ocfs2: implement ocfs2_direct_IO_write
[firefly-linux-kernel-4.4.55.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51 #include "dir.h"
52 #include "namei.h"
53 #include "sysfile.h"
54
55 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56                                    struct buffer_head *bh_result, int create)
57 {
58         int err = -EIO;
59         int status;
60         struct ocfs2_dinode *fe = NULL;
61         struct buffer_head *bh = NULL;
62         struct buffer_head *buffer_cache_bh = NULL;
63         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64         void *kaddr;
65
66         trace_ocfs2_symlink_get_block(
67                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
68                         (unsigned long long)iblock, bh_result, create);
69
70         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74                      (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         status = ocfs2_read_inode_block(inode, &bh);
79         if (status < 0) {
80                 mlog_errno(status);
81                 goto bail;
82         }
83         fe = (struct ocfs2_dinode *) bh->b_data;
84
85         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86                                                     le32_to_cpu(fe->i_clusters))) {
87                 err = -ENOMEM;
88                 mlog(ML_ERROR, "block offset is outside the allocated size: "
89                      "%llu\n", (unsigned long long)iblock);
90                 goto bail;
91         }
92
93         /* We don't use the page cache to create symlink data, so if
94          * need be, copy it over from the buffer cache. */
95         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97                             iblock;
98                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99                 if (!buffer_cache_bh) {
100                         err = -ENOMEM;
101                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102                         goto bail;
103                 }
104
105                 /* we haven't locked out transactions, so a commit
106                  * could've happened. Since we've got a reference on
107                  * the bh, even if it commits while we're doing the
108                  * copy, the data is still good. */
109                 if (buffer_jbd(buffer_cache_bh)
110                     && ocfs2_inode_is_new(inode)) {
111                         kaddr = kmap_atomic(bh_result->b_page);
112                         if (!kaddr) {
113                                 mlog(ML_ERROR, "couldn't kmap!\n");
114                                 goto bail;
115                         }
116                         memcpy(kaddr + (bh_result->b_size * iblock),
117                                buffer_cache_bh->b_data,
118                                bh_result->b_size);
119                         kunmap_atomic(kaddr);
120                         set_buffer_uptodate(bh_result);
121                 }
122                 brelse(buffer_cache_bh);
123         }
124
125         map_bh(bh_result, inode->i_sb,
126                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128         err = 0;
129
130 bail:
131         brelse(bh);
132
133         return err;
134 }
135
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137                     struct buffer_head *bh_result, int create)
138 {
139         int err = 0;
140         unsigned int ext_flags;
141         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142         u64 p_blkno, count, past_eof;
143         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146                               (unsigned long long)iblock, bh_result, create);
147
148         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150                      inode, inode->i_ino);
151
152         if (S_ISLNK(inode->i_mode)) {
153                 /* this always does I/O for some reason. */
154                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155                 goto bail;
156         }
157
158         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159                                           &ext_flags);
160         if (err) {
161                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163                      (unsigned long long)p_blkno);
164                 goto bail;
165         }
166
167         if (max_blocks < count)
168                 count = max_blocks;
169
170         /*
171          * ocfs2 never allocates in this function - the only time we
172          * need to use BH_New is when we're extending i_size on a file
173          * system which doesn't support holes, in which case BH_New
174          * allows __block_write_begin() to zero.
175          *
176          * If we see this on a sparse file system, then a truncate has
177          * raced us and removed the cluster. In this case, we clear
178          * the buffers dirty and uptodate bits and let the buffer code
179          * ignore it as a hole.
