Treat writes as new when holes span across page boundaries
[firefly-linux-kernel-4.4.55.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63                    (unsigned long long)iblock, bh_result, create);
64
65         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69                      (unsigned long long)iblock);
70                 goto bail;
71         }
72
73         status = ocfs2_read_inode_block(inode, &bh);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81                                                     le32_to_cpu(fe->i_clusters))) {
82                 mlog(ML_ERROR, "block offset is outside the allocated size: "
83                      "%llu\n", (unsigned long long)iblock);
84                 goto bail;
85         }
86
87         /* We don't use the page cache to create symlink data, so if
88          * need be, copy it over from the buffer cache. */
89         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91                             iblock;
92                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93                 if (!buffer_cache_bh) {
94                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95                         goto bail;
96                 }
97
98                 /* we haven't locked out transactions, so a commit
99                  * could've happened. Since we've got a reference on
100                  * the bh, even if it commits while we're doing the
101                  * copy, the data is still good. */
102                 if (buffer_jbd(buffer_cache_bh)
103                     && ocfs2_inode_is_new(inode)) {
104                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105                         if (!kaddr) {
106                                 mlog(ML_ERROR, "couldn't kmap!\n");
107                                 goto bail;
108                         }
109                         memcpy(kaddr + (bh_result->b_size * iblock),
110                                buffer_cache_bh->b_data,
111                                bh_result->b_size);
112                         kunmap_atomic(kaddr, KM_USER0);
113                         set_buffer_uptodate(bh_result);
114                 }
115                 brelse(buffer_cache_bh);
116         }
117
118         map_bh(bh_result, inode->i_sb,
119                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121         err = 0;
122
123 bail:
124         brelse(bh);
125
126         mlog_exit(err);
127         return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131                     struct buffer_head *bh_result, int create)
132 {
133         int err = 0;
134         unsigned int ext_flags;
135         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136         u64 p_blkno, count, past_eof;
137         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140                    (unsigned long long)iblock, bh_result, create);
141
142         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144                      inode, inode->i_ino);
145
146         if (S_ISLNK(inode->i_mode)) {
147                 /* this always does I/O for some reason. */
148                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149                 goto bail;
150         }
151
152         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153                                           &ext_flags);
154         if (err) {
155                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157                      (unsigned long long)p_blkno);
158                 goto bail;
159         }
160
161         if (max_blocks < count)
162                 count = max_blocks;
163
164         /*
165          * ocfs2 never allocates in this function - the only time we
166          * need to use BH_New is when we're extending i_size on a file
167          * system which doesn't support holes, in which case BH_New
168          * allows block_prepare_write() to zero.
169          *
170          * If we see this on a sparse file system, then a truncate has
171          * raced us and removed the cluster. In this case, we clear
172          * the buffers dirty and uptodate bits and let the buffer code
173          * ignore it as a hole.
174          */
175         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176                 clear_buffer_dirty(bh_result);
177                 clear_buffer_uptodate(bh_result);
178                 goto bail;
179         }
180
181         /* Treat the unwritten extent as a hole for zeroing purposes. */
182         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183                 map_bh(bh_result, inode->i_sb, p_blkno);
184
185         bh_result->b_size = count << inode->i_blkbits;
186
187         if (!ocfs2_sparse_alloc(osb)) {
188                 if (p_blkno == 0) {
189                         err = -EIO;
190                         mlog(ML_ERROR,
191                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192                              (unsigned long long)iblock,
193                              (unsigned long long)p_blkno,
194                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
195                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196                         dump_stack();
197                         goto bail;
198                 }
199
200                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202                      (unsigned long long)past_eof);
203
204                 if (create && (iblock >= past_eof))
205                         set_buffer_new(bh_result);
206         }
207
208 bail:
209         if (err < 0)
210                 err = -EIO;
211
212         mlog_exit(err);
213         return err;
214 }
215
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217                            struct buffer_head *di_bh)
218 {
219         void *kaddr;
220         loff_t size;
221         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
226                 return -EROFS;
227         }
228
229         size = i_size_read(inode);
230
231         if (size > PAGE_CACHE_SIZE ||
232             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233                 ocfs2_error(inode->i_sb,
234                             "Inode %llu has with inline data has bad size: %Lu",
235                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
236                             (unsigned long long)size);
237                 return -EROFS;
238         }
239
240         kaddr = kmap_atomic(page, KM_USER0);
241         if (size)
242                 memcpy(kaddr, di->id2.i_data.id_data, size);
243         /* Clear the remaining part of the page */
244         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245         flush_dcache_page(page);
246         kunmap_atomic(kaddr, KM_USER0);
247
248         SetPageUptodate(page);
249
250         return 0;
251 }
252
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 {
255         int ret;
256         struct buffer_head *di_bh = NULL;
257
258         BUG_ON(!PageLocked(page));
259         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
260
261         ret = ocfs2_read_inode_block(inode, &di_bh);
262         if (ret) {
263                 mlog_errno(ret);
264                 goto out;
265         }
266
267         ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269         unlock_page(page);
270
271         brelse(di_bh);
272         return ret;
273 }
274
275 static int ocfs2_readpage(struct file *file, struct page *page)
276 {
277         struct inode *inode = page->mapping->host;
278         struct ocfs2_inode_info *oi = OCFS2_I(inode);
279         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280         int ret, unlock = 1;
281
282         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283
284         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285         if (ret != 0) {
286                 if (ret == AOP_TRUNCATED_PAGE)
287                         unlock = 0;
288                 mlog_errno(ret);
289                 goto out;
290         }
291
292         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293                 ret = AOP_TRUNCATED_PAGE;
294                 goto out_inode_unlock;
295         }
296
297         /*
298          * i_size might have just been updated as we grabed the meta lock.  We
299          * might now be discovering a truncate that hit on another node.
300          * block_read_full_page->get_block freaks out if it is asked to read
301          * beyond the end of a file, so we check here.  Callers
302          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303          * and notice that the page they just read isn't needed.
304          *
305          * XXX sys_readahead() seems to get that wrong?
306          */
307         if (start >= i_size_read(inode)) {
308                 zero_user(page, 0, PAGE_SIZE);
309                 SetPageUptodate(page);
310                 ret = 0;
311                 goto out_alloc;
312         }
313
314         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315                 ret = ocfs2_readpage_inline(inode, page);
316         else
317                 ret = block_read_full_page(page, ocfs2_get_block);
318         unlock = 0;
319
320 out_alloc:
321         up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323         ocfs2_inode_unlock(inode, 0);
324 out:
325         if (unlock)
326                 unlock_page(page);
327         mlog_exit(ret);
328         return ret;
329 }
330
331 /*
332  * This is used only for read-ahead. Failures or difficult to handle
333  * situations are safe to ignore.
334  *
335  * Right now, we don't bother with BH_Boundary - in-inode extent lists
336  * are quite large (243 extents on 4k blocks), so most inodes don't
337  * grow out to a tree. If need be, detecting boundary extents could
338  * trivially be added in a future version of ocfs2_get_block().
