4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
90 * [10-Sep-98 Alan Modra] Another symlink change.
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 void final_putname(struct filename *name)
122 if (name->separate) {
123 __putname(name->name);
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
135 struct filename *result, *err;
140 result = audit_reusename(filename);
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
149 * First, try to embed the struct filename inside the names_cache
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
179 result->name = kname;
180 result->separate = true;
185 /* The empty path is special. */
186 if (unlikely(!len)) {
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
198 result->uptr = filename;
199 audit_getname(result);
203 final_putname(result);
208 getname(const char __user * filename)
210 return getname_flags(filename, 0, NULL);
212 EXPORT_SYMBOL(getname);
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
223 static int check_acl(struct inode *inode, int mask)
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
270 * This does the basic permission checking
272 static int acl_permission_check(struct inode *inode, int mask)
274 unsigned int mode = inode->i_mode;
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
285 if (in_group_p(inode->i_gid))
290 * If the DACs are ok we don't need any capability check.
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
311 int generic_permission(struct inode *inode, int mask)
316 * Do the basic permission checks.
318 ret = acl_permission_check(inode, mask);
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
341 * Searching includes executable on directories, else just read.
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
357 static inline int do_inode_permission(struct inode *inode, int mask)
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
368 return generic_permission(inode, mask);
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376 * Check for read/write/execute permissions on an inode.
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
383 int __inode_permission(struct inode *inode, int mask)
387 if (unlikely(mask & MAY_WRITE)) {
389 * Nobody gets write access to an immutable file.
391 if (IS_IMMUTABLE(inode))
395 retval = do_inode_permission(inode, mask);
399 retval = devcgroup_inode_permission(inode, mask);
403 return security_inode_permission(inode, mask);
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
412 * Separate out file-system wide checks from inode-specific permission checks.
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438 int inode_permission(struct inode *inode, int mask)
442 retval = sb_permission(inode->i_sb, inode, mask);
445 return __inode_permission(inode, mask);
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
452 * Given a path increment the reference count to the dentry and the vfsmount.
454 void path_get(const struct path *path)
459 EXPORT_SYMBOL(path_get);
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
465 * Given a path decrement the reference count to the dentry and the vfsmount.
467 void path_put(const struct path *path)
472 EXPORT_SYMBOL(path_put);
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
486 * unlazy_walk - try to switch to ref-walk mode.
487 * @nd: nameidata pathwalk data
488 * @dentry: child of nd->path.dentry or NULL
489 * Returns: 0 on success, -ECHILD on failure
491 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
492 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
493 * @nd or NULL. Must be called from rcu-walk context.
495 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
497 struct fs_struct *fs = current->fs;
498 struct dentry *parent = nd->path.dentry;
500 BUG_ON(!(nd->flags & LOOKUP_RCU));
503 * After legitimizing the bastards, terminate_walk()
504 * will do the right thing for non-RCU mode, and all our
505 * subsequent exit cases should rcu_read_unlock()
506 * before returning. Do vfsmount first; if dentry
507 * can't be legitimized, just set nd->path.dentry to NULL
508 * and rely on dput(NULL) being a no-op.
510 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
512 nd->flags &= ~LOOKUP_RCU;
514 if (!lockref_get_not_dead(&parent->d_lockref)) {
515 nd->path.dentry = NULL;
520 * For a negative lookup, the lookup sequence point is the parents
521 * sequence point, and it only needs to revalidate the parent dentry.
523 * For a positive lookup, we need to move both the parent and the
524 * dentry from the RCU domain to be properly refcounted. And the
525 * sequence number in the dentry validates *both* dentry counters,
526 * since we checked the sequence number of the parent after we got
527 * the child sequence number. So we know the parent must still
528 * be valid if the child sequence number is still valid.
531 if (read_seqcount_retry(&parent->d_seq, nd->seq))
533 BUG_ON(nd->inode != parent->d_inode);
535 if (!lockref_get_not_dead(&dentry->d_lockref))
537 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
542 * Sequence counts matched. Now make sure that the root is
543 * still valid and get it if required.
545 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
546 spin_lock(&fs->lock);
547 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
548 goto unlock_and_drop_dentry;
550 spin_unlock(&fs->lock);
556 unlock_and_drop_dentry:
557 spin_unlock(&fs->lock);
565 if (!(nd->flags & LOOKUP_ROOT))
570 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
572 return dentry->d_op->d_revalidate(dentry, flags);
576 * complete_walk - successful completion of path walk
577 * @nd: pointer nameidata
579 * If we had been in RCU mode, drop out of it and legitimize nd->path.
580 * Revalidate the final result, unless we'd already done that during
581 * the path walk or the filesystem doesn't ask for it. Return 0 on
582 * success, -error on failure. In case of failure caller does not
583 * need to drop nd->path.
585 static int complete_walk(struct nameidata *nd)
587 struct dentry *dentry = nd->path.dentry;
590 if (nd->flags & LOOKUP_RCU) {
591 nd->flags &= ~LOOKUP_RCU;
592 if (!(nd->flags & LOOKUP_ROOT))
595 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
599 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
601 mntput(nd->path.mnt);
604 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
607 mntput(nd->path.mnt);
613 if (likely(!(nd->flags & LOOKUP_JUMPED)))
616 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
619 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
630 static __always_inline void set_root(struct nameidata *nd)
633 get_fs_root(current->fs, &nd->root);
636 static int link_path_walk(const char *, struct nameidata *);
638 static __always_inline void set_root_rcu(struct nameidata *nd)
641 struct fs_struct *fs = current->fs;
645 seq = read_seqcount_begin(&fs->seq);
647 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
648 } while (read_seqcount_retry(&fs->seq, seq));
652 static void path_put_conditional(struct path *path, struct nameidata *nd)
655 if (path->mnt != nd->path.mnt)
659 static inline void path_to_nameidata(const struct path *path,
660 struct nameidata *nd)
662 if (!(nd->flags & LOOKUP_RCU)) {
663 dput(nd->path.dentry);
664 if (nd->path.mnt != path->mnt)
665 mntput(nd->path.mnt);
667 nd->path.mnt = path->mnt;
668 nd->path.dentry = path->dentry;
672 * Helper to directly jump to a known parsed path from ->follow_link,
673 * caller must have taken a reference to path beforehand.
675 void nd_jump_link(struct nameidata *nd, struct path *path)
680 nd->inode = nd->path.dentry->d_inode;
681 nd->flags |= LOOKUP_JUMPED;
684 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
686 struct inode *inode = link->dentry->d_inode;
687 if (inode->i_op->put_link)
688 inode->i_op->put_link(link->dentry, nd, cookie);
692 int sysctl_protected_symlinks __read_mostly = 0;
693 int sysctl_protected_hardlinks __read_mostly = 0;
696 * may_follow_link - Check symlink following for unsafe situations
697 * @link: The path of the symlink
698 * @nd: nameidata pathwalk data
700 * In the case of the sysctl_protected_symlinks sysctl being enabled,
701 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
702 * in a sticky world-writable directory. This is to protect privileged
703 * processes from failing races against path names that may change out
704 * from under them by way of other users creating malicious symlinks.
705 * It will permit symlinks to be followed only when outside a sticky
706 * world-writable directory, or when the uid of the symlink and follower
707 * match, or when the directory owner matches the symlink's owner.
709 * Returns 0 if following the symlink is allowed, -ve on error.
711 static inline int may_follow_link(struct path *link, struct nameidata *nd)
713 const struct inode *inode;
714 const struct inode *parent;
716 if (!sysctl_protected_symlinks)
719 /* Allowed if owner and follower match. */
720 inode = link->dentry->d_inode;
721 if (uid_eq(current_cred()->fsuid, inode->i_uid))
724 /* Allowed if parent directory not sticky and world-writable. */
725 parent = nd->path.dentry->d_inode;
726 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
729 /* Allowed if parent directory and link owner match. */
730 if (uid_eq(parent->i_uid, inode->i_uid))
733 audit_log_link_denied("follow_link", link);
734 path_put_conditional(link, nd);
740 * safe_hardlink_source - Check for safe hardlink conditions
741 * @inode: the source inode to hardlink from
743 * Return false if at least one of the following conditions:
744 * - inode is not a regular file
746 * - inode is setgid and group-exec
747 * - access failure for read and write
749 * Otherwise returns true.
751 static bool safe_hardlink_source(struct inode *inode)
753 umode_t mode = inode->i_mode;
755 /* Special files should not get pinned to the filesystem. */
759 /* Setuid files should not get pinned to the filesystem. */
763 /* Executable setgid files should not get pinned to the filesystem. */
764 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
767 /* Hardlinking to unreadable or unwritable sources is dangerous. */
768 if (inode_permission(inode, MAY_READ | MAY_WRITE))
775 * may_linkat - Check permissions for creating a hardlink
776 * @link: the source to hardlink from
778 * Block hardlink when all of:
779 * - sysctl_protected_hardlinks enabled
780 * - fsuid does not match inode
781 * - hardlink source is unsafe (see safe_hardlink_source() above)
784 * Returns 0 if successful, -ve on error.
786 static int may_linkat(struct path *link)
788 const struct cred *cred;
791 if (!sysctl_protected_hardlinks)
794 cred = current_cred();
795 inode = link->dentry->d_inode;
797 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
798 * otherwise, it must be a safe source.
800 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
804 audit_log_link_denied("linkat", link);
808 static __always_inline int
809 follow_link(struct path *link, struct nameidata *nd, void **p)
811 struct dentry *dentry = link->dentry;
815 BUG_ON(nd->flags & LOOKUP_RCU);
817 if (link->mnt == nd->path.mnt)
821 if (unlikely(current->total_link_count >= 40))
822 goto out_put_nd_path;
825 current->total_link_count++;
828 nd_set_link(nd, NULL);
830 error = security_inode_follow_link(link->dentry, nd);
832 goto out_put_nd_path;
834 nd->last_type = LAST_BIND;
835 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
838 goto out_put_nd_path;
843 if (unlikely(IS_ERR(s))) {
845 put_link(nd, link, *p);
853 nd->flags |= LOOKUP_JUMPED;
855 nd->inode = nd->path.dentry->d_inode;
856 error = link_path_walk(s, nd);
858 put_link(nd, link, *p);
870 static int follow_up_rcu(struct path *path)
872 struct mount *mnt = real_mount(path->mnt);
873 struct mount *parent;
874 struct dentry *mountpoint;
876 parent = mnt->mnt_parent;
877 if (&parent->mnt == path->mnt)
879 mountpoint = mnt->mnt_mountpoint;
880 path->dentry = mountpoint;
881 path->mnt = &parent->mnt;
886 * follow_up - Find the mountpoint of path's vfsmount
888 * Given a path, find the mountpoint of its source file system.