180          */
181         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182                 clear_buffer_dirty(bh_result);
183                 clear_buffer_uptodate(bh_result);
184                 goto bail;
185         }
186
187         /* Treat the unwritten extent as a hole for zeroing purposes. */
188         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189                 map_bh(bh_result, inode->i_sb, p_blkno);
190
191         bh_result->b_size = count << inode->i_blkbits;
192
193         if (!ocfs2_sparse_alloc(osb)) {
194                 if (p_blkno == 0) {
195                         err = -EIO;
196                         mlog(ML_ERROR,
197                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198                              (unsigned long long)iblock,
199                              (unsigned long long)p_blkno,
200                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
201                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202                         dump_stack();
203                         goto bail;
204                 }
205         }
206
207         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208
209         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210                                   (unsigned long long)past_eof);
211         if (create && (iblock >= past_eof))
212                 set_buffer_new(bh_result);
213
214 bail:
215         if (err < 0)
216                 err = -EIO;
217
218         return err;
219 }
220
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222                            struct buffer_head *di_bh)
223 {
224         void *kaddr;
225         loff_t size;
226         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
231                 return -EROFS;
232         }
233
234         size = i_size_read(inode);
235
236         if (size > PAGE_CACHE_SIZE ||
237             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238                 ocfs2_error(inode->i_sb,
239                             "Inode %llu has with inline data has bad size: %Lu",
240                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
241                             (unsigned long long)size);
242                 return -EROFS;
243         }
244
245         kaddr = kmap_atomic(page);
246         if (size)
247                 memcpy(kaddr, di->id2.i_data.id_data, size);
248         /* Clear the remaining part of the page */
249         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250         flush_dcache_page(page);
251         kunmap_atomic(kaddr);
252
253         SetPageUptodate(page);
254
255         return 0;
256 }
257
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 {
260         int ret;
261         struct buffer_head *di_bh = NULL;
262
263         BUG_ON(!PageLocked(page));
264         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266         ret = ocfs2_read_inode_block(inode, &di_bh);
267         if (ret) {
268                 mlog_errno(ret);
269                 goto out;
270         }
271
272         ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274         unlock_page(page);
275
276         brelse(di_bh);
277         return ret;
278 }
279
280 static int ocfs2_readpage(struct file *file, struct page *page)
281 {
282         struct inode *inode = page->mapping->host;
283         struct ocfs2_inode_info *oi = OCFS2_I(inode);
284         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285         int ret, unlock = 1;
286
287         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288                              (page ? page->index : 0));
289
290         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291         if (ret != 0) {
292                 if (ret == AOP_TRUNCATED_PAGE)
293                         unlock = 0;
294                 mlog_errno(ret);
295                 goto out;
296         }
297
298         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299                 /*
300                  * Unlock the page and cycle ip_alloc_sem so that we don't
301                  * busyloop waiting for ip_alloc_sem to unlock
302                  */
303                 ret = AOP_TRUNCATED_PAGE;
304                 unlock_page(page);
305                 unlock = 0;
306                 down_read(&oi->ip_alloc_sem);
307                 up_read(&oi->ip_alloc_sem);
308                 goto out_inode_unlock;
309         }
310
311         /*
312          * i_size might have just been updated as we grabed the meta lock.  We
313          * might now be discovering a truncate that hit on another node.
314          * block_read_full_page->get_block freaks out if it is asked to read
315          * beyond the end of a file, so we check here.  Callers
316          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317          * and notice that the page they just read isn't needed.
318          *
319          * XXX sys_readahead() seems to get that wrong?
320          */
321         if (start >= i_size_read(inode)) {
322                 zero_user(page, 0, PAGE_SIZE);
323                 SetPageUptodate(page);
324                 ret = 0;
325                 goto out_alloc;
326         }
327
328         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329                 ret = ocfs2_readpage_inline(inode, page);
330         else
331                 ret = block_read_full_page(page, ocfs2_get_block);
332         unlock = 0;
333
334 out_alloc:
335         up_read(&OCFS2_I(inode)->ip_alloc_sem);
336 out_inode_unlock:
337         ocfs2_inode_unlock(inode, 0);
338 out:
339         if (unlock)
340                 unlock_page(page);
341         return ret;
342 }
343
344 /*
345  * This is used only for read-ahead. Failures or difficult to handle
346  * situations are safe to ignore.
