per_page) {
251 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
252 if (first_hole == 0) {
253 SetPageUptodate(page);
257 } else if (fully_mapped) {
258 SetPageMappedToDisk(page);
261 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
262 cleancache_get_page(page) == 0) {
263 SetPageUptodate(page);
268 * This page will go to BIO. Do we need to send this BIO off first?
270 if (bio && (*last_block_in_bio != blocks[0] - 1))
271 bio = mpage_bio_submit(READ, bio);
275 if (first_hole == blocks_per_page) {
276 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
280 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
281 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
286 length = first_hole << blkbits;
287 if (bio_add_page(bio, page, length, 0) < length) {
288 bio = mpage_bio_submit(READ, bio);
292 relative_block = block_in_file - *first_logical_block;
293 nblocks = map_bh->b_size >> blkbits;
294 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
295 (first_hole != blocks_per_page))
296 bio = mpage_bio_submit(READ, bio);
298 *last_block_in_bio = blocks[blocks_per_page - 1];
304 bio = mpage_bio_submit(READ, bio);
305 if (!PageUptodate(page))
306 block_read_full_page(page, get_block);
313 * mpage_readpages - populate an address space with some pages & start reads against them
314 * @mapping: the address_space
315 * @pages: The address of a list_head which contains the target pages. These
316 * pages have their ->index populated and are otherwise uninitialised.
317 * The page at @pages->prev has the lowest file offset, and reads should be
318 * issued in @pages->prev to @pages->next order.
319 * @nr_pages: The number of pages at *@pages
320 * @get_block: The filesystem's block mapper function.
322 * This function walks the pages and the blocks within each page, building and
323 * emitting large BIOs.
325 * If anything unusual happens, such as:
327 * - encountering a page which has buffers
328 * - encountering a page which has a non-hole after a hole
329 * - encountering a page with non-contiguous blocks
331 * then this code just gives up and calls the buffer_head-based read function.
332 * It does handle a page which has holes at the end - that is a common case:
333 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
335 * BH_Boundary explanation:
337 * There is a problem. The mpage read code assembles several pages, gets all
338 * their disk mappings, and then submits them all. That's fine, but obtaining
339 * the disk mappings may require I/O. Reads of indirect blocks, for example.
341 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
342 * submitted in the following order:
343 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
345 * because the indirect block has to be read to get the mappings of blocks
346 * 13,14,15,16. Obviously, this impacts performance.
348 * So what we do it to allow the filesystem's get_block() function to set
349 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
350 * after this one will require I/O against a block which is probably close to
351 * this one. So you should push what I/O you have currently accumulated.
353 * This all causes the disk requests to be issued in the correct order.
356 mpage_readpages(struct address_space *mapping, struct list_head *pages,
357 unsigned nr_pages, get_block_t get_block)
359 struct bio *bio = NULL;
361 sector_t last_block_in_bio = 0;
362 struct buffer_head map_bh;
363 unsigned long first_logical_block = 0;
364 gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
368 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
369 struct page *page = list_entry(pages->prev, struct page, lru);
371 prefetchw(&page->flags);
372 list_del(&page->lru);
373 if (!add_to_page_cache_lru(page, mapping,
376 bio = do_mpage_readpage(bio, page,
378 &last_block_in_bio, &map_bh,
379 &first_logical_block,
382 page_cache_release(page);
384 BUG_ON(!list_empty(pages));
386 mpage_bio_submit(READ, bio);
389 EXPORT_SYMBOL(mpage_readpages);
392 * This isn't called much at all
394 int mpage_readpage(struct page *page, get_block_t get_block)
396 struct bio *bio = NULL;
397 sector_t last_block_in_bio = 0;
398 struct buffer_head map_bh;
399 unsigned long first_logical_block = 0;
400 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
404 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
405 &map_bh, &first_logical_block, get_block, gfp);
407 mpage_bio_submit(READ, bio);
410 EXPORT_SYMBOL(mpage_readpage);
413 * Writing is not so simple.