339  */
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341                            struct list_head *pages, unsigned nr_pages)
342 {
343         int ret, err = -EIO;
344         struct inode *inode = mapping->host;
345         struct ocfs2_inode_info *oi = OCFS2_I(inode);
346         loff_t start;
347         struct page *last;
348
349         /*
350          * Use the nonblocking flag for the dlm code to avoid page
351          * lock inversion, but don't bother with retrying.
352          */
353         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354         if (ret)
355                 return err;
356
357         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358                 ocfs2_inode_unlock(inode, 0);
359                 return err;
360         }
361
362         /*
363          * Don't bother with inline-data. There isn't anything
364          * to read-ahead in that case anyway...
365          */
366         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367                 goto out_unlock;
368
369         /*
370          * Check whether a remote node truncated this file - we just
371          * drop out in that case as it's not worth handling here.
372          */
373         last = list_entry(pages->prev, struct page, lru);
374         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375         if (start >= i_size_read(inode))
376                 goto out_unlock;
377
378         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379
380 out_unlock:
381         up_read(&oi->ip_alloc_sem);
382         ocfs2_inode_unlock(inode, 0);
383
384         return err;
385 }
386
387 /* Note: Because we don't support holes, our allocation has
388  * already happened (allocation writes zeros to the file data)
389  * so we don't have to worry about ordered writes in
390  * ocfs2_writepage.
391  *
392  * ->writepage is called during the process of invalidating the page cache
393  * during blocked lock processing.  It can't block on any cluster locks
394  * to during block mapping.  It's relying on the fact that the block
395  * mapping can't have disappeared under the dirty pages that it is
396  * being asked to write back.
397  */
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399 {
400         int ret;
401
402         mlog_entry("(0x%p)\n", page);
403
404         ret = block_write_full_page(page, ocfs2_get_block, wbc);
405
406         mlog_exit(ret);
407
408         return ret;
409 }
410
411 /*
412  * This is called from ocfs2_write_zero_page() which has handled it's
413  * own cluster locking and has ensured allocation exists for those
414  * blocks to be written.
415  */
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417                                unsigned from, unsigned to)
418 {
419         int ret;
420
421         ret = block_prepare_write(page, from, to, ocfs2_get_block);
422
423         return ret;
424 }
425
426 /* Taken from ext3. We don't necessarily need the full blown
427  * functionality yet, but IMHO it's better to cut and paste the whole
428  * thing so we can avoid introducing our own bugs (and easily pick up
429  * their fixes when they happen) --Mark */
430 int walk_page_buffers(  handle_t *handle,
431                         struct buffer_head *head,
432                         unsigned from,
433                         unsigned to,
434                         int *partial,
435                         int (*fn)(      handle_t *handle,
436                                         struct buffer_head *bh))
437 {
438         struct buffer_head *bh;
439         unsigned block_start, block_end;
440         unsigned blocksize = head->b_size;
441         int err, ret = 0;
442         struct buffer_head *next;
443
444         for (   bh = head, block_start = 0;
445                 ret == 0 && (bh != head || !block_start);
446                 block_start = block_end, bh = next)
447         {
448                 next = bh->b_this_page;
449                 block_end = block_start + blocksize;
450                 if (block_end <= from || block_start >= to) {
451                         if (partial && !buffer_uptodate(bh))
452                                 *partial = 1;
453                         continue;
454                 }
455                 err = (*fn)(handle, bh);
456                 if (!ret)
457                         ret = err;
458         }
459         return ret;
460 }
461
462 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
463                                                          struct page *page,
464                                                          unsigned from,
465                                                          unsigned to)
466 {
467         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
468         handle_t *handle;
469         int ret = 0;
470
471         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
472         if (IS_ERR(handle)) {
473                 ret = -ENOMEM;
474                 mlog_errno(ret);
475                 goto out;
476         }
477
478         if (ocfs2_should_order_data(inode)) {
479                 ret = ocfs2_jbd2_file_inode(handle, inode);
480                 if (ret < 0)
481                         mlog_errno(ret);
482         }
483 out:
484         if (ret) {
485                 if (!IS_ERR(handle))
486                         ocfs2_commit_trans(osb, handle);
487                 handle = ERR_PTR(ret);
488         }
489         return handle;
490 }
491
492 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493 {
494         sector_t status;
495         u64 p_blkno = 0;
496         int err = 0;
497         struct inode *inode = mapping->host;
498
499         mlog_entry("(block = %llu)\n", (unsigned long long)block);
500
501         /* We don't need to lock journal system files, since they aren't
502          * accessed concurrently from multiple nodes.
503          */
504         if (!INODE_JOURNAL(inode)) {
505                 err = ocfs2_inode_lock(inode, NULL, 0);
506                 if (err) {
507                         if (err != -ENOENT)
508                                 mlog_errno(err);
509                         goto bail;
510                 }
511                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
512         }
513
514         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516                                                   NULL);
517
518         if (!INODE_JOURNAL(inode)) {
519                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
520                 ocfs2_inode_unlock(inode, 0);
521         }
522
523         if (err) {
524                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525                      (unsigned long long)block);
526                 mlog_errno(err);
527                 goto bail;
528         }
529
530 bail:
531         status = err ? 0 : p_blkno;
532
533         mlog_exit((int)status);
534
535         return status;
536 }
537
538 /*
539  * TODO: Make this into a generic get_blocks function.
540  *
541  * From do_direct_io in direct-io.c:
542  *  "So what we do is to permit the ->get_blocks function to populate
543  *   bh.b_size with the size of IO which is permitted at this offset and
544  *   this i_blkbits."
545  *
546  * This function is called directly from get_more_blocks in direct-io.c.
547  *
548  * called like this: dio->get_blocks(dio->inode, fs_startblk,
549  *                                      fs_count, map_bh, dio->rw == WRITE);
550  */
551 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
552                                      struct buffer_head *bh_result, int create)
553 {
554         int ret;
555         u64 p_blkno, inode_blocks, contig_blocks;
556         unsigned int ext_flags;
557         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
558         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
559
560         /* This function won't even be called if the request isn't all
561          * nicely aligned and of the right size, so there's no need
562          * for us to check any of that. */
563
564         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
565
566         /*
567          * Any write past EOF is not allowed because we'd be extending.
568          */
569         if (create && (iblock + max_blocks) > inode_blocks) {
570                 ret = -EIO;
571                 goto bail;
572         }
573
574         /* This figures out the size of the next contiguous block, and
575          * our logical offset */
576         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577                                           &contig_blocks, &ext_flags);
578         if (ret) {
579                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580                      (unsigned long long)iblock);
581                 ret = -EIO;
582                 goto bail;
583         }
584
585         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
586                 ocfs2_error(inode->i_sb,
587                             "Inode %llu has a hole at block %llu\n",
588                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
589                             (unsigned long long)iblock);
590                 ret = -EROFS;
591                 goto bail;
592         }
593
594         /* We should already CoW the refcounted extent in case of create. */
595         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
596
597         /*
598          * get_more_blocks() expects us to describe a hole by clearing
599          * the mapped bit on bh_result().