889 * Replace @path with the path of the mountpoint in the parent mount.
892 * Return 1 if we went up a level and 0 if we were already at the
895 int follow_up(struct path *path)
897 struct mount *mnt = real_mount(path->mnt);
898 struct mount *parent;
899 struct dentry *mountpoint;
901 read_seqlock_excl(&mount_lock);
902 parent = mnt->mnt_parent;
904 read_sequnlock_excl(&mount_lock);
907 mntget(&parent->mnt);
908 mountpoint = dget(mnt->mnt_mountpoint);
909 read_sequnlock_excl(&mount_lock);
911 path->dentry = mountpoint;
913 path->mnt = &parent->mnt;
918 * Perform an automount
919 * - return -EISDIR to tell follow_managed() to stop and return the path we
922 static int follow_automount(struct path *path, unsigned flags,
925 struct vfsmount *mnt;
928 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
931 /* We don't want to mount if someone's just doing a stat -
932 * unless they're stat'ing a directory and appended a '/' to
935 * We do, however, want to mount if someone wants to open or
936 * create a file of any type under the mountpoint, wants to
937 * traverse through the mountpoint or wants to open the
938 * mounted directory. Also, autofs may mark negative dentries
939 * as being automount points. These will need the attentions
940 * of the daemon to instantiate them before they can be used.
942 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
943 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
944 path->dentry->d_inode)
947 current->total_link_count++;
948 if (current->total_link_count >= 40)
951 mnt = path->dentry->d_op->d_automount(path);
954 * The filesystem is allowed to return -EISDIR here to indicate
955 * it doesn't want to automount. For instance, autofs would do
956 * this so that its userspace daemon can mount on this dentry.
958 * However, we can only permit this if it's a terminal point in
959 * the path being looked up; if it wasn't then the remainder of
960 * the path is inaccessible and we should say so.
962 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
967 if (!mnt) /* mount collision */
971 /* lock_mount() may release path->mnt on error */
975 err = finish_automount(mnt, path);
979 /* Someone else made a mount here whilst we were busy */
984 path->dentry = dget(mnt->mnt_root);
993 * Handle a dentry that is managed in some way.
994 * - Flagged for transit management (autofs)
995 * - Flagged as mountpoint
996 * - Flagged as automount point
998 * This may only be called in refwalk mode.
1000 * Serialization is taken care of in namespace.c
1002 static int follow_managed(struct path *path, unsigned flags)
1004 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1006 bool need_mntput = false;
1009 /* Given that we're not holding a lock here, we retain the value in a
1010 * local variable for each dentry as we look at it so that we don't see
1011 * the components of that value change under us */
1012 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1013 managed &= DCACHE_MANAGED_DENTRY,
1014 unlikely(managed != 0)) {
1015 /* Allow the filesystem to manage the transit without i_mutex
1017 if (managed & DCACHE_MANAGE_TRANSIT) {
1018 BUG_ON(!path->dentry->d_op);
1019 BUG_ON(!path->dentry->d_op->d_manage);
1020 ret = path->dentry->d_op->d_manage(path->dentry, false);
1025 /* Transit to a mounted filesystem. */
1026 if (managed & DCACHE_MOUNTED) {
1027 struct vfsmount *mounted = lookup_mnt(path);
1032 path->mnt = mounted;
1033 path->dentry = dget(mounted->mnt_root);
1038 /* Something is mounted on this dentry in another
1039 * namespace and/or whatever was mounted there in this
1040 * namespace got unmounted before lookup_mnt() could
1044 /* Handle an automount point */
1045 if (managed & DCACHE_NEED_AUTOMOUNT) {
1046 ret = follow_automount(path, flags, &need_mntput);
1052 /* We didn't change the current path point */
1056 if (need_mntput && path->mnt == mnt)
1060 return ret < 0 ? ret : need_mntput;
1063 int follow_down_one(struct path *path)
1065 struct vfsmount *mounted;
1067 mounted = lookup_mnt(path);
1071 path->mnt = mounted;
1072 path->dentry = dget(mounted->mnt_root);
1078 static inline bool managed_dentry_might_block(struct dentry *dentry)
1080 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1081 dentry->d_op->d_manage(dentry, true) < 0);
1085 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1086 * we meet a managed dentry that would need blocking.
1088 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1089 struct inode **inode)
1092 struct mount *mounted;
1094 * Don't forget we might have a non-mountpoint managed dentry
1095 * that wants to block transit.
1097 if (unlikely(managed_dentry_might_block(path->dentry)))
1100 if (!d_mountpoint(path->dentry))
1103 mounted = __lookup_mnt(path->mnt, path->dentry);
1106 path->mnt = &mounted->mnt;
1107 path->dentry = mounted->mnt.mnt_root;
1108 nd->flags |= LOOKUP_JUMPED;
1109 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1111 * Update the inode too. We don't need to re-check the
1112 * dentry sequence number here after this d_inode read,
1113 * because a mount-point is always pinned.
1115 *inode = path->dentry->d_inode;
1120 static void follow_mount_rcu(struct nameidata *nd)
1122 while (d_mountpoint(nd->path.dentry)) {
1123 struct mount *mounted;
1124 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1127 nd->path.mnt = &mounted->mnt;
1128 nd->path.dentry = mounted->mnt.mnt_root;
1129 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1133 static int follow_dotdot_rcu(struct nameidata *nd)
1138 if (nd->path.dentry == nd->root.dentry &&
1139 nd->path.mnt == nd->root.mnt) {
1142 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1143 struct dentry *old = nd->path.dentry;
1144 struct dentry *parent = old->d_parent;
1147 seq = read_seqcount_begin(&parent->d_seq);
1148 if (read_seqcount_retry(&old->d_seq, nd->seq))
1150 nd->path.dentry = parent;
1154 if (!follow_up_rcu(&nd->path))
1156 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1158 follow_mount_rcu(nd);
1159 nd->inode = nd->path.dentry->d_inode;
1163 nd->flags &= ~LOOKUP_RCU;
1164 if (!(nd->flags & LOOKUP_ROOT))
1165 nd->root.mnt = NULL;
1171 * Follow down to the covering mount currently visible to userspace. At each
1172 * point, the filesystem owning that dentry may be queried as to whether the
1173 * caller is permitted to proceed or not.
1175 int follow_down(struct path *path)
1180 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1181 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1182 /* Allow the filesystem to manage the transit without i_mutex
1185 * We indicate to the filesystem if someone is trying to mount
1186 * something here. This gives autofs the chance to deny anyone
1187 * other than its daemon the right to mount on its
1190 * The filesystem may sleep at this point.
1192 if (managed & DCACHE_MANAGE_TRANSIT) {
1193 BUG_ON(!path->dentry->d_op);
1194 BUG_ON(!path->dentry->d_op->d_manage);
1195 ret = path->dentry->d_op->d_manage(
1196 path->dentry, false);
1198 return ret == -EISDIR ? 0 : ret;
1201 /* Transit to a mounted filesystem. */
1202 if (managed & DCACHE_MOUNTED) {
1203 struct vfsmount *mounted = lookup_mnt(path);
1208 path->mnt = mounted;
1209 path->dentry = dget(mounted->mnt_root);
1213 /* Don't handle automount points here */
1220 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1222 static void follow_mount(struct path *path)
1224 while (d_mountpoint(path->dentry)) {
1225 struct vfsmount *mounted = lookup_mnt(path);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1235 static void follow_dotdot(struct nameidata *nd)
1240 struct dentry *old = nd->path.dentry;
1242 if (nd->path.dentry == nd->root.dentry &&
1243 nd->path.mnt == nd->root.mnt) {
1246 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1247 /* rare case of legitimate dget_parent()... */
1248 nd->path.dentry = dget_parent(nd->path.dentry);
1252 if (!follow_up(&nd->path))
1255 follow_mount(&nd->path);
1256 nd->inode = nd->path.dentry->d_inode;
1260 * This looks up the name in dcache, possibly revalidates the old dentry and
1261 * allocates a new one if not found or not valid. In the need_lookup argument
1262 * returns whether i_op->lookup is necessary.
1264 * dir->d_inode->i_mutex must be held
1266 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1267 unsigned int flags, bool *need_lookup)
1269 struct dentry *dentry;
1272 *need_lookup = false;
1273 dentry = d_lookup(dir, name);
1275 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1276 error = d_revalidate(dentry, flags);
1277 if (unlikely(error <= 0)) {
1280 return ERR_PTR(error);
1281 } else if (!d_invalidate(dentry)) {
1290 dentry = d_alloc(dir, name);
1291 if (unlikely(!dentry))
1292 return ERR_PTR(-ENOMEM);
1294 *need_lookup = true;
1300 * Call i_op->lookup on the dentry. The dentry must be negative and
1303 * dir->d_inode->i_mutex must be held
1305 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1310 /* Don't create child dentry for a dead directory. */
1311 if (unlikely(IS_DEADDIR(dir))) {
1313 return ERR_PTR(-ENOENT);
1316 old = dir->i_op->lookup(dir, dentry, flags);
1317 if (unlikely(old)) {
1324 static struct dentry *__lookup_hash(struct qstr *name,
1325 struct dentry *base, unsigned int flags)
1328 struct dentry *dentry;
1330 dentry = lookup_dcache(name, base, flags, &need_lookup);
1334 return lookup_real(base->d_inode, dentry, flags);
1338 * It's more convoluted than I'd like it to be, but... it's still fairly
1339 * small and for now I'd prefer to have fast path as straight as possible.
1340 * It _is_ time-critical.
1342 static int lookup_fast(struct nameidata *nd,
1343 struct path *path, struct inode **inode)
1345 struct vfsmount *mnt = nd->path.mnt;
1346 struct dentry *dentry, *parent = nd->path.dentry;
1352 * Rename seqlock is not required here because in the off chance
1353 * of a false negative due to a concurrent rename, we're going to
1354 * do the non-racy lookup, below.