347  *
348  * Right now, we don't bother with BH_Boundary - in-inode extent lists
349  * are quite large (243 extents on 4k blocks), so most inodes don't
350  * grow out to a tree. If need be, detecting boundary extents could
351  * trivially be added in a future version of ocfs2_get_block().
352  */
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354                            struct list_head *pages, unsigned nr_pages)
355 {
356         int ret, err = -EIO;
357         struct inode *inode = mapping->host;
358         struct ocfs2_inode_info *oi = OCFS2_I(inode);
359         loff_t start;
360         struct page *last;
361
362         /*
363          * Use the nonblocking flag for the dlm code to avoid page
364          * lock inversion, but don't bother with retrying.
365          */
366         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367         if (ret)
368                 return err;
369
370         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371                 ocfs2_inode_unlock(inode, 0);
372                 return err;
373         }
374
375         /*
376          * Don't bother with inline-data. There isn't anything
377          * to read-ahead in that case anyway...
378          */
379         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380                 goto out_unlock;
381
382         /*
383          * Check whether a remote node truncated this file - we just
384          * drop out in that case as it's not worth handling here.
385          */
386         last = list_entry(pages->prev, struct page, lru);
387         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388         if (start >= i_size_read(inode))
389                 goto out_unlock;
390
391         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393 out_unlock:
394         up_read(&oi->ip_alloc_sem);
395         ocfs2_inode_unlock(inode, 0);
396
397         return err;
398 }
399
400 /* Note: Because we don't support holes, our allocation has
401  * already happened (allocation writes zeros to the file data)
402  * so we don't have to worry about ordered writes in
403  * ocfs2_writepage.
404  *
405  * ->writepage is called during the process of invalidating the page cache
406  * during blocked lock processing.  It can't block on any cluster locks
407  * to during block mapping.  It's relying on the fact that the block
408  * mapping can't have disappeared under the dirty pages that it is
409  * being asked to write back.
410  */
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412 {
413         trace_ocfs2_writepage(
414                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415                 page->index);
416
417         return block_write_full_page(page, ocfs2_get_block, wbc);
418 }
419
420 /* Taken from ext3. We don't necessarily need the full blown
421  * functionality yet, but IMHO it's better to cut and paste the whole
422  * thing so we can avoid introducing our own bugs (and easily pick up
423  * their fixes when they happen) --Mark */
424 int walk_page_buffers(  handle_t *handle,
425                         struct buffer_head *head,
426                         unsigned from,
427                         unsigned to,
428                         int *partial,
429                         int (*fn)(      handle_t *handle,
430                                         struct buffer_head *bh))
431 {
432         struct buffer_head *bh;
433         unsigned block_start, block_end;
434         unsigned blocksize = head->b_size;
435         int err, ret = 0;
436         struct buffer_head *next;
437
438         for (   bh = head, block_start = 0;
439                 ret == 0 && (bh != head || !block_start);
440                 block_start = block_end, bh = next)
441         {
442                 next = bh->b_this_page;
443                 block_end = block_start + blocksize;
444                 if (block_end <= from || block_start >= to) {
445                         if (partial && !buffer_uptodate(bh))
446                                 *partial = 1;
447                         continue;
448                 }
449                 err = (*fn)(handle, bh);
450                 if (!ret)
451                         ret = err;
452         }
453         return ret;
454 }
455
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457 {
458         sector_t status;
459         u64 p_blkno = 0;
460         int err = 0;
461         struct inode *inode = mapping->host;
462
463         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464                          (unsigned long long)block);
465
466         /* We don't need to lock journal system files, since they aren't
467          * accessed concurrently from multiple nodes.