600          *
601          * Consider an unwritten extent as a hole.
602          */
603         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
604                 map_bh(bh_result, inode->i_sb, p_blkno);
605         else {
606                 /*
607                  * ocfs2_prepare_inode_for_write() should have caught
608                  * the case where we'd be filling a hole and triggered
609                  * a buffered write instead.
610                  */
611                 if (create) {
612                         ret = -EIO;
613                         mlog_errno(ret);
614                         goto bail;
615                 }
616
617                 clear_buffer_mapped(bh_result);
618         }
619
620         /* make sure we don't map more than max_blocks blocks here as
621            that's all the kernel will handle at this point. */
622         if (max_blocks < contig_blocks)
623                 contig_blocks = max_blocks;
624         bh_result->b_size = contig_blocks << blocksize_bits;
625 bail:
626         return ret;
627 }
628
629 /* 
630  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
631  * particularly interested in the aio/dio case.  Like the core uses
632  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
633  * truncation on another.
634  */
635 static void ocfs2_dio_end_io(struct kiocb *iocb,
636                              loff_t offset,
637                              ssize_t bytes,
638                              void *private)
639 {
640         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
641         int level;
642
643         /* this io's submitter should not have unlocked this before we could */
644         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
645
646         ocfs2_iocb_clear_rw_locked(iocb);
647
648         level = ocfs2_iocb_rw_locked_level(iocb);
649         if (!level)
650                 up_read(&inode->i_alloc_sem);
651         ocfs2_rw_unlock(inode, level);
652 }
653
654 /*
655  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
656  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
657  * do journalled data.
658  */
659 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
660 {
661         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
662
663         jbd2_journal_invalidatepage(journal, page, offset);
664 }
665
666 static int ocfs2_releasepage(struct page *page, gfp_t wait)
667 {
668         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
669
670         if (!page_has_buffers(page))
671                 return 0;
672         return jbd2_journal_try_to_free_buffers(journal, page, wait);
673 }
674
675 static ssize_t ocfs2_direct_IO(int rw,
676                                struct kiocb *iocb,
677                                const struct iovec *iov,
678                                loff_t offset,
679                                unsigned long nr_segs)
680 {
681         struct file *file = iocb->ki_filp;
682         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
683         int ret;
684
685         mlog_entry_void();
686
687         /*
688          * Fallback to buffered I/O if we see an inode without
689          * extents.
690          */
691         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
692                 return 0;
693
694         /* Fallback to buffered I/O if we are appending. */
695         if (i_size_read(inode) <= offset)
696                 return 0;
697
698         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
699                                             inode->i_sb->s_bdev, iov, offset,
700                                             nr_segs, 
701                                             ocfs2_direct_IO_get_blocks,
702                                             ocfs2_dio_end_io);
703
704         mlog_exit(ret);
705         return ret;
706 }
707
708 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
709                                             u32 cpos,
710                                             unsigned int *start,
711                                             unsigned int *end)
712 {
713         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
714
715         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
716                 unsigned int cpp;
717
718                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
719
720                 cluster_start = cpos % cpp;
721                 cluster_start = cluster_start << osb->s_clustersize_bits;
722
723                 cluster_end = cluster_start + osb->s_clustersize;
724         }
725
726         BUG_ON(cluster_start > PAGE_SIZE);
727         BUG_ON(cluster_end > PAGE_SIZE);
728
729         if (start)
730                 *start = cluster_start;
731         if (end)
732                 *end = cluster_end;
733 }
734
735 /*
736  * 'from' and 'to' are the region in the page to avoid zeroing.
737  *
738  * If pagesize > clustersize, this function will avoid zeroing outside
739  * of the cluster boundary.
740  *
741  * from == to == 0 is code for "zero the entire cluster region"
742  */
743 static void ocfs2_clear_page_regions(struct page *page,
744                                      struct ocfs2_super *osb, u32 cpos,
745                                      unsigned from, unsigned to)
746 {
747         void *kaddr;
748         unsigned int cluster_start, cluster_end;
749
750         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
751
752         kaddr = kmap_atomic(page, KM_USER0);
753
754         if (from || to) {
755                 if (from > cluster_start)
756                         memset(kaddr + cluster_start, 0, from - cluster_start);
757                 if (to < cluster_end)
758                         memset(kaddr + to, 0, cluster_end - to);
759         } else {
760                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
761         }
762
763         kunmap_atomic(kaddr, KM_USER0);
764 }
765
766 /*
767  * Nonsparse file systems fully allocate before we get to the write
768  * code. This prevents ocfs2_write() from tagging the write as an
769  * allocating one, which means ocfs2_map_page_blocks() might try to
770  * read-in the blocks at the tail of our file. Avoid reading them by
771  * testing i_size against each block offset.
772  */
773 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
774                                  unsigned int block_start)
775 {
776         u64 offset = page_offset(page) + block_start;
777
778         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
779                 return 1;
780
781         if (i_size_read(inode) > offset)
782                 return 1;
783
784         return 0;
785 }
786
787 /*
788  * Some of this taken from block_prepare_write(). We already have our
789  * mapping by now though, and the entire write will be allocating or
790  * it won't, so not much need to use BH_New.
791  *
792  * This will also skip zeroing, which is handled externally.
793  */
794 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
795                           struct inode *inode, unsigned int from,
796                           unsigned int to, int new)
797 {
798         int ret = 0;
799         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
800         unsigned int block_end, block_start;
801         unsigned int bsize = 1 << inode->i_blkbits;
802
803         if (!page_has_buffers(page))
804                 create_empty_buffers(page, bsize, 0);
805
806         head = page_buffers(page);
807         for (bh = head, block_start = 0; bh != head || !block_start;
808              bh = bh->b_this_page, block_start += bsize) {
809                 block_end = block_start + bsize;
810
811                 clear_buffer_new(bh);
812
813                 /*
814                  * Ignore blocks outside of our i/o range -
815                  * they may belong to unallocated clusters.
816                  */
817                 if (block_start >= to || block_end <= from) {
818                         if (PageUptodate(page))
819                                 set_buffer_uptodate(bh);
820                         continue;
821                 }
822
823                 /*
824                  * For an allocating write with cluster size >= page
825                  * size, we always write the entire page.
826                  */
827                 if (new)
828                         set_buffer_new(bh);
829
830                 if (!buffer_mapped(bh)) {
831                         map_bh(bh, inode->i_sb, *p_blkno);
832                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
833                 }
834
835                 if (PageUptodate(page)) {
836                         if (!buffer_uptodate(bh))
837                                 set_buffer_uptodate(bh);
838                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
839                            !buffer_new(bh) &&
840                            ocfs2_should_read_blk(inode, page, block_start) &&
841                            (block_start < from || block_end > to)) {
842                         ll_rw_block(READ, 1, &bh);
843                         *wait_bh++=bh;
844                 }
845
846                 *p_blkno = *p_blkno + 1;
847         }
848
849         /*
850          * If we issued read requests - let them complete.