415 * If the page has buffers then they will be used for obtaining the disk
416 * mapping. We only support pages which are fully mapped-and-dirty, with a
417 * special case for pages which are unmapped at the end: end-of-file.
419 * If the page has no buffers (preferred) then the page is mapped here.
421 * If all blocks are found to be contiguous then the page can go into the
422 * BIO. Otherwise fall back to the mapping's writepage().
424 * FIXME: This code wants an estimate of how many pages are still to be
425 * written, so it can intelligently allocate a suitably-sized BIO. For now,
426 * just allocate full-size (16-page) BIOs.
431 sector_t last_block_in_bio;
432 get_block_t *get_block;
433 unsigned use_writepage;
437 * We have our BIO, so we can now mark the buffers clean. Make
438 * sure to only clean buffers which we know we'll be writing.
440 static void clean_buffers(struct page *page, unsigned first_unmapped)
442 unsigned buffer_counter = 0;
443 struct buffer_head *bh, *head;
444 if (!page_has_buffers(page))
446 head = page_buffers(page);
450 if (buffer_counter++ == first_unmapped)
452 clear_buffer_dirty(bh);
453 bh = bh->b_this_page;
454 } while (bh != head);
457 * we cannot drop the bh if the page is not uptodate or a concurrent
458 * readpage would fail to serialize with the bh and it would read from
459 * disk before we reach the platter.
461 if (buffer_heads_over_limit && PageUptodate(page))
462 try_to_free_buffers(page);
465 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
468 struct mpage_data *mpd = data;
469 struct bio *bio = mpd->bio;
470 struct address_space *mapping = page->mapping;
471 struct inode *inode = page->mapping->host;
472 const unsigned blkbits = inode->i_blkbits;
473 unsigned long end_index;
474 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
476 sector_t block_in_file;
477 sector_t blocks[MAX_BUF_PER_PAGE];
479 unsigned first_unmapped = blocks_per_page;
480 struct block_device *bdev = NULL;
482 sector_t boundary_block = 0;
483 struct block_device *boundary_bdev = NULL;
485 struct buffer_head map_bh;
486 loff_t i_size = i_size_read(inode);
488 int wr = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
490 if (page_has_buffers(page)) {
491 struct buffer_head *head = page_buffers(page);
492 struct buffer_head *bh = head;
494 /* If they're all mapped and dirty, do it */
497 BUG_ON(buffer_locked(bh));
498 if (!buffer_mapped(bh)) {
500 * unmapped dirty buffers are created by
501 * __set_page_dirty_buffers -> mmapped data
503 if (buffer_dirty(bh))
505 if (first_unmapped == blocks_per_page)
506 first_unmapped = page_block;
510 if (first_unmapped != blocks_per_page)
511 goto confused; /* hole -> non-hole */
513 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
516 if (bh->b_blocknr != blocks[page_block-1] + 1)
519 blocks[page_block++] = bh->b_blocknr;
520 boundary = buffer_boundary(bh);
522 boundary_block = bh->b_blocknr;
523 boundary_bdev = bh->b_bdev;
526 } while ((bh = bh->b_this_page) != head);
532 * Page has buffers, but they are all unmapped. The page was
533 * created by pagein or read over a hole which was handled by
534 * block_read_full_page(). If this address_space is also
535 * using mpage_readpages then this can rarely happen.