468          */
469         if (!INODE_JOURNAL(inode)) {
470                 err = ocfs2_inode_lock(inode, NULL, 0);
471                 if (err) {
472                         if (err != -ENOENT)
473                                 mlog_errno(err);
474                         goto bail;
475                 }
476                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477         }
478
479         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481                                                   NULL);
482
483         if (!INODE_JOURNAL(inode)) {
484                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
485                 ocfs2_inode_unlock(inode, 0);
486         }
487
488         if (err) {
489                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490                      (unsigned long long)block);
491                 mlog_errno(err);
492                 goto bail;
493         }
494
495 bail:
496         status = err ? 0 : p_blkno;
497
498         return status;
499 }
500
501 /*
502  * TODO: Make this into a generic get_blocks function.
503  *
504  * From do_direct_io in direct-io.c:
505  *  "So what we do is to permit the ->get_blocks function to populate
506  *   bh.b_size with the size of IO which is permitted at this offset and
507  *   this i_blkbits."
508  *
509  * This function is called directly from get_more_blocks in direct-io.c.
510  *
511  * called like this: dio->get_blocks(dio->inode, fs_startblk,
512  *                                      fs_count, map_bh, dio->rw == WRITE);
513  *
514  * Note that we never bother to allocate blocks here, and thus ignore the
515  * create argument.
516  */
517 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
518                                      struct buffer_head *bh_result, int create)
519 {
520         int ret;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525
526         /* This function won't even be called if the request isn't all
527          * nicely aligned and of the right size, so there's no need
528          * for us to check any of that. */
529
530         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
531
532         /* This figures out the size of the next contiguous block, and
533          * our logical offset */
534         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
535                                           &contig_blocks, &ext_flags);
536         if (ret) {
537                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
538                      (unsigned long long)iblock);
539                 ret = -EIO;
540                 goto bail;
541         }
542
543         /* We should already CoW the refcounted extent in case of create. */
544         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
545
546         /*
547          * get_more_blocks() expects us to describe a hole by clearing
548          * the mapped bit on bh_result().
549          *
550          * Consider an unwritten extent as a hole.
551          */
552         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
553                 map_bh(bh_result, inode->i_sb, p_blkno);
554         else
555                 clear_buffer_mapped(bh_result);
556
557         /* make sure we don't map more than max_blocks blocks here as
558            that's all the kernel will handle at this point. */
559         if (max_blocks < contig_blocks)
560                 contig_blocks = max_blocks;
561         bh_result->b_size = contig_blocks << blocksize_bits;
562 bail:
563         return ret;
564 }
565
566 /*
567  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
568  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
569  * to protect io on one node from truncation on another.
570  */
571 static void ocfs2_dio_end_io(struct kiocb *iocb,
572                              loff_t offset,
573                              ssize_t bytes,
574                              void *private)
575 {
576         struct inode *inode = file_inode(iocb->ki_filp);
577         int level;
578
579         /* this io's submitter should not have unlocked this before we could */
580         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
581
582         if (ocfs2_iocb_is_sem_locked(iocb))
583                 ocfs2_iocb_clear_sem_locked(iocb);
584
585         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
586                 ocfs2_iocb_clear_unaligned_aio(iocb);
587
588                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
589         }
590
591         ocfs2_iocb_clear_rw_locked(iocb);
592
593         level = ocfs2_iocb_rw_locked_level(iocb);
594         ocfs2_rw_unlock(inode, level);
595 }
596
597 static int ocfs2_releasepage(struct page *page, gfp_t wait)
598 {
599         if (!page_has_buffers(page))
600                 return 0;
601         return try_to_free_buffers(page);
602 }
603
604 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
605                 struct inode *inode, loff_t offset)
606 {
607         int ret = 0;
608         u32 v_cpos = 0;
609         u32 p_cpos = 0;
610         unsigned int num_clusters = 0;
611         unsigned int ext_flags = 0;
612
613         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
614         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
615                         &num_clusters, &ext_flags);
616         if (ret < 0) {
617                 mlog_errno(ret);
618                 return ret;
619         }
620
621         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
622                 return 1;
623
624         return 0;
625 }
626
627 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
628                 struct iov_iter *iter,
629                 loff_t offset)
630 {
631         ssize_t ret = 0;
632         ssize_t written = 0;
633         bool orphaned = false;
634         int is_overwrite = 0;
635         struct file *file = iocb->ki_filp;
636         struct inode *inode = file_inode(file)->i_mapping->host;
637         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
638         struct buffer_head *di_bh = NULL;
639         size_t count = iter->count;
640         journal_t *journal = osb->journal->j_journal;
641         u32 zero_len;
642         int cluster_align;
643         loff_t final_size = offset + count;
644         int append_write = offset >= i_size_read(inode) ? 1 : 0;
645         unsigned int num_clusters = 0;
646         unsigned int ext_flags = 0;
647
648         {
649                 u64 o = offset;
650
651                 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
652                 cluster_align = !zero_len;
653         }
654
655         /*
656          * when final_size > inode->i_size, inode->i_size will be
657          * updated after direct write, so add the inode to orphan
658          * dir first.