851          */
852         while(wait_bh > wait) {
853                 wait_on_buffer(*--wait_bh);
854                 if (!buffer_uptodate(*wait_bh))
855                         ret = -EIO;
856         }
857
858         if (ret == 0 || !new)
859                 return ret;
860
861         /*
862          * If we get -EIO above, zero out any newly allocated blocks
863          * to avoid exposing stale data.
864          */
865         bh = head;
866         block_start = 0;
867         do {
868                 block_end = block_start + bsize;
869                 if (block_end <= from)
870                         goto next_bh;
871                 if (block_start >= to)
872                         break;
873
874                 zero_user(page, block_start, bh->b_size);
875                 set_buffer_uptodate(bh);
876                 mark_buffer_dirty(bh);
877
878 next_bh:
879                 block_start = block_end;
880                 bh = bh->b_this_page;
881         } while (bh != head);
882
883         return ret;
884 }
885
886 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
887 #define OCFS2_MAX_CTXT_PAGES    1
888 #else
889 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
890 #endif
891
892 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
893
894 /*
895  * Describe the state of a single cluster to be written to.
896  */
897 struct ocfs2_write_cluster_desc {
898         u32             c_cpos;
899         u32             c_phys;
900         /*
901          * Give this a unique field because c_phys eventually gets
902          * filled.
903          */
904         unsigned        c_new;
905         unsigned        c_unwritten;
906         unsigned        c_needs_zero;
907 };
908
909 struct ocfs2_write_ctxt {
910         /* Logical cluster position / len of write */
911         u32                             w_cpos;
912         u32                             w_clen;
913
914         /* First cluster allocated in a nonsparse extend */
915         u32                             w_first_new_cpos;
916
917         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
918
919         /*
920          * This is true if page_size > cluster_size.
921          *
922          * It triggers a set of special cases during write which might
923          * have to deal with allocating writes to partial pages.
924          */
925         unsigned int                    w_large_pages;
926
927         /*
928          * Pages involved in this write.
929          *
930          * w_target_page is the page being written to by the user.
931          *
932          * w_pages is an array of pages which always contains
933          * w_target_page, and in the case of an allocating write with
934          * page_size < cluster size, it will contain zero'd and mapped
935          * pages adjacent to w_target_page which need to be written
936          * out in so that future reads from that region will get
937          * zero's.
938          */
939         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
940         unsigned int                    w_num_pages;
941         struct page                     *w_target_page;
942
943         /*
944          * ocfs2_write_end() uses this to know what the real range to
945          * write in the target should be.
946          */
947         unsigned int                    w_target_from;
948         unsigned int                    w_target_to;
949
950         /*
951          * We could use journal_current_handle() but this is cleaner,
952          * IMHO -Mark
953          */
954         handle_t                        *w_handle;
955
956         struct buffer_head              *w_di_bh;
957
958         struct ocfs2_cached_dealloc_ctxt w_dealloc;
959 };
960
961 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
962 {
963         int i;
964
965         for(i = 0; i < num_pages; i++) {
966                 if (pages[i]) {
967                         unlock_page(pages[i]);
968                         mark_page_accessed(pages[i]);
969                         page_cache_release(pages[i]);
970                 }
971         }
972 }
973
974 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
975 {
976         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
977
978         brelse(wc->w_di_bh);
979         kfree(wc);
980 }
981
982 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
983                                   struct ocfs2_super *osb, loff_t pos,
984                                   unsigned len, struct buffer_head *di_bh)
985 {
986         u32 cend;
987         struct ocfs2_write_ctxt *wc;
988
989         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
990         if (!wc)
991                 return -ENOMEM;
992
993         wc->w_cpos = pos >> osb->s_clustersize_bits;
994         wc->w_first_new_cpos = UINT_MAX;
995         cend = (pos + len - 1) >> osb->s_clustersize_bits;
996         wc->w_clen = cend - wc->w_cpos + 1;
997         get_bh(di_bh);
998         wc->w_di_bh = di_bh;
999
1000         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1001                 wc->w_large_pages = 1;
1002         else
1003                 wc->w_large_pages = 0;
1004
1005         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1006
1007         *wcp = wc;
1008
1009         return 0;
1010 }
1011
1012 /*
1013  * If a page has any new buffers, zero them out here, and mark them uptodate
1014  * and dirty so they'll be written out (in order to prevent uninitialised
1015  * block data from leaking). And clear the new bit.
1016  */
1017 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1018 {
1019         unsigned int block_start, block_end;
1020         struct buffer_head *head, *bh;
1021
1022         BUG_ON(!PageLocked(page));
1023         if (!page_has_buffers(page))
1024                 return;
1025
1026         bh = head = page_buffers(page);
1027         block_start = 0;
1028         do {
1029                 block_end = block_start + bh->b_size;
1030
1031                 if (buffer_new(bh)) {
1032                         if (block_end > from && block_start < to) {
1033                                 if (!PageUptodate(page)) {
1034                                         unsigned start, end;
1035
1036                                         start = max(from, block_start);
1037                                         end = min(to, block_end);
1038
1039                                         zero_user_segment(page, start, end);
1040                                         set_buffer_uptodate(bh);
1041                                 }
1042
1043                                 clear_buffer_new(bh);
1044                                 mark_buffer_dirty(bh);
1045                         }
1046                 }
1047
1048                 block_start = block_end;
1049                 bh = bh->b_this_page;
1050         } while (bh != head);
1051 }
1052
1053 /*
1054  * Only called when we have a failure during allocating write to write
1055  * zero's to the newly allocated region.
1056  */
1057 static void ocfs2_write_failure(struct inode *inode,
1058                                 struct ocfs2_write_ctxt *wc,
1059                                 loff_t user_pos, unsigned user_len)
1060 {
1061         int i;
1062         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1063                 to = user_pos + user_len;
1064         struct page *tmppage;
1065
1066         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1067
1068         for(i = 0; i < wc->w_num_pages; i++) {
1069                 tmppage = wc->w_pages[i];
1070
1071                 if (page_has_buffers(tmppage)) {
1072                         if (ocfs2_should_order_data(inode))
1073                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1074
1075                         block_commit_write(tmppage, from, to);
1076                 }
1077         }
1078 }
1079
1080 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1081                                         struct ocfs2_write_ctxt *wc,
1082                                         struct page *page, u32 cpos,
1083                                         loff_t user_pos, unsigned user_len,
1084                                         int new)
1085 {
1086         int ret;
1087         unsigned int map_from = 0, map_to = 0;
1088         unsigned int cluster_start, cluster_end;
1089         unsigned int user_data_from = 0, user_data_to = 0;
1090
1091         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1092                                         &cluster_start, &cluster_end);
1093
1094         /* treat the write as new if the a hole/lseek spanned across
1095          * the page boundary.