541 * The page has no buffers: map it to disk
543 BUG_ON(!PageUptodate(page));
544 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
545 last_block = (i_size - 1) >> blkbits;
546 map_bh.b_page = page;
547 for (page_block = 0; page_block < blocks_per_page; ) {
550 map_bh.b_size = 1 << blkbits;
551 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
553 if (buffer_new(&map_bh))
554 unmap_underlying_metadata(map_bh.b_bdev,
556 if (buffer_boundary(&map_bh)) {
557 boundary_block = map_bh.b_blocknr;
558 boundary_bdev = map_bh.b_bdev;
561 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
564 blocks[page_block++] = map_bh.b_blocknr;
565 boundary = buffer_boundary(&map_bh);
566 bdev = map_bh.b_bdev;
567 if (block_in_file == last_block)
571 BUG_ON(page_block == 0);
573 first_unmapped = page_block;
576 end_index = i_size >> PAGE_CACHE_SHIFT;
577 if (page->index >= end_index) {
579 * The page straddles i_size. It must be zeroed out on each
580 * and every writepage invocation because it may be mmapped.
581 * "A file is mapped in multiples of the page size. For a file
582 * that is not a multiple of the page size, the remaining memory
583 * is zeroed when mapped, and writes to that region are not
584 * written out to the file."
586 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
588 if (page->index > end_index || !offset)
590 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
594 * This page will go to BIO. Do we need to send this BIO off first?
596 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
597 bio = mpage_bio_submit(wr, bio);
601 if (first_unmapped == blocks_per_page) {
602 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
604 clean_buffers(page, first_unmapped);
608 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
609 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
613 wbc_init_bio(wbc, bio);
617 * Must try to add the page before marking the buffer clean or
618 * the confused fail path above (OOM) will be very confused when
619 * it finds all bh marked clean (i.e. it will not write anything)
621 wbc_account_io(wbc, page, PAGE_SIZE);
622 length = first_unmapped << blkbits;
623 if (bio_add_page(bio, page, length, 0) < length) {
624 bio = mpage_bio_submit(wr, bio);
628 clean_buffers(page, first_unmapped);
630 BUG_ON(PageWriteback(page));
631 set_page_writeback(page);
633 if (boundary || (first_unmapped != blocks_per_page)) {
634 bio = mpage_bio_submit(wr, bio);
635 if (boundary_block) {
636 write_boundary_block(boundary_bdev,
637 boundary_block, 1 << blkbits);
640 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
646 bio = mpage_bio_submit(wr, bio);
648 if (mpd->use_writepage) {
649 ret = mapping->a_ops->writepage(page, wbc);
655 * The caller has a ref on the inode, so *mapping is stable
657 mapping_set_error(mapping, ret);
664 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
665 * @mapping: address space structure to write
666 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
667 * @get_block: the filesystem's block mapper function.
668 * If this is NULL then use a_ops->writepage. Otherwise, go
671 * This is a library function, which implements the writepages()
672 * address_space_operation.
674 * If a page is already under I/O, generic_writepages() skips it, even
675 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
676 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
677 * and msync() need to guarantee that all the data which was dirty at the time
678 * the call was made get new I/O started against them. If wbc->sync_mode is
679 * WB_SYNC_ALL then we were called for data integrity and we must wait for
680 * existing IO to complete.
683 mpage_writepages(struct address_space *mapping,
684 struct writeback_control *wbc, get_block_t get_block)
686 struct blk_plug plug;
689 blk_start_plug(&plug);
692 ret = generic_writepages(mapping, wbc);
694 struct mpage_data mpd = {
696 .last_block_in_bio = 0,
697 .get_block = get_block,
701 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
703 int wr = (wbc->sync_mode == WB_SYNC_ALL ?
705 mpage_bio_submit(wr, mpd.bio);
708 blk_finish_plug(&plug);
711 EXPORT_SYMBOL(mpage_writepages);
713 int mpage_writepage(struct page *page, get_block_t get_block,
714 struct writeback_control *wbc)
716 struct mpage_data mpd = {
718 .last_block_in_bio = 0,
719 .get_block = get_block,
722 int ret = __mpage_writepage(page, wbc, &mpd);
724 int wr = (wbc->sync_mode == WB_SYNC_ALL ?
726 mpage_bio_submit(wr, mpd.bio);
730 EXPORT_SYMBOL(mpage_writepage);