659          */
660         if (final_size > i_size_read(inode)) {
661                 ret = ocfs2_add_inode_to_orphan(osb, inode);
662                 if (ret < 0) {
663                         mlog_errno(ret);
664                         goto out;
665                 }
666                 orphaned = true;
667         }
668
669         if (append_write) {
670                 ret = ocfs2_inode_lock(inode, &di_bh, 1);
671                 if (ret < 0) {
672                         mlog_errno(ret);
673                         goto clean_orphan;
674                 }
675
676                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
677                         ret = ocfs2_zero_extend(inode, di_bh, offset);
678                 else
679                         ret = ocfs2_extend_no_holes(inode, di_bh, offset,
680                                         offset);
681                 if (ret < 0) {
682                         mlog_errno(ret);
683                         ocfs2_inode_unlock(inode, 1);
684                         brelse(di_bh);
685                         goto clean_orphan;
686                 }
687
688                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
689                 if (is_overwrite < 0) {
690                         mlog_errno(is_overwrite);
691                         ocfs2_inode_unlock(inode, 1);
692                         brelse(di_bh);
693                         goto clean_orphan;
694                 }
695
696                 ocfs2_inode_unlock(inode, 1);
697                 brelse(di_bh);
698                 di_bh = NULL;
699         }
700
701         written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
702                         iter, offset,
703                         ocfs2_direct_IO_get_blocks,
704                         ocfs2_dio_end_io, NULL, 0);
705         if (unlikely(written < 0)) {
706                 loff_t i_size = i_size_read(inode);
707
708                 if (offset + count > i_size) {
709                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
710                         if (ret < 0) {
711                                 mlog_errno(ret);
712                                 goto clean_orphan;
713                         }
714
715                         if (i_size == i_size_read(inode)) {
716                                 ret = ocfs2_truncate_file(inode, di_bh,
717                                                 i_size);
718                                 if (ret < 0) {
719                                         if (ret != -ENOSPC)
720                                                 mlog_errno(ret);
721
722                                         ocfs2_inode_unlock(inode, 1);
723                                         brelse(di_bh);
724                                         goto clean_orphan;
725                                 }
726                         }
727
728                         ocfs2_inode_unlock(inode, 1);
729                         brelse(di_bh);
730
731                         ret = jbd2_journal_force_commit(journal);
732                         if (ret < 0)
733                                 mlog_errno(ret);
734                 }
735         } else if (written < 0 && append_write && !is_overwrite &&
736                         !cluster_align) {
737                 u32 p_cpos = 0;
738                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
739
740                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
741                                 &num_clusters, &ext_flags);
742                 if (ret < 0) {
743                         mlog_errno(ret);
744                         goto clean_orphan;
745                 }
746
747                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
748
749                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
750                                 p_cpos << (osb->s_clustersize_bits - 9),
751                                 zero_len >> 9, GFP_KERNEL, false);
752                 if (ret < 0)
753                         mlog_errno(ret);
754         }
755
756 clean_orphan:
757         if (orphaned) {
758                 int tmp_ret;
759                 int update_isize = written > 0 ? 1 : 0;
760                 loff_t end = update_isize ? offset + written : 0;
761
762                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
763                                 update_isize, end);
764                 if (tmp_ret < 0) {
765                         ret = tmp_ret;
766                         goto out;
767                 }
768
769                 tmp_ret = jbd2_journal_force_commit(journal);
770                 if (tmp_ret < 0) {
771                         ret = tmp_ret;
772                         mlog_errno(tmp_ret);
773                 }
774         }
775
776 out:
777         if (ret >= 0)
778                 ret = written;
779         return ret;
780 }
781
782 static ssize_t ocfs2_direct_IO(int rw,
783                                struct kiocb *iocb,
784                                struct iov_iter *iter,
785                                loff_t offset)
786 {
787         struct file *file = iocb->ki_filp;
788         struct inode *inode = file_inode(file)->i_mapping->host;
789         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
790         int full_coherency = !(osb->s_mount_opt &
791                         OCFS2_MOUNT_COHERENCY_BUFFERED);
792
793         /*
794          * Fallback to buffered I/O if we see an inode without
795          * extents.