1096          */
1097         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1098                         (page_offset(page) <= user_pos));
1099
1100         if (page == wc->w_target_page) {
1101                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1102                 map_to = map_from + user_len;
1103
1104                 if (new)
1105                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1106                                                     cluster_start, cluster_end,
1107                                                     new);
1108                 else
1109                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1110                                                     map_from, map_to, new);
1111                 if (ret) {
1112                         mlog_errno(ret);
1113                         goto out;
1114                 }
1115
1116                 user_data_from = map_from;
1117                 user_data_to = map_to;
1118                 if (new) {
1119                         map_from = cluster_start;
1120                         map_to = cluster_end;
1121                 }
1122         } else {
1123                 /*
1124                  * If we haven't allocated the new page yet, we
1125                  * shouldn't be writing it out without copying user
1126                  * data. This is likely a math error from the caller.
1127                  */
1128                 BUG_ON(!new);
1129
1130                 map_from = cluster_start;
1131                 map_to = cluster_end;
1132
1133                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1134                                             cluster_start, cluster_end, new);
1135                 if (ret) {
1136                         mlog_errno(ret);
1137                         goto out;
1138                 }
1139         }
1140
1141         /*
1142          * Parts of newly allocated pages need to be zero'd.
1143          *
1144          * Above, we have also rewritten 'to' and 'from' - as far as
1145          * the rest of the function is concerned, the entire cluster
1146          * range inside of a page needs to be written.
1147          *
1148          * We can skip this if the page is up to date - it's already
1149          * been zero'd from being read in as a hole.
1150          */
1151         if (new && !PageUptodate(page))
1152                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1153                                          cpos, user_data_from, user_data_to);
1154
1155         flush_dcache_page(page);
1156
1157 out:
1158         return ret;
1159 }
1160
1161 /*
1162  * This function will only grab one clusters worth of pages.
1163  */
1164 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1165                                       struct ocfs2_write_ctxt *wc,
1166                                       u32 cpos, loff_t user_pos, int new,
1167                                       struct page *mmap_page)
1168 {
1169         int ret = 0, i;
1170         unsigned long start, target_index, index;
1171         struct inode *inode = mapping->host;
1172
1173         target_index = user_pos >> PAGE_CACHE_SHIFT;
1174
1175         /*
1176          * Figure out how many pages we'll be manipulating here. For
1177          * non allocating write, we just change the one
1178          * page. Otherwise, we'll need a whole clusters worth.
1179          */
1180         if (new) {
1181                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1182                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1183         } else {
1184                 wc->w_num_pages = 1;
1185                 start = target_index;
1186         }
1187
1188         for(i = 0; i < wc->w_num_pages; i++) {
1189                 index = start + i;
1190
1191                 if (index == target_index && mmap_page) {
1192                         /*
1193                          * ocfs2_pagemkwrite() is a little different
1194                          * and wants us to directly use the page
1195                          * passed in.
1196                          */
1197                         lock_page(mmap_page);
1198
1199                         if (mmap_page->mapping != mapping) {
1200                                 unlock_page(mmap_page);
1201                                 /*
1202                                  * Sanity check - the locking in
1203                                  * ocfs2_pagemkwrite() should ensure
1204                                  * that this code doesn't trigger.
1205                                  */
1206                                 ret = -EINVAL;
1207                                 mlog_errno(ret);
1208                                 goto out;
1209                         }
1210
1211                         page_cache_get(mmap_page);
1212                         wc->w_pages[i] = mmap_page;
1213                 } else {
1214                         wc->w_pages[i] = find_or_create_page(mapping, index,
1215                                                              GFP_NOFS);
1216                         if (!wc->w_pages[i]) {
1217                                 ret = -ENOMEM;
1218                                 mlog_errno(ret);
1219                                 goto out;
1220                         }
1221                 }
1222
1223                 if (index == target_index)
1224                         wc->w_target_page = wc->w_pages[i];
1225         }
1226 out:
1227         return ret;
1228 }
1229
1230 /*
1231  * Prepare a single cluster for write one cluster into the file.
1232  */
1233 static int ocfs2_write_cluster(struct address_space *mapping,
1234                                u32 phys, unsigned int unwritten,
1235                                unsigned int should_zero,
1236                                struct ocfs2_alloc_context *data_ac,
1237                                struct ocfs2_alloc_context *meta_ac,
1238                                struct ocfs2_write_ctxt *wc, u32 cpos,
1239                                loff_t user_pos, unsigned user_len)
1240 {
1241         int ret, i, new;
1242         u64 v_blkno, p_blkno;
1243         struct inode *inode = mapping->host;
1244         struct ocfs2_extent_tree et;
1245
1246         new = phys == 0 ? 1 : 0;
1247         if (new) {
1248                 u32 tmp_pos;
1249
1250                 /*
1251                  * This is safe to call with the page locks - it won't take
1252                  * any additional semaphores or cluster locks.
1253                  */
1254                 tmp_pos = cpos;
1255                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1256                                            &tmp_pos, 1, 0, wc->w_di_bh,
1257                                            wc->w_handle, data_ac,
1258                                            meta_ac, NULL);
1259                 /*
1260                  * This shouldn't happen because we must have already
1261                  * calculated the correct meta data allocation required. The
1262                  * internal tree allocation code should know how to increase
1263                  * transaction credits itself.
1264                  *
1265                  * If need be, we could handle -EAGAIN for a
1266                  * RESTART_TRANS here.
1267                  */
1268                 mlog_bug_on_msg(ret == -EAGAIN,
1269                                 "Inode %llu: EAGAIN return during allocation.\n",
1270                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1271                 if (ret < 0) {
1272                         mlog_errno(ret);
1273                         goto out;
1274                 }
1275         } else if (unwritten) {
1276                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1277                                               wc->w_di_bh);
1278                 ret = ocfs2_mark_extent_written(inode, &et,
1279                                                 wc->w_handle, cpos, 1, phys,
1280                                                 meta_ac, &wc->w_dealloc);
1281                 if (ret < 0) {
1282                         mlog_errno(ret);
1283                         goto out;
1284                 }
1285         }
1286
1287         if (should_zero)
1288                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1289         else
1290                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1291
1292         /*
1293          * The only reason this should fail is due to an inability to
1294          * find the extent added.
1295          */
1296         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1297                                           NULL);
1298         if (ret < 0) {
1299                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1300                             "at logical block %llu",
1301                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1302                             (unsigned long long)v_blkno);
1303                 goto out;
1304         }
1305
1306         BUG_ON(p_blkno == 0);
1307
1308         for(i = 0; i < wc->w_num_pages; i++) {
1309                 int tmpret;
1310
1311                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1312                                                       wc->w_pages[i], cpos,
1313                                                       user_pos, user_len,
1314                                                       should_zero);
1315                 if (tmpret) {
1316                         mlog_errno(tmpret);
1317                         if (ret == 0)
1318                                 ret = tmpret;
1319                 }
1320         }
1321
1322         /*
1323          * We only have cleanup to do in case of allocating write.