1356 if (nd->flags & LOOKUP_RCU) {
1358 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1363 * This sequence count validates that the inode matches
1364 * the dentry name information from lookup.
1366 *inode = dentry->d_inode;
1367 if (read_seqcount_retry(&dentry->d_seq, seq))
1371 * This sequence count validates that the parent had no
1372 * changes while we did the lookup of the dentry above.
1374 * The memory barrier in read_seqcount_begin of child is
1375 * enough, we can use __read_seqcount_retry here.
1377 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1381 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1382 status = d_revalidate(dentry, nd->flags);
1383 if (unlikely(status <= 0)) {
1384 if (status != -ECHILD)
1390 path->dentry = dentry;
1391 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1393 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1397 if (unlazy_walk(nd, dentry))
1400 dentry = __d_lookup(parent, &nd->last);
1403 if (unlikely(!dentry))
1406 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1407 status = d_revalidate(dentry, nd->flags);
1408 if (unlikely(status <= 0)) {
1413 if (!d_invalidate(dentry)) {
1420 path->dentry = dentry;
1421 err = follow_managed(path, nd->flags);
1422 if (unlikely(err < 0)) {
1423 path_put_conditional(path, nd);
1427 nd->flags |= LOOKUP_JUMPED;
1428 *inode = path->dentry->d_inode;
1435 /* Fast lookup failed, do it the slow way */
1436 static int lookup_slow(struct nameidata *nd, struct path *path)
1438 struct dentry *dentry, *parent;
1441 parent = nd->path.dentry;
1442 BUG_ON(nd->inode != parent->d_inode);
1444 mutex_lock(&parent->d_inode->i_mutex);
1445 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1446 mutex_unlock(&parent->d_inode->i_mutex);
1448 return PTR_ERR(dentry);
1449 path->mnt = nd->path.mnt;
1450 path->dentry = dentry;
1451 err = follow_managed(path, nd->flags);
1452 if (unlikely(err < 0)) {
1453 path_put_conditional(path, nd);
1457 nd->flags |= LOOKUP_JUMPED;
1461 static inline int may_lookup(struct nameidata *nd)
1463 if (nd->flags & LOOKUP_RCU) {
1464 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1467 if (unlazy_walk(nd, NULL))
1470 return inode_permission(nd->inode, MAY_EXEC);
1473 static inline int handle_dots(struct nameidata *nd, int type)
1475 if (type == LAST_DOTDOT) {
1476 if (nd->flags & LOOKUP_RCU) {
1477 if (follow_dotdot_rcu(nd))
1485 static void terminate_walk(struct nameidata *nd)
1487 if (!(nd->flags & LOOKUP_RCU)) {
1488 path_put(&nd->path);
1490 nd->flags &= ~LOOKUP_RCU;
1491 if (!(nd->flags & LOOKUP_ROOT))
1492 nd->root.mnt = NULL;
1498 * Do we need to follow links? We _really_ want to be able
1499 * to do this check without having to look at inode->i_op,
1500 * so we keep a cache of "no, this doesn't need follow_link"
1501 * for the common case.
1503 static inline int should_follow_link(struct dentry *dentry, int follow)
1505 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1508 static inline int walk_component(struct nameidata *nd, struct path *path,
1511 struct inode *inode;
1514 * "." and ".." are special - ".." especially so because it has
1515 * to be able to know about the current root directory and
1516 * parent relationships.
1518 if (unlikely(nd->last_type != LAST_NORM))
1519 return handle_dots(nd, nd->last_type);
1520 err = lookup_fast(nd, path, &inode);
1521 if (unlikely(err)) {
1525 err = lookup_slow(nd, path);
1529 inode = path->dentry->d_inode;
1535 if (should_follow_link(path->dentry, follow)) {
1536 if (nd->flags & LOOKUP_RCU) {
1537 if (unlikely(unlazy_walk(nd, path->dentry))) {
1542 BUG_ON(inode != path->dentry->d_inode);
1545 path_to_nameidata(path, nd);
1550 path_to_nameidata(path, nd);
1557 * This limits recursive symlink follows to 8, while
1558 * limiting consecutive symlinks to 40.
1560 * Without that kind of total limit, nasty chains of consecutive
1561 * symlinks can cause almost arbitrarily long lookups.
1563 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1567 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1568 path_put_conditional(path, nd);
1569 path_put(&nd->path);
1572 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1575 current->link_count++;
1578 struct path link = *path;
1581 res = follow_link(&link, nd, &cookie);
1584 res = walk_component(nd, path, LOOKUP_FOLLOW);
1585 put_link(nd, &link, cookie);
1588 current->link_count--;
1594 * We can do the critical dentry name comparison and hashing
1595 * operations one word at a time, but we are limited to:
1597 * - Architectures with fast unaligned word accesses. We could
1598 * do a "get_unaligned()" if this helps and is sufficiently
1601 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1602 * do not trap on the (extremely unlikely) case of a page
1603 * crossing operation.
1605 * - Furthermore, we need an efficient 64-bit compile for the
1606 * 64-bit case in order to generate the "number of bytes in
1607 * the final mask". Again, that could be replaced with a
1608 * efficient population count instruction or similar.
1610 #ifdef CONFIG_DCACHE_WORD_ACCESS
1612 #include <asm/word-at-a-time.h>
1616 static inline unsigned int fold_hash(unsigned long hash)
1618 hash += hash >> (8*sizeof(int));
1622 #else /* 32-bit case */
1624 #define fold_hash(x) (x)
1628 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1630 unsigned long a, mask;
1631 unsigned long hash = 0;
1634 a = load_unaligned_zeropad(name);
1635 if (len < sizeof(unsigned long))
1639 name += sizeof(unsigned long);
1640 len -= sizeof(unsigned long);
1644 mask = bytemask_from_count(len);
1647 return fold_hash(hash);
1649 EXPORT_SYMBOL(full_name_hash);
1652 * Calculate the length and hash of the path component, and
1653 * return the length of the component;
1655 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1657 unsigned long a, b, adata, bdata, mask, hash, len;
1658 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1661 len = -sizeof(unsigned long);
1663 hash = (hash + a) * 9;
1664 len += sizeof(unsigned long);
1665 a = load_unaligned_zeropad(name+len);
1666 b = a ^ REPEAT_BYTE('/');
1667 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1669 adata = prep_zero_mask(a, adata, &constants);
1670 bdata = prep_zero_mask(b, bdata, &constants);
1672 mask = create_zero_mask(adata | bdata);
1674 hash += a & zero_bytemask(mask);
1675 *hashp = fold_hash(hash);
1677 return len + find_zero(mask);
1682 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1684 unsigned long hash = init_name_hash();
1686 hash = partial_name_hash(*name++, hash);
1687 return end_name_hash(hash);
1689 EXPORT_SYMBOL(full_name_hash);
1692 * We know there's a real path component here of at least
1695 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1697 unsigned long hash = init_name_hash();
1698 unsigned long len = 0, c;
1700 c = (unsigned char)*name;
1703 hash = partial_name_hash(c, hash);
1704 c = (unsigned char)name[len];
1705 } while (c && c != '/');
1706 *hashp = end_name_hash(hash);
1714 * This is the basic name resolution function, turning a pathname into
1715 * the final dentry. We expect 'base' to be positive and a directory.
1717 * Returns 0 and nd will have valid dentry and mnt on success.
1718 * Returns error and drops reference to input namei data on failure.
1720 static int link_path_walk(const char *name, struct nameidata *nd)
1730 /* At this point we know we have a real path component. */
1736 err = may_lookup(nd);
1740 len = hash_name(name, &this.hash);
1745 if (name[0] == '.') switch (len) {
1747 if (name[1] == '.') {
1749 nd->flags |= LOOKUP_JUMPED;
1755 if (likely(type == LAST_NORM)) {
1756 struct dentry *parent = nd->path.dentry;
1757 nd->flags &= ~LOOKUP_JUMPED;
1758 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1759 err = parent->d_op->d_hash(parent, &this);
1766 nd->last_type = type;
1771 * If it wasn't NUL, we know it was '/'. Skip that
1772 * slash, and continue until no more slashes.
1776 } while (unlikely(name[len] == '/'));
1782 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1787 err = nested_symlink(&next, nd);
1791 if (!d_is_directory(nd->path.dentry)) {
1800 static int path_init(int dfd, const char *name, unsigned int flags,
1801 struct nameidata *nd, struct file **fp)
1805 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1806 nd->flags = flags | LOOKUP_JUMPED;
1808 if (flags & LOOKUP_ROOT) {
1809 struct dentry *root = nd->root.dentry;
1810 struct inode *inode = root->d_inode;
1812 if (!d_is_directory(root))
1814 retval = inode_permission(inode, MAY_EXEC);
1818 nd->path = nd->root;
1820 if (flags & LOOKUP_RCU) {
1822 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1823 nd->m_seq = read_seqbegin(&mount_lock);
1825 path_get(&nd->path);
1830 nd->root.mnt = NULL;
1832 nd->m_seq = read_seqbegin(&mount_lock);
1834 if (flags & LOOKUP_RCU) {
1839 path_get(&nd->root);
1841 nd->path = nd->root;
1842 } else if (dfd == AT_FDCWD) {
1843 if (flags & LOOKUP_RCU) {
1844 struct fs_struct *fs = current->fs;
1850 seq = read_seqcount_begin(&fs->seq);
1852 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1853 } while (read_seqcount_retry(&fs->seq, seq));
1855 get_fs_pwd(current->fs, &nd->path);
1858 /* Caller must check execute permissions on the starting path component */
1859 struct fd f = fdget_raw(dfd);
1860 struct dentry *dentry;
1865 dentry = f.file->f_path.dentry;
1868 if (!d_is_directory(dentry)) {
1874 nd->path = f.file->f_path;
1875 if (flags & LOOKUP_RCU) {
1878 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1881 path_get(&nd->path);
1886 nd->inode = nd->path.dentry->d_inode;
1890 static inline int lookup_last(struct nameidata *nd, struct path *path)
1892 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1893 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1895 nd->flags &= ~LOOKUP_PARENT;
1896 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1899 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1900 static int path_lookupat(int dfd, const char *name,
1901 unsigned int flags, struct nameidata *nd)
1903 struct file *base = NULL;
1908 * Path walking is largely split up into 2 different synchronisation
1909 * schemes, rcu-walk and ref-walk (explained in
1910 * Documentation/filesystems/path-lookup.txt). These share much of the
1911 * path walk code, but some things particularly setup, cleanup, and
1912 * following mounts are sufficiently divergent that functions are
1913 * duplicated. Typically there is a function foo(), and its RCU
1914 * analogue, foo_rcu().