796          */
797         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
798                 return 0;
799
800         /* Fallback to buffered I/O if we are appending and
801          * concurrent O_DIRECT writes are allowed.
802          */
803         if (i_size_read(inode) <= offset && !full_coherency)
804                 return 0;
805
806         if (rw == READ)
807                 return __blockdev_direct_IO(rw, iocb, inode,
808                                     inode->i_sb->s_bdev,
809                                     iter, offset,
810                                     ocfs2_direct_IO_get_blocks,
811                                     ocfs2_dio_end_io, NULL, 0);
812         else
813                 return ocfs2_direct_IO_write(iocb, iter, offset);
814 }
815
816 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
817                                             u32 cpos,
818                                             unsigned int *start,
819                                             unsigned int *end)
820 {
821         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
822
823         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
824                 unsigned int cpp;
825
826                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
827
828                 cluster_start = cpos % cpp;
829                 cluster_start = cluster_start << osb->s_clustersize_bits;
830
831                 cluster_end = cluster_start + osb->s_clustersize;
832         }
833
834         BUG_ON(cluster_start > PAGE_SIZE);
835         BUG_ON(cluster_end > PAGE_SIZE);
836
837         if (start)
838                 *start = cluster_start;
839         if (end)
840                 *end = cluster_end;
841 }
842
843 /*
844  * 'from' and 'to' are the region in the page to avoid zeroing.
845  *
846  * If pagesize > clustersize, this function will avoid zeroing outside
847  * of the cluster boundary.
848  *
849  * from == to == 0 is code for "zero the entire cluster region"
850  */
851 static void ocfs2_clear_page_regions(struct page *page,
852                                      struct ocfs2_super *osb, u32 cpos,
853                                      unsigned from, unsigned to)
854 {
855         void *kaddr;
856         unsigned int cluster_start, cluster_end;
857
858         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
859
860         kaddr = kmap_atomic(page);
861
862         if (from || to) {
863                 if (from > cluster_start)
864                         memset(kaddr + cluster_start, 0, from - cluster_start);
865                 if (to < cluster_end)
866                         memset(kaddr + to, 0, cluster_end - to);
867         } else {
868                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
869         }
870
871         kunmap_atomic(kaddr);
872 }
873
874 /*
875  * Nonsparse file systems fully allocate before we get to the write
876  * code. This prevents ocfs2_write() from tagging the write as an
877  * allocating one, which means ocfs2_map_page_blocks() might try to
878  * read-in the blocks at the tail of our file. Avoid reading them by
879  * testing i_size against each block offset.
880  */
881 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
882                                  unsigned int block_start)
883 {
884         u64 offset = page_offset(page) + block_start;
885
886         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
887                 return 1;
888
889         if (i_size_read(inode) > offset)
890                 return 1;
891
892         return 0;
893 }
894
895 /*
896  * Some of this taken from __block_write_begin(). We already have our
897  * mapping by now though, and the entire write will be allocating or
898  * it won't, so not much need to use BH_New.