1324          */
1325         if (ret && new)
1326                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1327
1328 out:
1329
1330         return ret;
1331 }
1332
1333 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1334                                        struct ocfs2_alloc_context *data_ac,
1335                                        struct ocfs2_alloc_context *meta_ac,
1336                                        struct ocfs2_write_ctxt *wc,
1337                                        loff_t pos, unsigned len)
1338 {
1339         int ret, i;
1340         loff_t cluster_off;
1341         unsigned int local_len = len;
1342         struct ocfs2_write_cluster_desc *desc;
1343         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1344
1345         for (i = 0; i < wc->w_clen; i++) {
1346                 desc = &wc->w_desc[i];
1347
1348                 /*
1349                  * We have to make sure that the total write passed in
1350                  * doesn't extend past a single cluster.
1351                  */
1352                 local_len = len;
1353                 cluster_off = pos & (osb->s_clustersize - 1);
1354                 if ((cluster_off + local_len) > osb->s_clustersize)
1355                         local_len = osb->s_clustersize - cluster_off;
1356
1357                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1358                                           desc->c_unwritten,
1359                                           desc->c_needs_zero,
1360                                           data_ac, meta_ac,
1361                                           wc, desc->c_cpos, pos, local_len);
1362                 if (ret) {
1363                         mlog_errno(ret);
1364                         goto out;
1365                 }
1366
1367                 len -= local_len;
1368                 pos += local_len;
1369         }
1370
1371         ret = 0;
1372 out:
1373         return ret;
1374 }
1375
1376 /*
1377  * ocfs2_write_end() wants to know which parts of the target page it
1378  * should complete the write on. It's easiest to compute them ahead of
1379  * time when a more complete view of the write is available.
1380  */
1381 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1382                                         struct ocfs2_write_ctxt *wc,
1383                                         loff_t pos, unsigned len, int alloc)
1384 {
1385         struct ocfs2_write_cluster_desc *desc;
1386
1387         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1388         wc->w_target_to = wc->w_target_from + len;
1389
1390         if (alloc == 0)
1391                 return;
1392
1393         /*
1394          * Allocating write - we may have different boundaries based
1395          * on page size and cluster size.
1396          *
1397          * NOTE: We can no longer compute one value from the other as
1398          * the actual write length and user provided length may be
1399          * different.
1400          */
1401
1402         if (wc->w_large_pages) {
1403                 /*
1404                  * We only care about the 1st and last cluster within
1405                  * our range and whether they should be zero'd or not. Either
1406                  * value may be extended out to the start/end of a
1407                  * newly allocated cluster.
1408                  */
1409                 desc = &wc->w_desc[0];
1410                 if (desc->c_needs_zero)
1411                         ocfs2_figure_cluster_boundaries(osb,
1412                                                         desc->c_cpos,
1413                                                         &wc->w_target_from,
1414                                                         NULL);
1415
1416                 desc = &wc->w_desc[wc->w_clen - 1];
1417                 if (desc->c_needs_zero)
1418                         ocfs2_figure_cluster_boundaries(osb,
1419                                                         desc->c_cpos,
1420                                                         NULL,
1421                                                         &wc->w_target_to);
1422         } else {
1423                 wc->w_target_from = 0;
1424                 wc->w_target_to = PAGE_CACHE_SIZE;
1425         }
1426 }
1427
1428 /*
1429  * Populate each single-cluster write descriptor in the write context
1430  * with information about the i/o to be done.
1431  *
1432  * Returns the number of clusters that will have to be allocated, as
1433  * well as a worst case estimate of the number of extent records that
1434  * would have to be created during a write to an unwritten region.
1435  */
1436 static int ocfs2_populate_write_desc(struct inode *inode,
1437                                      struct ocfs2_write_ctxt *wc,
1438                                      unsigned int *clusters_to_alloc,
1439                                      unsigned int *extents_to_split)
1440 {
1441         int ret;
1442         struct ocfs2_write_cluster_desc *desc;
1443         unsigned int num_clusters = 0;
1444         unsigned int ext_flags = 0;
1445         u32 phys = 0;
1446         int i;
1447
1448         *clusters_to_alloc = 0;
1449         *extents_to_split = 0;
1450
1451         for (i = 0; i < wc->w_clen; i++) {
1452                 desc = &wc->w_desc[i];
1453                 desc->c_cpos = wc->w_cpos + i;
1454
1455                 if (num_clusters == 0) {
1456                         /*
1457                          * Need to look up the next extent record.
1458                          */
1459                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1460                                                  &num_clusters, &ext_flags);
1461                         if (ret) {
1462                                 mlog_errno(ret);
1463                                 goto out;
1464                         }
1465
1466                         /* We should already CoW the refcountd extent. */
1467                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1468
1469                         /*
1470                          * Assume worst case - that we're writing in
1471                          * the middle of the extent.
1472                          *
1473                          * We can assume that the write proceeds from
1474                          * left to right, in which case the extent
1475                          * insert code is smart enough to coalesce the
1476                          * next splits into the previous records created.
1477                          */
1478                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1479                                 *extents_to_split = *extents_to_split + 2;
1480                 } else if (phys) {
1481                         /*
1482                          * Only increment phys if it doesn't describe
1483                          * a hole.
1484                          */
1485                         phys++;
1486                 }
1487
1488                 /*
1489                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1490                  * file that got extended.  w_first_new_cpos tells us
1491                  * where the newly allocated clusters are so we can
1492                  * zero them.
1493                  */
1494                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1495                         BUG_ON(phys == 0);
1496                         desc->c_needs_zero = 1;
1497                 }
1498
1499                 desc->c_phys = phys;
1500                 if (phys == 0) {
1501                         desc->c_new = 1;
1502                         desc->c_needs_zero = 1;
1503                         *clusters_to_alloc = *clusters_to_alloc + 1;
1504                 }
1505
1506                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1507                         desc->c_unwritten = 1;
1508                         desc->c_needs_zero = 1;
1509                 }
1510
1511                 num_clusters--;
1512         }
1513
1514         ret = 0;
1515 out:
1516         return ret;
1517 }
1518
1519 static int ocfs2_write_begin_inline(struct address_space *mapping,
1520                                     struct inode *inode,
1521                                     struct ocfs2_write_ctxt *wc)
1522 {
1523         int ret;
1524         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1525         struct page *page;
1526         handle_t *handle;
1527         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1528
1529         page = find_or_create_page(mapping, 0, GFP_NOFS);
1530         if (!page) {
1531                 ret = -ENOMEM;
1532                 mlog_errno(ret);
1533                 goto out;
1534         }
1535         /*
1536          * If we don't set w_num_pages then this page won't get unlocked
1537          * and freed on cleanup of the write context.