1916 * -ECHILD is the error number of choice (just to avoid clashes) that
1917 * is returned if some aspect of an rcu-walk fails. Such an error must
1918 * be handled by restarting a traditional ref-walk (which will always
1919 * be able to complete).
1921 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1926 current->total_link_count = 0;
1927 err = link_path_walk(name, nd);
1929 if (!err && !(flags & LOOKUP_PARENT)) {
1930 err = lookup_last(nd, &path);
1933 struct path link = path;
1934 err = may_follow_link(&link, nd);
1937 nd->flags |= LOOKUP_PARENT;
1938 err = follow_link(&link, nd, &cookie);
1941 err = lookup_last(nd, &path);
1942 put_link(nd, &link, cookie);
1947 err = complete_walk(nd);
1949 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1950 if (!d_is_directory(nd->path.dentry)) {
1951 path_put(&nd->path);
1959 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1960 path_put(&nd->root);
1961 nd->root.mnt = NULL;
1966 static int filename_lookup(int dfd, struct filename *name,
1967 unsigned int flags, struct nameidata *nd)
1969 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1970 if (unlikely(retval == -ECHILD))
1971 retval = path_lookupat(dfd, name->name, flags, nd);
1972 if (unlikely(retval == -ESTALE))
1973 retval = path_lookupat(dfd, name->name,
1974 flags | LOOKUP_REVAL, nd);
1976 if (likely(!retval))
1977 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1981 static int do_path_lookup(int dfd, const char *name,
1982 unsigned int flags, struct nameidata *nd)
1984 struct filename filename = { .name = name };
1986 return filename_lookup(dfd, &filename, flags, nd);
1989 /* does lookup, returns the object with parent locked */
1990 struct dentry *kern_path_locked(const char *name, struct path *path)
1992 struct nameidata nd;
1994 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1996 return ERR_PTR(err);
1997 if (nd.last_type != LAST_NORM) {
1999 return ERR_PTR(-EINVAL);
2001 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2002 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2004 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2012 int kern_path(const char *name, unsigned int flags, struct path *path)
2014 struct nameidata nd;
2015 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2022 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2023 * @dentry: pointer to dentry of the base directory
2024 * @mnt: pointer to vfs mount of the base directory
2025 * @name: pointer to file name
2026 * @flags: lookup flags
2027 * @path: pointer to struct path to fill
2029 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2030 const char *name, unsigned int flags,
2033 struct nameidata nd;
2035 nd.root.dentry = dentry;
2037 BUG_ON(flags & LOOKUP_PARENT);
2038 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2039 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2046 * Restricted form of lookup. Doesn't follow links, single-component only,
2047 * needs parent already locked. Doesn't follow mounts.
2050 static struct dentry *lookup_hash(struct nameidata *nd)
2052 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2056 * lookup_one_len - filesystem helper to lookup single pathname component
2057 * @name: pathname component to lookup
2058 * @base: base directory to lookup from
2059 * @len: maximum length @len should be interpreted to
2061 * Note that this routine is purely a helper for filesystem usage and should
2062 * not be called by generic code. Also note that by using this function the
2063 * nameidata argument is passed to the filesystem methods and a filesystem
2064 * using this helper needs to be prepared for that.
2066 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2072 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2076 this.hash = full_name_hash(name, len);
2078 return ERR_PTR(-EACCES);
2080 if (unlikely(name[0] == '.')) {
2081 if (len < 2 || (len == 2 && name[1] == '.'))
2082 return ERR_PTR(-EACCES);
2086 c = *(const unsigned char *)name++;
2087 if (c == '/' || c == '\0')
2088 return ERR_PTR(-EACCES);
2091 * See if the low-level filesystem might want
2092 * to use its own hash..
2094 if (base->d_flags & DCACHE_OP_HASH) {
2095 int err = base->d_op->d_hash(base, &this);
2097 return ERR_PTR(err);
2100 err = inode_permission(base->d_inode, MAY_EXEC);
2102 return ERR_PTR(err);
2104 return __lookup_hash(&this, base, 0);
2107 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2108 struct path *path, int *empty)
2110 struct nameidata nd;
2111 struct filename *tmp = getname_flags(name, flags, empty);
2112 int err = PTR_ERR(tmp);
2115 BUG_ON(flags & LOOKUP_PARENT);
2117 err = filename_lookup(dfd, tmp, flags, &nd);
2125 int user_path_at(int dfd, const char __user *name, unsigned flags,
2128 return user_path_at_empty(dfd, name, flags, path, NULL);
2132 * NB: most callers don't do anything directly with the reference to the
2133 * to struct filename, but the nd->last pointer points into the name string
2134 * allocated by getname. So we must hold the reference to it until all
2135 * path-walking is complete.
2137 static struct filename *
2138 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2141 struct filename *s = getname(path);
2144 /* only LOOKUP_REVAL is allowed in extra flags */
2145 flags &= LOOKUP_REVAL;
2150 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2153 return ERR_PTR(error);
2160 * mountpoint_last - look up last component for umount
2161 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2162 * @path: pointer to container for result
2164 * This is a special lookup_last function just for umount. In this case, we
2165 * need to resolve the path without doing any revalidation.
2167 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2168 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2169 * in almost all cases, this lookup will be served out of the dcache. The only
2170 * cases where it won't are if nd->last refers to a symlink or the path is
2171 * bogus and it doesn't exist.
2174 * -error: if there was an error during lookup. This includes -ENOENT if the
2175 * lookup found a negative dentry. The nd->path reference will also be
2178 * 0: if we successfully resolved nd->path and found it to not to be a
2179 * symlink that needs to be followed. "path" will also be populated.
2180 * The nd->path reference will also be put.
2182 * 1: if we successfully resolved nd->last and found it to be a symlink
2183 * that needs to be followed. "path" will be populated with the path
2184 * to the link, and nd->path will *not* be put.
2187 mountpoint_last(struct nameidata *nd, struct path *path)
2190 struct dentry *dentry;
2191 struct dentry *dir = nd->path.dentry;
2193 /* If we're in rcuwalk, drop out of it to handle last component */
2194 if (nd->flags & LOOKUP_RCU) {
2195 if (unlazy_walk(nd, NULL)) {
2201 nd->flags &= ~LOOKUP_PARENT;
2203 if (unlikely(nd->last_type != LAST_NORM)) {
2204 error = handle_dots(nd, nd->last_type);
2207 dentry = dget(nd->path.dentry);
2211 mutex_lock(&dir->d_inode->i_mutex);
2212 dentry = d_lookup(dir, &nd->last);
2215 * No cached dentry. Mounted dentries are pinned in the cache,
2216 * so that means that this dentry is probably a symlink or the
2217 * path doesn't actually point to a mounted dentry.
2219 dentry = d_alloc(dir, &nd->last);
2222 mutex_unlock(&dir->d_inode->i_mutex);
2225 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2226 error = PTR_ERR(dentry);
2227 if (IS_ERR(dentry)) {
2228 mutex_unlock(&dir->d_inode->i_mutex);
2232 mutex_unlock(&dir->d_inode->i_mutex);
2235 if (!dentry->d_inode) {
2240 path->dentry = dentry;
2241 path->mnt = mntget(nd->path.mnt);
2242 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2252 * path_mountpoint - look up a path to be umounted
2253 * @dfd: directory file descriptor to start walk from
2254 * @name: full pathname to walk
2255 * @path: pointer to container for result
2256 * @flags: lookup flags
2258 * Look up the given name, but don't attempt to revalidate the last component.
2259 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2262 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2264 struct file *base = NULL;
2265 struct nameidata nd;
2268 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2272 current->total_link_count = 0;
2273 err = link_path_walk(name, &nd);
2277 err = mountpoint_last(&nd, path);
2280 struct path link = *path;
2281 err = may_follow_link(&link, &nd);
2284 nd.flags |= LOOKUP_PARENT;
2285 err = follow_link(&link, &nd, &cookie);
2288 err = mountpoint_last(&nd, path);
2289 put_link(&nd, &link, cookie);
2295 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2302 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2305 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2306 if (unlikely(error == -ECHILD))
2307 error = path_mountpoint(dfd, s->name, path, flags);
2308 if (unlikely(error == -ESTALE))
2309 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2311 audit_inode(s, path->dentry, 0);
2316 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2317 * @dfd: directory file descriptor
2318 * @name: pathname from userland
2319 * @flags: lookup flags
2320 * @path: pointer to container to hold result
2322 * A umount is a special case for path walking. We're not actually interested
2323 * in the inode in this situation, and ESTALE errors can be a problem. We
2324 * simply want track down the dentry and vfsmount attached at the mountpoint
2325 * and avoid revalidating the last component.
2327 * Returns 0 and populates "path" on success.
2330 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2333 struct filename *s = getname(name);
2337 error = filename_mountpoint(dfd, s, path, flags);
2343 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2346 struct filename s = {.name = name};
2347 return filename_mountpoint(dfd, &s, path, flags);
2349 EXPORT_SYMBOL(kern_path_mountpoint);
2352 * It's inline, so penalty for filesystems that don't use sticky bit is
2355 static inline int check_sticky(struct inode *dir, struct inode *inode)
2357 kuid_t fsuid = current_fsuid();
2359 if (!(dir->i_mode & S_ISVTX))
2361 if (uid_eq(inode->i_uid, fsuid))
2363 if (uid_eq(dir->i_uid, fsuid))
2365 return !inode_capable(inode, CAP_FOWNER);
2369 * Check whether we can remove a link victim from directory dir, check
2370 * whether the type of victim is right.
2371 * 1. We can't do it if dir is read-only (done in permission())
2372 * 2. We should have write and exec permissions on dir
2373 * 3. We can't remove anything from append-only dir
2374 * 4. We can't do anything with immutable dir (done in permission())
2375 * 5. If the sticky bit on dir is set we should either
2376 * a. be owner of dir, or
2377 * b. be owner of victim, or
2378 * c. have CAP_FOWNER capability
2379 * 6. If the victim is append-only or immutable we can't do antyhing with
2380 * links pointing to it.