899  *
900  * This will also skip zeroing, which is handled externally.
901  */
902 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
903                           struct inode *inode, unsigned int from,
904                           unsigned int to, int new)
905 {
906         int ret = 0;
907         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
908         unsigned int block_end, block_start;
909         unsigned int bsize = 1 << inode->i_blkbits;
910
911         if (!page_has_buffers(page))
912                 create_empty_buffers(page, bsize, 0);
913
914         head = page_buffers(page);
915         for (bh = head, block_start = 0; bh != head || !block_start;
916              bh = bh->b_this_page, block_start += bsize) {
917                 block_end = block_start + bsize;
918
919                 clear_buffer_new(bh);
920
921                 /*
922                  * Ignore blocks outside of our i/o range -
923                  * they may belong to unallocated clusters.
924                  */
925                 if (block_start >= to || block_end <= from) {
926                         if (PageUptodate(page))
927                                 set_buffer_uptodate(bh);
928                         continue;
929                 }
930
931                 /*
932                  * For an allocating write with cluster size >= page
933                  * size, we always write the entire page.
934                  */
935                 if (new)
936                         set_buffer_new(bh);
937
938                 if (!buffer_mapped(bh)) {
939                         map_bh(bh, inode->i_sb, *p_blkno);
940                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
941                 }
942
943                 if (PageUptodate(page)) {
944                         if (!buffer_uptodate(bh))
945                                 set_buffer_uptodate(bh);
946                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
947                            !buffer_new(bh) &&
948                            ocfs2_should_read_blk(inode, page, block_start) &&
949                            (block_start < from || block_end > to)) {
950                         ll_rw_block(READ, 1, &bh);
951                         *wait_bh++=bh;
952                 }
953
954                 *p_blkno = *p_blkno + 1;
955         }
956
957         /*
958          * If we issued read requests - let them complete.
959          */
960         while(wait_bh > wait) {
961                 wait_on_buffer(*--wait_bh);
962                 if (!buffer_uptodate(*wait_bh))
963                         ret = -EIO;
964         }
965
966         if (ret == 0 || !new)
967                 return ret;
968
969         /*
970          * If we get -EIO above, zero out any newly allocated blocks
971          * to avoid exposing stale data.
972          */
973         bh = head;
974         block_start = 0;
975         do {
976                 block_end = block_start + bsize;
977                 if (block_end <= from)
978                         goto next_bh;
979                 if (block_start >= to)
980                         break;
981
982                 zero_user(page, block_start, bh->b_size);
983                 set_buffer_uptodate(bh);
984                 mark_buffer_dirty(bh);
985
986 next_bh:
987                 block_start = block_end;
988                 bh = bh->b_this_page;
989         } while (bh != head);
990
991         return ret;
992 }
993
994 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
995 #define OCFS2_MAX_CTXT_PAGES    1
996 #else
997 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
998 #endif
999
1000 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1001
1002 /*
1003  * Describe the state of a single cluster to be written to.
1004  */
1005 struct ocfs2_write_cluster_desc {
1006         u32             c_cpos;
1007         u32             c_phys;
1008         /*
1009          * Give this a unique field because c_phys eventually gets
1010          * filled.
1011          */
1012         unsigned        c_new;
1013         unsigned        c_unwritten;
1014         unsigned        c_needs_zero;
1015 };
1016
1017 struct ocfs2_write_ctxt {
1018         /* Logical cluster position / len of write */
1019         u32                             w_cpos;
1020         u32                             w_clen;
1021
1022         /* First cluster allocated in a nonsparse extend */
1023         u32                             w_first_new_cpos;
1024
1025         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1026
1027         /*
1028          * This is true if page_size > cluster_size.
1029          *
1030          * It triggers a set of special cases during write which might
1031          * have to deal with allocating writes to partial pages.