1538          */
1539         wc->w_pages[0] = wc->w_target_page = page;
1540         wc->w_num_pages = 1;
1541
1542         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1543         if (IS_ERR(handle)) {
1544                 ret = PTR_ERR(handle);
1545                 mlog_errno(ret);
1546                 goto out;
1547         }
1548
1549         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1550                                       OCFS2_JOURNAL_ACCESS_WRITE);
1551         if (ret) {
1552                 ocfs2_commit_trans(osb, handle);
1553
1554                 mlog_errno(ret);
1555                 goto out;
1556         }
1557
1558         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1559                 ocfs2_set_inode_data_inline(inode, di);
1560
1561         if (!PageUptodate(page)) {
1562                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1563                 if (ret) {
1564                         ocfs2_commit_trans(osb, handle);
1565
1566                         goto out;
1567                 }
1568         }
1569
1570         wc->w_handle = handle;
1571 out:
1572         return ret;
1573 }
1574
1575 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1576 {
1577         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1578
1579         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1580                 return 1;
1581         return 0;
1582 }
1583
1584 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1585                                           struct inode *inode, loff_t pos,
1586                                           unsigned len, struct page *mmap_page,
1587                                           struct ocfs2_write_ctxt *wc)
1588 {
1589         int ret, written = 0;
1590         loff_t end = pos + len;
1591         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1592         struct ocfs2_dinode *di = NULL;
1593
1594         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1595              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1596              oi->ip_dyn_features);
1597
1598         /*
1599          * Handle inodes which already have inline data 1st.
1600          */
1601         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1602                 if (mmap_page == NULL &&
1603                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1604                         goto do_inline_write;
1605
1606                 /*
1607                  * The write won't fit - we have to give this inode an
1608                  * inline extent list now.
1609                  */
1610                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1611                 if (ret)
1612                         mlog_errno(ret);
1613                 goto out;
1614         }
1615
1616         /*
1617          * Check whether the inode can accept inline data.
1618          */
1619         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1620                 return 0;
1621
1622         /*
1623          * Check whether the write can fit.
1624          */
1625         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1626         if (mmap_page ||
1627             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1628                 return 0;
1629
1630 do_inline_write:
1631         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1632         if (ret) {
1633                 mlog_errno(ret);
1634                 goto out;
1635         }
1636
1637         /*
1638          * This signals to the caller that the data can be written
1639          * inline.
1640          */
1641         written = 1;
1642 out:
1643         return written ? written : ret;
1644 }
1645
1646 /*
1647  * This function only does anything for file systems which can't
1648  * handle sparse files.
1649  *
1650  * What we want to do here is fill in any hole between the current end
1651  * of allocation and the end of our write. That way the rest of the
1652  * write path can treat it as an non-allocating write, which has no
1653  * special case code for sparse/nonsparse files.
1654  */
1655 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1656                                         unsigned len,
1657                                         struct ocfs2_write_ctxt *wc)
1658 {
1659         int ret;
1660         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661         loff_t newsize = pos + len;
1662
1663         if (ocfs2_sparse_alloc(osb))
1664                 return 0;
1665
1666         if (newsize <= i_size_read(inode))
1667                 return 0;
1668
1669         ret = ocfs2_extend_no_holes(inode, newsize, pos);
1670         if (ret)
1671                 mlog_errno(ret);
1672
1673         wc->w_first_new_cpos =
1674                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1675
1676         return ret;
1677 }
1678
1679 int ocfs2_write_begin_nolock(struct address_space *mapping,
1680                              loff_t pos, unsigned len, unsigned flags,
1681                              struct page **pagep, void **fsdata,
1682                              struct buffer_head *di_bh, struct page *mmap_page)
1683 {
1684         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1685         unsigned int clusters_to_alloc, extents_to_split;
1686         struct ocfs2_write_ctxt *wc;
1687         struct inode *inode = mapping->host;
1688         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1689         struct ocfs2_dinode *di;
1690         struct ocfs2_alloc_context *data_ac = NULL;
1691         struct ocfs2_alloc_context *meta_ac = NULL;
1692         handle_t *handle;
1693         struct ocfs2_extent_tree et;
1694
1695         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1696         if (ret) {
1697                 mlog_errno(ret);
1698                 return ret;
1699         }
1700
1701         if (ocfs2_supports_inline_data(osb)) {
1702                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1703                                                      mmap_page, wc);
1704                 if (ret == 1) {
1705                         ret = 0;
1706                         goto success;
1707                 }
1708                 if (ret < 0) {
1709                         mlog_errno(ret);
1710                         goto out;
1711                 }
1712         }
1713
1714         ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1715         if (ret) {
1716                 mlog_errno(ret);
1717                 goto out;
1718         }
1719
1720         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1721         if (ret < 0) {
1722                 mlog_errno(ret);
1723                 goto out;
1724         } else if (ret == 1) {
1725                 ret = ocfs2_refcount_cow(inode, di_bh,
1726                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1727                 if (ret) {
1728                         mlog_errno(ret);
1729                         goto out;
1730                 }
1731         }
1732
1733         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1734                                         &extents_to_split);
1735         if (ret) {
1736                 mlog_errno(ret);
1737                 goto out;
1738         }
1739
1740         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1741
1742         /*
1743          * We set w_target_from, w_target_to here so that
1744          * ocfs2_write_end() knows which range in the target page to
1745          * write out. An allocation requires that we write the entire
1746          * cluster range.
1747          */
1748         if (clusters_to_alloc || extents_to_split) {
1749                 /*
1750                  * XXX: We are stretching the limits of
1751                  * ocfs2_lock_allocators(). It greatly over-estimates
1752                  * the work to be done.
1753                  */
1754                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1755                      " clusters_to_add = %u, extents_to_split = %u\n",
1756                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1757                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1758                      clusters_to_alloc, extents_to_split);
1759
1760                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1761                                               wc->w_di_bh);
1762                 ret = ocfs2_lock_allocators(inode, &et,
1763                                             clusters_to_alloc, extents_to_split,
1764                                             &data_ac, &meta_ac);
1765                 if (ret) {
1766                         mlog_errno(ret);
1767                         goto out;
1768                 }
1769
1770                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1771                                                     &di->id2.i_list,
1772                                                     clusters_to_alloc);
1773
1774         }
1775
1776         /*
1777          * We have to zero sparse allocated clusters, unwritten extent clusters,
1778          * and non-sparse clusters we just extended.  For non-sparse writes,
1779          * we know zeros will only be needed in the first and/or last cluster.
1780          */
1781         if (clusters_to_alloc || extents_to_split ||
1782             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1783                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1784                 cluster_of_pages = 1;
1785         else
1786                 cluster_of_pages = 0;
1787
1788         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1789
1790         handle = ocfs2_start_trans(osb, credits);
1791         if (IS_ERR(handle)) {
1792                 ret = PTR_ERR(handle);
1793                 mlog_errno(ret);
1794                 goto out;
1795         }
1796
1797         wc->w_handle = handle;
1798
1799         if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1800                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1801                 ret = -EDQUOT;
1802                 goto out_commit;
1803         }
1804         /*
1805          * We don't want this to fail in ocfs2_write_end(), so do it
1806          * here.