2381 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2382 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2383 * 9. We can't remove a root or mountpoint.
2384 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2385 * nfs_async_unlink().
2387 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2389 struct inode *inode = victim->d_inode;
2392 if (d_is_negative(victim))
2396 BUG_ON(victim->d_parent->d_inode != dir);
2397 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2399 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2405 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2406 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2409 if (!d_is_directory(victim) && !d_is_autodir(victim))
2411 if (IS_ROOT(victim))
2413 } else if (d_is_directory(victim) || d_is_autodir(victim))
2415 if (IS_DEADDIR(dir))
2417 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2422 /* Check whether we can create an object with dentry child in directory
2424 * 1. We can't do it if child already exists (open has special treatment for
2425 * this case, but since we are inlined it's OK)
2426 * 2. We can't do it if dir is read-only (done in permission())
2427 * 3. We should have write and exec permissions on dir
2428 * 4. We can't do it if dir is immutable (done in permission())
2430 static inline int may_create(struct inode *dir, struct dentry *child)
2432 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2435 if (IS_DEADDIR(dir))
2437 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2441 * p1 and p2 should be directories on the same fs.
2443 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2448 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2452 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2454 p = d_ancestor(p2, p1);
2456 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2457 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2461 p = d_ancestor(p1, p2);
2463 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2464 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2468 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2469 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2473 void unlock_rename(struct dentry *p1, struct dentry *p2)
2475 mutex_unlock(&p1->d_inode->i_mutex);
2477 mutex_unlock(&p2->d_inode->i_mutex);
2478 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2482 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2485 int error = may_create(dir, dentry);
2489 if (!dir->i_op->create)
2490 return -EACCES; /* shouldn't it be ENOSYS? */
2493 error = security_inode_create(dir, dentry, mode);
2496 error = dir->i_op->create(dir, dentry, mode, want_excl);
2498 fsnotify_create(dir, dentry);
2502 static int may_open(struct path *path, int acc_mode, int flag)
2504 struct dentry *dentry = path->dentry;
2505 struct inode *inode = dentry->d_inode;
2515 switch (inode->i_mode & S_IFMT) {
2519 if (acc_mode & MAY_WRITE)
2524 if (path->mnt->mnt_flags & MNT_NODEV)
2533 error = inode_permission(inode, acc_mode);
2538 * An append-only file must be opened in append mode for writing.
2540 if (IS_APPEND(inode)) {
2541 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2547 /* O_NOATIME can only be set by the owner or superuser */
2548 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2554 static int handle_truncate(struct file *filp)
2556 struct path *path = &filp->f_path;
2557 struct inode *inode = path->dentry->d_inode;
2558 int error = get_write_access(inode);
2562 * Refuse to truncate files with mandatory locks held on them.
2564 error = locks_verify_locked(inode);
2566 error = security_path_truncate(path);
2568 error = do_truncate(path->dentry, 0,
2569 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2572 put_write_access(inode);
2576 static inline int open_to_namei_flags(int flag)
2578 if ((flag & O_ACCMODE) == 3)
2583 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2585 int error = security_path_mknod(dir, dentry, mode, 0);
2589 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2593 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2597 * Attempt to atomically look up, create and open a file from a negative
2600 * Returns 0 if successful. The file will have been created and attached to
2601 * @file by the filesystem calling finish_open().
2603 * Returns 1 if the file was looked up only or didn't need creating. The
2604 * caller will need to perform the open themselves. @path will have been
2605 * updated to point to the new dentry. This may be negative.
2607 * Returns an error code otherwise.
2609 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2610 struct path *path, struct file *file,
2611 const struct open_flags *op,
2612 bool got_write, bool need_lookup,
2615 struct inode *dir = nd->path.dentry->d_inode;
2616 unsigned open_flag = open_to_namei_flags(op->open_flag);
2620 int create_error = 0;
2621 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2624 BUG_ON(dentry->d_inode);
2626 /* Don't create child dentry for a dead directory. */
2627 if (unlikely(IS_DEADDIR(dir))) {
2633 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2634 mode &= ~current_umask();
2636 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2638 open_flag &= ~O_TRUNC;
2641 * Checking write permission is tricky, bacuse we don't know if we are
2642 * going to actually need it: O_CREAT opens should work as long as the
2643 * file exists. But checking existence breaks atomicity. The trick is
2644 * to check access and if not granted clear O_CREAT from the flags.
2646 * Another problem is returing the "right" error value (e.g. for an
2647 * O_EXCL open we want to return EEXIST not EROFS).
2649 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2650 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2651 if (!(open_flag & O_CREAT)) {
2653 * No O_CREATE -> atomicity not a requirement -> fall
2654 * back to lookup + open
2657 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2658 /* Fall back and fail with the right error */
2659 create_error = -EROFS;
2662 /* No side effects, safe to clear O_CREAT */
2663 create_error = -EROFS;
2664 open_flag &= ~O_CREAT;
2668 if (open_flag & O_CREAT) {
2669 error = may_o_create(&nd->path, dentry, mode);
2671 create_error = error;
2672 if (open_flag & O_EXCL)
2674 open_flag &= ~O_CREAT;
2678 if (nd->flags & LOOKUP_DIRECTORY)
2679 open_flag |= O_DIRECTORY;
2681 file->f_path.dentry = DENTRY_NOT_SET;
2682 file->f_path.mnt = nd->path.mnt;
2683 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2686 if (create_error && error == -ENOENT)
2687 error = create_error;
2691 if (error) { /* returned 1, that is */
2692 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2696 if (file->f_path.dentry) {
2698 dentry = file->f_path.dentry;
2700 if (*opened & FILE_CREATED)
2701 fsnotify_create(dir, dentry);
2702 if (!dentry->d_inode) {
2703 WARN_ON(*opened & FILE_CREATED);
2705 error = create_error;
2709 if (excl && !(*opened & FILE_CREATED)) {
2718 * We didn't have the inode before the open, so check open permission
2721 acc_mode = op->acc_mode;
2722 if (*opened & FILE_CREATED) {
2723 WARN_ON(!(open_flag & O_CREAT));
2724 fsnotify_create(dir, dentry);
2725 acc_mode = MAY_OPEN;
2727 error = may_open(&file->f_path, acc_mode, open_flag);
2737 dentry = lookup_real(dir, dentry, nd->flags);
2739 return PTR_ERR(dentry);
2742 int open_flag = op->open_flag;
2744 error = create_error;
2745 if ((open_flag & O_EXCL)) {
2746 if (!dentry->d_inode)
2748 } else if (!dentry->d_inode) {
2750 } else if ((open_flag & O_TRUNC) &&
2751 S_ISREG(dentry->d_inode->i_mode)) {
2754 /* will fail later, go on to get the right error */
2758 path->dentry = dentry;
2759 path->mnt = nd->path.mnt;
2764 * Look up and maybe create and open the last component.
2766 * Must be called with i_mutex held on parent.
2768 * Returns 0 if the file was successfully atomically created (if necessary) and
2769 * opened. In this case the file will be returned attached to @file.
2771 * Returns 1 if the file was not completely opened at this time, though lookups
2772 * and creations will have been performed and the dentry returned in @path will
2773 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2774 * specified then a negative dentry may be returned.
2776 * An error code is returned otherwise.
2778 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2779 * cleared otherwise prior to returning.
2781 static int lookup_open(struct nameidata *nd, struct path *path,
2783 const struct open_flags *op,
2784 bool got_write, int *opened)
2786 struct dentry *dir = nd->path.dentry;
2787 struct inode *dir_inode = dir->d_inode;
2788 struct dentry *dentry;
2792 *opened &= ~FILE_CREATED;
2793 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2795 return PTR_ERR(dentry);
2797 /* Cached positive dentry: will open in f_op->open */
2798 if (!need_lookup && dentry->d_inode)
2801 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2802 return atomic_open(nd, dentry, path, file, op, got_write,
2803 need_lookup, opened);
2807 BUG_ON(dentry->d_inode);
2809 dentry = lookup_real(dir_inode, dentry, nd->flags);
2811 return PTR_ERR(dentry);
2814 /* Negative dentry, just create the file */
2815 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2816 umode_t mode = op->mode;
2817 if (!IS_POSIXACL(dir->d_inode))
2818 mode &= ~current_umask();
2820 * This write is needed to ensure that a
2821 * rw->ro transition does not occur between
2822 * the time when the file is created and when
2823 * a permanent write count is taken through
2824 * the 'struct file' in finish_open().
2830 *opened |= FILE_CREATED;
2831 error = security_path_mknod(&nd->path, dentry, mode, 0);
2834 error = vfs_create(dir->d_inode, dentry, mode,
2835 nd->flags & LOOKUP_EXCL);
2840 path->dentry = dentry;
2841 path->mnt = nd->path.mnt;
2850 * Handle the last step of open()
2852 static int do_last(struct nameidata *nd, struct path *path,
2853 struct file *file, const struct open_flags *op,
2854 int *opened, struct filename *name)
2856 struct dentry *dir = nd->path.dentry;
2857 int open_flag = op->open_flag;
2858 bool will_truncate = (open_flag & O_TRUNC) != 0;
2859 bool got_write = false;
2860 int acc_mode = op->acc_mode;
2861 struct inode *inode;
2862 bool symlink_ok = false;
2863 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2864 bool retried = false;
2867 nd->flags &= ~LOOKUP_PARENT;
2868 nd->flags |= op->intent;
2870 if (nd->last_type != LAST_NORM) {
2871 error = handle_dots(nd, nd->last_type);
2877 if (!(open_flag & O_CREAT)) {
2878 if (nd->last.name[nd->last.len])
2879 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2880 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2882 /* we _can_ be in RCU mode here */
2883 error = lookup_fast(nd, path, &inode);
2890 BUG_ON(nd->inode != dir->d_inode);
2892 /* create side of things */
2894 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2895 * has been cleared when we got to the last component we are
2898 error = complete_walk(nd);
2902 audit_inode(name, dir, LOOKUP_PARENT);
2904 /* trailing slashes? */
2905 if (nd->last.name[nd->last.len])
2910 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2911 error = mnt_want_write(nd->path.mnt);
2915 * do _not_ fail yet - we might not need that or fail with
2916 * a different error; let lookup_open() decide; we'll be
2917 * dropping this one anyway.
2920 mutex_lock(&dir->d_inode->i_mutex);
2921 error = lookup_open(nd, path, file, op, got_write, opened);
2922 mutex_unlock(&dir->d_inode->i_mutex);
2928 if ((*opened & FILE_CREATED) ||
2929 !S_ISREG(file_inode(file)->i_mode))
2930 will_truncate = false;
2932 audit_inode(name, file->f_path.dentry, 0);
2936 if (*opened & FILE_CREATED) {
2937 /* Don't check for write permission, don't truncate */
2938 open_flag &= ~O_TRUNC;
2939 will_truncate = false;
2940 acc_mode = MAY_OPEN;
2941 path_to_nameidata(path, nd);
2942 goto finish_open_created;
2946 * create/update audit record if it already exists.
2948 if (d_is_positive(path->dentry))
2949 audit_inode(name, path->dentry, 0);
2952 * If atomic_open() acquired write access it is dropped now due to
2953 * possible mount and symlink following (this might be optimized away if
2957 mnt_drop_write(nd->path.mnt);
2962 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2965 error = follow_managed(path, nd->flags);
2970 nd->flags |= LOOKUP_JUMPED;
2972 BUG_ON(nd->flags & LOOKUP_RCU);
2973 inode = path->dentry->d_inode;
2975 /* we _can_ be in RCU mode here */
2977 if (d_is_negative(path->dentry)) {
2978 path_to_nameidata(path, nd);
2982 if (should_follow_link(path->dentry, !symlink_ok)) {
2983 if (nd->flags & LOOKUP_RCU) {
2984 if (unlikely(unlazy_walk(nd, path->dentry))) {
2989 BUG_ON(inode != path->dentry->d_inode);
2993 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2994 path_to_nameidata(path, nd);
2996 save_parent.dentry = nd->path.dentry;
2997 save_parent.mnt = mntget(path->mnt);
2998 nd->path.dentry = path->dentry;
3002 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3004 error = complete_walk(nd);
3006 path_put(&save_parent);
3009 audit_inode(name, nd->path.dentry, 0);
3011 if ((open_flag & O_CREAT) &&
3012 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3015 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3017 if (!S_ISREG(nd->inode->i_mode))
3018 will_truncate = false;
3020 if (will_truncate) {
3021 error = mnt_want_write(nd->path.mnt);
3026 finish_open_created:
3027 error = may_open(&nd->path, acc_mode, open_flag);
3030 file->f_path.mnt = nd->path.mnt;
3031 error = finish_open(file, nd->path.dentry, NULL, opened);
3033 if (error == -EOPENSTALE)
3038 error = open_check_o_direct(file);
3041 error = ima_file_check(file, op->acc_mode);
3045 if (will_truncate) {
3046 error = handle_truncate(file);
3052 mnt_drop_write(nd->path.mnt);
3053 path_put(&save_parent);
3058 path_put_conditional(path, nd);
3065 /* If no saved parent or already retried then can't retry */
3066 if (!save_parent.dentry || retried)
3069 BUG_ON(save_parent.dentry != dir);
3070 path_put(&nd->path);
3071 nd->path = save_parent;
3072 nd->inode = dir->d_inode;
3073 save_parent.mnt = NULL;
3074 save_parent.dentry = NULL;
3076 mnt_drop_write(nd->path.mnt);
3083 static int do_tmpfile(int dfd, struct filename *pathname,
3084 struct nameidata *nd, int flags,
3085 const struct open_flags *op,
3086 struct file *file, int *opened)
3088 static const struct qstr name = QSTR_INIT("/", 1);
3089 struct dentry *dentry, *child;
3091 int error = path_lookupat(dfd, pathname->name,
3092 flags | LOOKUP_DIRECTORY, nd);
3093 if (unlikely(error))
3095 error = mnt_want_write(nd->path.mnt);
3096 if (unlikely(error))
3098 /* we want directory to be writable */
3099 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3102 dentry = nd->path.dentry;
3103 dir = dentry->d_inode;
3104 if (!dir->i_op->tmpfile) {
3105 error = -EOPNOTSUPP;
3108 child = d_alloc(dentry, &name);
3109 if (unlikely(!child)) {
3113 nd->flags &= ~LOOKUP_DIRECTORY;
3114 nd->flags |= op->intent;
3115 dput(nd->path.dentry);
3116 nd->path.dentry = child;
3117 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3120 audit_inode(pathname, nd->path.dentry, 0);
3121 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3124 file->f_path.mnt = nd->path.mnt;
3125 error = finish_open(file, nd->path.dentry, NULL, opened);
3128 error = open_check_o_direct(file);
3131 } else if (!(op->open_flag & O_EXCL)) {
3132 struct inode *inode = file_inode(file);
3133 spin_lock(&inode->i_lock);
3134 inode->i_state |= I_LINKABLE;
3135 spin_unlock(&inode->i_lock);
3138 mnt_drop_write(nd->path.mnt);
3140 path_put(&nd->path);
3144 static struct file *path_openat(int dfd, struct filename *pathname,
3145 struct nameidata *nd, const struct open_flags *op, int flags)
3147 struct file *base = NULL;
3153 file = get_empty_filp();
3157 file->f_flags = op->open_flag;
3159 if (unlikely(file->f_flags & __O_TMPFILE)) {
3160 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3164 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3165 if (unlikely(error))
3168 current->total_link_count = 0;
3169 error = link_path_walk(pathname->name, nd);
3170 if (unlikely(error))
3173 error = do_last(nd, &path, file, op, &opened, pathname);
3174 while (unlikely(error > 0)) { /* trailing symlink */
3175 struct path link = path;
3177 if (!(nd->flags & LOOKUP_FOLLOW)) {
3178 path_put_conditional(&path, nd);
3179 path_put(&nd->path);
3183 error = may_follow_link(&link, nd);
3184 if (unlikely(error))
3186 nd->flags |= LOOKUP_PARENT;
3187 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3188 error = follow_link(&link, nd, &cookie);
3189 if (unlikely(error))
3191 error = do_last(nd, &path, file, op, &opened, pathname);
3192 put_link(nd, &link, cookie);
3195 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3196 path_put(&nd->root);
3199 if (!(opened & FILE_OPENED)) {
3203 if (unlikely(error)) {
3204 if (error == -EOPENSTALE) {
3205 if (flags & LOOKUP_RCU)
3210 file = ERR_PTR(error);
3215 struct file *do_filp_open(int dfd, struct filename *pathname,
3216 const struct open_flags *op)
3218 struct nameidata nd;
3219 int flags = op->lookup_flags;
3222 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3223 if (unlikely(filp == ERR_PTR(-ECHILD)))
3224 filp = path_openat(dfd, pathname, &nd, op, flags);
3225 if (unlikely(filp == ERR_PTR(-ESTALE)))
3226 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3230 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3231 const char *name, const struct open_flags *op)
3233 struct nameidata nd;
3235 struct filename filename = { .name = name };
3236 int flags = op->lookup_flags | LOOKUP_ROOT;
3239 nd.root.dentry = dentry;
3241 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3242 return ERR_PTR(-ELOOP);
3244 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3245 if (unlikely(file == ERR_PTR(-ECHILD)))
3246 file = path_openat(-1, &filename, &nd, op, flags);
3247 if (unlikely(file == ERR_PTR(-ESTALE)))
3248 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3252 struct dentry *kern_path_create(int dfd, const char *pathname,
3253 struct path *path, unsigned int lookup_flags)
3255 struct dentry *dentry = ERR_PTR(-EEXIST);
3256 struct nameidata nd;
3259 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3262 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3263 * other flags passed in are ignored!
3265 lookup_flags &= LOOKUP_REVAL;
3267 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3269 return ERR_PTR(error);
3272 * Yucky last component or no last component at all?
3273 * (foo/., foo/.., /////)
3275 if (nd.last_type != LAST_NORM)
3277 nd.flags &= ~LOOKUP_PARENT;
3278 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3280 /* don't fail immediately if it's r/o, at least try to report other errors */
3281 err2 = mnt_want_write(nd.path.mnt);
3283 * Do the final lookup.
3285 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3286 dentry = lookup_hash(&nd);
3291 if (d_is_positive(dentry))
3295 * Special case - lookup gave negative, but... we had foo/bar/
3296 * From the vfs_mknod() POV we just have a negative dentry -
3297 * all is fine. Let's be bastards - you had / on the end, you've
3298 * been asking for (non-existent) directory. -ENOENT for you.
3300 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3304 if (unlikely(err2)) {
3312 dentry = ERR_PTR(error);
3314 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3316 mnt_drop_write(nd.path.mnt);
3321 EXPORT_SYMBOL(kern_path_create);
3323 void done_path_create(struct path *path, struct dentry *dentry)
3326 mutex_unlock(&path->dentry->d_inode->i_mutex);
3327 mnt_drop_write(path->mnt);
3330 EXPORT_SYMBOL(done_path_create);
3332 struct dentry *user_path_create(int dfd, const char __user *pathname,
3333 struct path *path, unsigned int lookup_flags)
3335 struct filename *tmp = getname(pathname);
3338 return ERR_CAST(tmp);
3339 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3343 EXPORT_SYMBOL(user_path_create);
3345 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3347 int error = may_create(dir, dentry);
3352 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3355 if (!dir->i_op->mknod)
3358 error = devcgroup_inode_mknod(mode, dev);
3362 error = security_inode_mknod(dir, dentry, mode, dev);
3366 error = dir->i_op->mknod(dir, dentry, mode, dev);
3368 fsnotify_create(dir, dentry);
3372 static int may_mknod(umode_t mode)
3374 switch (mode & S_IFMT) {
3380 case 0: /* zero mode translates to S_IFREG */
3389 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3392 struct dentry *dentry;
3395 unsigned int lookup_flags = 0;
3397 error = may_mknod(mode);
3401 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3403 return PTR_ERR(dentry);
3405 if (!IS_POSIXACL(path.dentry->d_inode))
3406 mode &= ~current_umask();
3407 error = security_path_mknod(&path, dentry, mode, dev);
3410 switch (mode & S_IFMT) {
3411 case 0: case S_IFREG:
3412 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3414 case S_IFCHR: case S_IFBLK:
3415 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3416 new_decode_dev(dev));
3418 case S_IFIFO: case S_IFSOCK:
3419 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3423 done_path_create(&path, dentry);
3424 if (retry_estale(error, lookup_flags)) {
3425 lookup_flags |= LOOKUP_REVAL;
3431 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3433 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3436 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3438 int error = may_create(dir, dentry);
3439 unsigned max_links = dir->i_sb->s_max_links;
3444 if (!dir->i_op->mkdir)
3447 mode &= (S_IRWXUGO|S_ISVTX);
3448 error = security_inode_mkdir(dir, dentry, mode);
3452 if (max_links && dir->i_nlink >= max_links)
3455 error = dir->i_op->mkdir(dir, dentry, mode);
3457 fsnotify_mkdir(dir, dentry);
3461 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3463 struct dentry *dentry;
3466 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3469 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3471 return PTR_ERR(dentry);
3473 if (!IS_POSIXACL(path.dentry->d_inode))
3474 mode &= ~current_umask();
3475 error = security_path_mkdir(&path, dentry, mode);
3477 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3478 done_path_create(&path, dentry);
3479 if (retry_estale(error, lookup_flags)) {
3480 lookup_flags |= LOOKUP_REVAL;
3486 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3488 return sys_mkdirat(AT_FDCWD, pathname, mode);
3492 * The dentry_unhash() helper will try to drop the dentry early: we
3493 * should have a usage count of 1 if we're the only user of this
3494 * dentry, and if that is true (possibly after pruning the dcache),
3495 * then we drop the dentry now.