1807          */
1808         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1809                                       OCFS2_JOURNAL_ACCESS_WRITE);
1810         if (ret) {
1811                 mlog_errno(ret);
1812                 goto out_quota;
1813         }
1814
1815         /*
1816          * Fill our page array first. That way we've grabbed enough so
1817          * that we can zero and flush if we error after adding the
1818          * extent.
1819          */
1820         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1821                                          cluster_of_pages, mmap_page);
1822         if (ret) {
1823                 mlog_errno(ret);
1824                 goto out_quota;
1825         }
1826
1827         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1828                                           len);
1829         if (ret) {
1830                 mlog_errno(ret);
1831                 goto out_quota;
1832         }
1833
1834         if (data_ac)
1835                 ocfs2_free_alloc_context(data_ac);
1836         if (meta_ac)
1837                 ocfs2_free_alloc_context(meta_ac);
1838
1839 success:
1840         *pagep = wc->w_target_page;
1841         *fsdata = wc;
1842         return 0;
1843 out_quota:
1844         if (clusters_to_alloc)
1845                 vfs_dq_free_space(inode,
1846                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1847 out_commit:
1848         ocfs2_commit_trans(osb, handle);
1849
1850 out:
1851         ocfs2_free_write_ctxt(wc);
1852
1853         if (data_ac)
1854                 ocfs2_free_alloc_context(data_ac);
1855         if (meta_ac)
1856                 ocfs2_free_alloc_context(meta_ac);
1857         return ret;
1858 }
1859
1860 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1861                              loff_t pos, unsigned len, unsigned flags,
1862                              struct page **pagep, void **fsdata)
1863 {
1864         int ret;
1865         struct buffer_head *di_bh = NULL;
1866         struct inode *inode = mapping->host;
1867
1868         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1869         if (ret) {
1870                 mlog_errno(ret);
1871                 return ret;
1872         }
1873
1874         /*
1875          * Take alloc sem here to prevent concurrent lookups. That way
1876          * the mapping, zeroing and tree manipulation within
1877          * ocfs2_write() will be safe against ->readpage(). This
1878          * should also serve to lock out allocation from a shared
1879          * writeable region.
1880          */
1881         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1882
1883         ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1884                                        fsdata, di_bh, NULL);
1885         if (ret) {
1886                 mlog_errno(ret);
1887                 goto out_fail;
1888         }
1889
1890         brelse(di_bh);
1891
1892         return 0;
1893
1894 out_fail:
1895         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1896
1897         brelse(di_bh);
1898         ocfs2_inode_unlock(inode, 1);
1899
1900         return ret;
1901 }
1902
1903 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1904                                    unsigned len, unsigned *copied,
1905                                    struct ocfs2_dinode *di,
1906                                    struct ocfs2_write_ctxt *wc)
1907 {
1908         void *kaddr;
1909
1910         if (unlikely(*copied < len)) {
1911                 if (!PageUptodate(wc->w_target_page)) {
1912                         *copied = 0;
1913                         return;
1914                 }
1915         }
1916
1917         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1918         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1919         kunmap_atomic(kaddr, KM_USER0);
1920
1921         mlog(0, "Data written to inode at offset %llu. "
1922              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1923              (unsigned long long)pos, *copied,
1924              le16_to_cpu(di->id2.i_data.id_count),
1925              le16_to_cpu(di->i_dyn_features));
1926 }
1927
1928 int ocfs2_write_end_nolock(struct address_space *mapping,
1929                            loff_t pos, unsigned len, unsigned copied,
1930                            struct page *page, void *fsdata)
1931 {
1932         int i;
1933         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1934         struct inode *inode = mapping->host;
1935         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1936         struct ocfs2_write_ctxt *wc = fsdata;
1937         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1938         handle_t *handle = wc->w_handle;
1939         struct page *tmppage;
1940
1941         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1942                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1943                 goto out_write_size;
1944         }
1945
1946         if (unlikely(copied < len)) {
1947                 if (!PageUptodate(wc->w_target_page))
1948                         copied = 0;
1949
1950                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1951                                        start+len);
1952         }
1953         flush_dcache_page(wc->w_target_page);
1954
1955         for(i = 0; i < wc->w_num_pages; i++) {
1956                 tmppage = wc->w_pages[i];
1957
1958                 if (tmppage == wc->w_target_page) {
1959                         from = wc->w_target_from;
1960                         to = wc->w_target_to;
1961
1962                         BUG_ON(from > PAGE_CACHE_SIZE ||
1963                                to > PAGE_CACHE_SIZE ||
1964                                to < from);
1965                 } else {
1966                         /*
1967                          * Pages adjacent to the target (if any) imply
1968                          * a hole-filling write in which case we want
1969                          * to flush their entire range.
1970                          */
1971                         from = 0;
1972                         to = PAGE_CACHE_SIZE;
1973                 }
1974
1975                 if (page_has_buffers(tmppage)) {
1976                         if (ocfs2_should_order_data(inode))
1977                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1978                         block_commit_write(tmppage, from, to);
1979                 }
1980         }
1981
1982 out_write_size:
1983         pos += copied;
1984         if (pos > inode->i_size) {
1985                 i_size_write(inode, pos);
1986                 mark_inode_dirty(inode);
1987         }
1988         inode->i_blocks = ocfs2_inode_sector_count(inode);
1989         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1990         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1991         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1992         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1993         ocfs2_journal_dirty(handle, wc->w_di_bh);
1994
1995         ocfs2_commit_trans(osb, handle);
1996
1997         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1998
1999         ocfs2_free_write_ctxt(wc);
2000
2001         return copied;
2002 }
2003
2004 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2005                            loff_t pos, unsigned len, unsigned copied,
2006                            struct page *page, void *fsdata)
2007 {
2008         int ret;
2009         struct inode *inode = mapping->host;
2010
2011         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2012
2013         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2014         ocfs2_inode_unlock(inode, 1);
2015
2016         return ret;
2017 }
2018
2019 const struct address_space_operations ocfs2_aops = {
2020         .readpage               = ocfs2_readpage,
2021         .readpages              = ocfs2_readpages,
2022         .writepage              = ocfs2_writepage,
2023         .write_begin            = ocfs2_write_begin,
2024         .write_end              = ocfs2_write_end,
2025         .bmap                   = ocfs2_bmap,
2026         .sync_page              = block_sync_page,
2027         .direct_IO              = ocfs2_direct_IO,
2028         .invalidatepage         = ocfs2_invalidatepage,
2029         .releasepage            = ocfs2_releasepage,
2030         .migratepage            = buffer_migrate_page,
2031         .is_partially_uptodate  = block_is_partially_uptodate,
2032         .error_remove_page      = generic_error_remove_page,
2033 };