3497 * A low-level filesystem can, if it choses, legally
3500 * if (!d_unhashed(dentry))
3503 * if it cannot handle the case of removing a directory
3504 * that is still in use by something else..
3506 void dentry_unhash(struct dentry *dentry)
3508 shrink_dcache_parent(dentry);
3509 spin_lock(&dentry->d_lock);
3510 if (dentry->d_lockref.count == 1)
3512 spin_unlock(&dentry->d_lock);
3515 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3517 int error = may_delete(dir, dentry, 1);
3522 if (!dir->i_op->rmdir)
3526 mutex_lock(&dentry->d_inode->i_mutex);
3529 if (d_mountpoint(dentry))
3532 error = security_inode_rmdir(dir, dentry);
3536 shrink_dcache_parent(dentry);
3537 error = dir->i_op->rmdir(dir, dentry);
3541 dentry->d_inode->i_flags |= S_DEAD;
3545 mutex_unlock(&dentry->d_inode->i_mutex);
3552 static long do_rmdir(int dfd, const char __user *pathname)
3555 struct filename *name;
3556 struct dentry *dentry;
3557 struct nameidata nd;
3558 unsigned int lookup_flags = 0;
3560 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3562 return PTR_ERR(name);
3564 switch(nd.last_type) {
3576 nd.flags &= ~LOOKUP_PARENT;
3577 error = mnt_want_write(nd.path.mnt);
3581 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3582 dentry = lookup_hash(&nd);
3583 error = PTR_ERR(dentry);
3586 if (!dentry->d_inode) {
3590 error = security_path_rmdir(&nd.path, dentry);
3593 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3597 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3598 mnt_drop_write(nd.path.mnt);
3602 if (retry_estale(error, lookup_flags)) {
3603 lookup_flags |= LOOKUP_REVAL;
3609 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3611 return do_rmdir(AT_FDCWD, pathname);
3615 * vfs_unlink - unlink a filesystem object
3616 * @dir: parent directory
3618 * @delegated_inode: returns victim inode, if the inode is delegated.
3620 * The caller must hold dir->i_mutex.
3622 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3623 * return a reference to the inode in delegated_inode. The caller
3624 * should then break the delegation on that inode and retry. Because
3625 * breaking a delegation may take a long time, the caller should drop
3626 * dir->i_mutex before doing so.
3628 * Alternatively, a caller may pass NULL for delegated_inode. This may
3629 * be appropriate for callers that expect the underlying filesystem not
3630 * to be NFS exported.
3632 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3634 struct inode *target = dentry->d_inode;
3635 int error = may_delete(dir, dentry, 0);
3640 if (!dir->i_op->unlink)
3643 mutex_lock(&target->i_mutex);
3644 if (d_mountpoint(dentry))
3647 error = security_inode_unlink(dir, dentry);
3649 error = try_break_deleg(target, delegated_inode);
3652 error = dir->i_op->unlink(dir, dentry);
3658 mutex_unlock(&target->i_mutex);
3660 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3661 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3662 fsnotify_link_count(target);
3670 * Make sure that the actual truncation of the file will occur outside its
3671 * directory's i_mutex. Truncate can take a long time if there is a lot of
3672 * writeout happening, and we don't want to prevent access to the directory
3673 * while waiting on the I/O.
3675 static long do_unlinkat(int dfd, const char __user *pathname)
3678 struct filename *name;
3679 struct dentry *dentry;
3680 struct nameidata nd;
3681 struct inode *inode = NULL;
3682 struct inode *delegated_inode = NULL;
3683 unsigned int lookup_flags = 0;
3685 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3687 return PTR_ERR(name);
3690 if (nd.last_type != LAST_NORM)
3693 nd.flags &= ~LOOKUP_PARENT;
3694 error = mnt_want_write(nd.path.mnt);
3698 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3699 dentry = lookup_hash(&nd);
3700 error = PTR_ERR(dentry);
3701 if (!IS_ERR(dentry)) {
3702 /* Why not before? Because we want correct error value */
3703 if (nd.last.name[nd.last.len])
3705 inode = dentry->d_inode;
3706 if (d_is_negative(dentry))
3709 error = security_path_unlink(&nd.path, dentry);
3712 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3716 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3718 iput(inode); /* truncate the inode here */
3720 if (delegated_inode) {
3721 error = break_deleg_wait(&delegated_inode);
3725 mnt_drop_write(nd.path.mnt);
3729 if (retry_estale(error, lookup_flags)) {
3730 lookup_flags |= LOOKUP_REVAL;
3737 if (d_is_negative(dentry))
3739 else if (d_is_directory(dentry) || d_is_autodir(dentry))
3746 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3748 if ((flag & ~AT_REMOVEDIR) != 0)
3751 if (flag & AT_REMOVEDIR)
3752 return do_rmdir(dfd, pathname);
3754 return do_unlinkat(dfd, pathname);
3757 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3759 return do_unlinkat(AT_FDCWD, pathname);
3762 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3764 int error = may_create(dir, dentry);
3769 if (!dir->i_op->symlink)
3772 error = security_inode_symlink(dir, dentry, oldname);
3776 error = dir->i_op->symlink(dir, dentry, oldname);
3778 fsnotify_create(dir, dentry);
3782 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3783 int, newdfd, const char __user *, newname)
3786 struct filename *from;
3787 struct dentry *dentry;
3789 unsigned int lookup_flags = 0;
3791 from = getname(oldname);
3793 return PTR_ERR(from);
3795 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3796 error = PTR_ERR(dentry);
3800 error = security_path_symlink(&path, dentry, from->name);
3802 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3803 done_path_create(&path, dentry);
3804 if (retry_estale(error, lookup_flags)) {
3805 lookup_flags |= LOOKUP_REVAL;
3813 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3815 return sys_symlinkat(oldname, AT_FDCWD, newname);
3819 * vfs_link - create a new link
3820 * @old_dentry: object to be linked
3822 * @new_dentry: where to create the new link
3823 * @delegated_inode: returns inode needing a delegation break
3825 * The caller must hold dir->i_mutex
3827 * If vfs_link discovers a delegation on the to-be-linked file in need
3828 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3829 * inode in delegated_inode. The caller should then break the delegation
3830 * and retry. Because breaking a delegation may take a long time, the
3831 * caller should drop the i_mutex before doing so.
3833 * Alternatively, a caller may pass NULL for delegated_inode. This may
3834 * be appropriate for callers that expect the underlying filesystem not
3835 * to be NFS exported.
3837 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3839 struct inode *inode = old_dentry->d_inode;
3840 unsigned max_links = dir->i_sb->s_max_links;
3846 error = may_create(dir, new_dentry);
3850 if (dir->i_sb != inode->i_sb)
3854 * A link to an append-only or immutable file cannot be created.
3856 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3858 if (!dir->i_op->link)
3860 if (S_ISDIR(inode->i_mode))
3863 error = security_inode_link(old_dentry, dir, new_dentry);
3867 mutex_lock(&inode->i_mutex);
3868 /* Make sure we don't allow creating hardlink to an unlinked file */
3869 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3871 else if (max_links && inode->i_nlink >= max_links)
3874 error = try_break_deleg(inode, delegated_inode);
3876 error = dir->i_op->link(old_dentry, dir, new_dentry);
3879 if (!error && (inode->i_state & I_LINKABLE)) {
3880 spin_lock(&inode->i_lock);
3881 inode->i_state &= ~I_LINKABLE;
3882 spin_unlock(&inode->i_lock);
3884 mutex_unlock(&inode->i_mutex);
3886 fsnotify_link(dir, inode, new_dentry);
3891 * Hardlinks are often used in delicate situations. We avoid
3892 * security-related surprises by not following symlinks on the
3895 * We don't follow them on the oldname either to be compatible
3896 * with linux 2.0, and to avoid hard-linking to directories
3897 * and other special files. --ADM
3899 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3900 int, newdfd, const char __user *, newname, int, flags)
3902 struct dentry *new_dentry;
3903 struct path old_path, new_path;
3904 struct inode *delegated_inode = NULL;
3908 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3911 * To use null names we require CAP_DAC_READ_SEARCH
3912 * This ensures that not everyone will be able to create
3913 * handlink using the passed filedescriptor.
3915 if (flags & AT_EMPTY_PATH) {
3916 if (!capable(CAP_DAC_READ_SEARCH))
3921 if (flags & AT_SYMLINK_FOLLOW)
3922 how |= LOOKUP_FOLLOW;
3924 error = user_path_at(olddfd, oldname, how, &old_path);
3928 new_dentry = user_path_create(newdfd, newname, &new_path,
3929 (how & LOOKUP_REVAL));
3930 error = PTR_ERR(new_dentry);
3931 if (IS_ERR(new_dentry))
3935 if (old_path.mnt != new_path.mnt)
3937 error = may_linkat(&old_path);
3938 if (unlikely(error))
3940 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3943 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3945 done_path_create(&new_path, new_dentry);
3946 if (delegated_inode) {
3947 error = break_deleg_wait(&delegated_inode);
3951 if (retry_estale(error, how)) {
3952 how |= LOOKUP_REVAL;
3956 path_put(&old_path);
3961 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3963 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3967 * The worst of all namespace operations - renaming directory. "Perverted"
3968 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3970 * a) we can get into loop creation. Check is done in is_subdir().
3971 * b) race potential - two innocent renames can create a loop together.
3972 * That's where 4.4 screws up. Current fix: serialization on
3973 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3975 * c) we have to lock _four_ objects - parents and victim (if it exists),
3976 * and source (if it is not a directory).
3977 * And that - after we got ->i_mutex on parents (until then we don't know
3978 * whether the target exists). Solution: try to be smart with locking
3979 * order for inodes. We rely on the fact that tree topology may change
3980 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3981 * move will be locked. Thus we can rank directories by the tree
3982 * (ancestors first) and rank all non-directories after them.
3983 * That works since everybody except rename does "lock parent, lookup,
3984 * lock child" and rename is under ->s_vfs_rename_mutex.
3985 * HOWEVER, it relies on the assumption that any object with ->lookup()
3986 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3987 * we'd better make sure that there's no link(2) for them.
3988 * d) conversion from fhandle to dentry may come in the wrong moment - when
3989 * we are removing the target. Solution: we will have to grab ->i_mutex
3990 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3991 * ->i_mutex on parents, which works but leads to some truly excessive
3994 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3995 struct inode *new_dir, struct dentry *new_dentry)
3998 struct inode *target = new_dentry->d_inode;
3999 unsigned max_links = new_dir->i_sb->s_max_links;
4002 * If we are going to change the parent - check write permissions,
4003 * we'll need to flip '..'.
4005 if (new_dir != old_dir) {
4006 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
4011 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4017 mutex_lock(&target->i_mutex);
4020 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4024 if (max_links && !target && new_dir != old_dir &&
4025 new_dir->i_nlink >= max_links)
4029 shrink_dcache_parent(new_dentry);
4030 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4035 target->i_flags |= S_DEAD;
4036 dont_mount(new_dentry);
4040 mutex_unlock(&target->i_mutex);
4043 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4044 d_move(old_dentry,new_dentry);
4048 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4049 struct inode *new_dir, struct dentry *new_dentry,
4050 struct inode **delegated_inode)
4052 struct inode *target = new_dentry->d_inode;
4053 struct inode *source = old_dentry->d_inode;
4056 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4061 lock_two_nondirectories(source, target);
4064 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4067 error = try_break_deleg(source, delegated_inode);
4071 error = try_break_deleg(target, delegated_inode);
4075 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4080 dont_mount(new_dentry);
4081 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4082 d_move(old_dentry, new_dentry);
4084 unlock_two_nondirectories(source, target);
4090 * vfs_rename - rename a filesystem object
4091 * @old_dir: parent of source
4092 * @old_dentry: source
4093 * @new_dir: parent of destination
4094 * @new_dentry: destination
4095 * @delegated_inode: returns an inode needing a delegation break
4097 * The caller must hold multiple mutexes--see lock_rename()).
4099 * If vfs_rename discovers a delegation in need of breaking at either
4100 * the source or destination, it will return -EWOULDBLOCK and return a
4101 * reference to the inode in delegated_inode. The caller should then
4102 * break the delegation and retry. Because breaking a delegation may
4103 * take a long time, the caller should drop all locks before doing
4106 * Alternatively, a caller may pass NULL for delegated_inode. This may
4107 * be appropriate for callers that expect the underlying filesystem not
4108 * to be NFS exported.
4110 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4111 struct inode *new_dir, struct dentry *new_dentry,
4112 struct inode **delegated_inode)
4115 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4116 const unsigned char *old_name;
4118 if (old_dentry->d_inode == new_dentry->d_inode)
4121 error = may_delete(old_dir, old_dentry, is_dir);
4125 if (!new_dentry->d_inode)
4126 error = may_create(new_dir, new_dentry);
4128 error = may_delete(new_dir, new_dentry, is_dir);
4132 if (!old_dir->i_op->rename)
4135 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4138 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4140 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4142 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4143 new_dentry->d_inode, old_dentry);
4144 fsnotify_oldname_free(old_name);
4149 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4150 int, newdfd, const char __user *, newname)
4152 struct dentry *old_dir, *new_dir;
4153 struct dentry *old_dentry, *new_dentry;
4154 struct dentry *trap;
4155 struct nameidata oldnd, newnd;
4156 struct inode *delegated_inode = NULL;
4157 struct filename *from;
4158 struct filename *to;
4159 unsigned int lookup_flags = 0;
4160 bool should_retry = false;
4163 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4165 error = PTR_ERR(from);
4169 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4171 error = PTR_ERR(to);
4176 if (oldnd.path.mnt != newnd.path.mnt)
4179 old_dir = oldnd.path.dentry;
4181 if (oldnd.last_type != LAST_NORM)
4184 new_dir = newnd.path.dentry;
4185 if (newnd.last_type != LAST_NORM)
4188 error = mnt_want_write(oldnd.path.mnt);
4192 oldnd.flags &= ~LOOKUP_PARENT;
4193 newnd.flags &= ~LOOKUP_PARENT;
4194 newnd.flags |= LOOKUP_RENAME_TARGET;
4197 trap = lock_rename(new_dir, old_dir);
4199 old_dentry = lookup_hash(&oldnd);
4200 error = PTR_ERR(old_dentry);
4201 if (IS_ERR(old_dentry))
4203 /* source must exist */
4205 if (d_is_negative(old_dentry))
4207 /* unless the source is a directory trailing slashes give -ENOTDIR */
4208 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4210 if (oldnd.last.name[oldnd.last.len])
4212 if (newnd.last.name[newnd.last.len])
4215 /* source should not be ancestor of target */
4217 if (old_dentry == trap)
4219 new_dentry = lookup_hash(&newnd);
4220 error = PTR_ERR(new_dentry);
4221 if (IS_ERR(new_dentry))
4223 /* target should not be an ancestor of source */
4225 if (new_dentry == trap)
4228 error = security_path_rename(&oldnd.path, old_dentry,
4229 &newnd.path, new_dentry);
4232 error = vfs_rename(old_dir->d_inode, old_dentry,
4233 new_dir->d_inode, new_dentry,
4240 unlock_rename(new_dir, old_dir);
4241 if (delegated_inode) {
4242 error = break_deleg_wait(&delegated_inode);
4246 mnt_drop_write(oldnd.path.mnt);
4248 if (retry_estale(error, lookup_flags))
4249 should_retry = true;
4250 path_put(&newnd.path);
4253 path_put(&oldnd.path);
4256 should_retry = false;
4257 lookup_flags |= LOOKUP_REVAL;
4264 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4266 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4269 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4273 len = PTR_ERR(link);
4278 if (len > (unsigned) buflen)
4280 if (copy_to_user(buffer, link, len))
4287 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4288 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4289 * using) it for any given inode is up to filesystem.
4291 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4293 struct nameidata nd;
4298 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4300 return PTR_ERR(cookie);
4302 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4303 if (dentry->d_inode->i_op->put_link)
4304 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4308 /* get the link contents into pagecache */
4309 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4313 struct address_space *mapping = dentry->d_inode->i_mapping;
4314 page = read_mapping_page(mapping, 0, NULL);
4319 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4323 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4325 struct page *page = NULL;
4326 char *s = page_getlink(dentry, &page);
4327 int res = vfs_readlink(dentry,buffer,buflen,s);
4330 page_cache_release(page);
4335 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4337 struct page *page = NULL;
4338 nd_set_link(nd, page_getlink(dentry, &page));
4342 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4344 struct page *page = cookie;
4348 page_cache_release(page);
4353 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4355 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4357 struct address_space *mapping = inode->i_mapping;
4362 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4364 flags |= AOP_FLAG_NOFS;
4367 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4368 flags, &page, &fsdata);
4372 kaddr = kmap_atomic(page);
4373 memcpy(kaddr, symname, len-1);
4374 kunmap_atomic(kaddr);
4376 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4383 mark_inode_dirty(inode);
4389 int page_symlink(struct inode *inode, const char *symname, int len)
4391 return __page_symlink(inode, symname, len,
4392 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4395 const struct inode_operations page_symlink_inode_operations = {
4396 .readlink = generic_readlink,
4397 .follow_link = page_follow_link_light,
4398 .put_link = page_put_link,
4401 EXPORT_SYMBOL(user_path_at);
4402 EXPORT_SYMBOL(follow_down_one);
4403 EXPORT_SYMBOL(follow_down);
4404 EXPORT_SYMBOL(follow_up);
4405 EXPORT_SYMBOL(get_write_access); /* nfsd */
4406 EXPORT_SYMBOL(lock_rename);
4407 EXPORT_SYMBOL(lookup_one_len);
4408 EXPORT_SYMBOL(page_follow_link_light);
4409 EXPORT_SYMBOL(page_put_link);
4410 EXPORT_SYMBOL(page_readlink);
4411 EXPORT_SYMBOL(__page_symlink);
4412 EXPORT_SYMBOL(page_symlink);
4413 EXPORT_SYMBOL(page_symlink_inode_operations);
4414 EXPORT_SYMBOL(kern_path);
4415 EXPORT_SYMBOL(vfs_path_lookup);
4416 EXPORT_SYMBOL(inode_permission);
4417 EXPORT_SYMBOL(unlock_rename);
4418 EXPORT_SYMBOL(vfs_create);
4419 EXPORT_SYMBOL(vfs_link);
4420 EXPORT_SYMBOL(vfs_mkdir);
4421 EXPORT_SYMBOL(vfs_mknod);
4422 EXPORT_SYMBOL(generic_permission);
4423 EXPORT_SYMBOL(vfs_readlink);
4424 EXPORT_SYMBOL(vfs_rename);
4425 EXPORT_SYMBOL(vfs_rmdir);
4426 EXPORT_SYMBOL(vfs_symlink);
4427 EXPORT_SYMBOL(vfs_unlink);
4428 EXPORT_SYMBOL(dentry_unhash);
4429 EXPORT_SYMBOL(generic_readlink);