1032          */
1033         unsigned int                    w_large_pages;
1034
1035         /*
1036          * Pages involved in this write.
1037          *
1038          * w_target_page is the page being written to by the user.
1039          *
1040          * w_pages is an array of pages which always contains
1041          * w_target_page, and in the case of an allocating write with
1042          * page_size < cluster size, it will contain zero'd and mapped
1043          * pages adjacent to w_target_page which need to be written
1044          * out in so that future reads from that region will get
1045          * zero's.
1046          */
1047         unsigned int                    w_num_pages;
1048         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1049         struct page                     *w_target_page;
1050
1051         /*
1052          * w_target_locked is used for page_mkwrite path indicating no unlocking
1053          * against w_target_page in ocfs2_write_end_nolock.
1054          */
1055         unsigned int                    w_target_locked:1;
1056
1057         /*
1058          * ocfs2_write_end() uses this to know what the real range to
1059          * write in the target should be.
1060          */
1061         unsigned int                    w_target_from;
1062         unsigned int                    w_target_to;
1063
1064         /*
1065          * We could use journal_current_handle() but this is cleaner,
1066          * IMHO -Mark
1067          */
1068         handle_t                        *w_handle;
1069
1070         struct buffer_head              *w_di_bh;
1071
1072         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1073 };
1074
1075 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1076 {
1077         int i;
1078
1079         for(i = 0; i < num_pages; i++) {
1080                 if (pages[i]) {
1081                         unlock_page(pages[i]);
1082                         mark_page_accessed(pages[i]);
1083                         page_cache_release(pages[i]);
1084                 }
1085         }
1086 }
1087
1088 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1089 {
1090         int i;
1091
1092         /*
1093          * w_target_locked is only set to true in the page_mkwrite() case.
1094          * The intent is to allow us to lock the target page from write_begin()
1095          * to write_end(). The caller must hold a ref on w_target_page.
1096          */
1097         if (wc->w_target_locked) {
1098                 BUG_ON(!wc->w_target_page);
1099                 for (i = 0; i < wc->w_num_pages; i++) {
1100                         if (wc->w_target_page == wc->w_pages[i]) {
1101                                 wc->w_pages[i] = NULL;
1102                                 break;
1103                         }
1104                 }
1105                 mark_page_accessed(wc->w_target_page);
1106                 page_cache_release(wc->w_target_page);
1107         }
1108         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1109 }
1110
1111 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1112 {
1113         ocfs2_unlock_pages(wc);
1114         brelse(wc->w_di_bh);
1115         kfree(wc);
1116 }
1117
1118 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1119                                   struct ocfs2_super *osb, loff_t pos,
1120                                   unsigned len, struct buffer_head *di_bh)
1121 {
1122         u32 cend;
1123         struct ocfs2_write_ctxt *wc;
1124
1125         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1126         if (!wc)
1127                 return -ENOMEM;
1128
1129         wc->w_cpos = pos >> osb->s_clustersize_bits;
1130         wc->w_first_new_cpos = UINT_MAX;
1131         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1132         wc->w_clen = cend - wc->w_cpos + 1;
1133         get_bh(di_bh);
1134         wc->w_di_bh = di_bh;
1135
1136         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1137                 wc->w_large_pages = 1;
1138         else
1139                 wc->w_large_pages = 0;
1140
1141         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1142
1143         *wcp = wc;
1144
1145         return 0;
1146 }
1147
1148 /*
1149  * If a page has any new buffers, zero them out here, and mark them uptodate
1150  * and dirty so they'll be written out (in order to prevent uninitialised
1151  * block data from leaking). And clear the new bit.
1152  */
1153 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1154 {
1155         unsigned int block_start, block_end;
1156         struct buffer_head *head, *bh;
1157
1158         BUG_ON(!PageLocked(page));
1159         if (!page_has_buffers(page))
1160                 return;
1161
1162         bh = head = page_buffers(page);
1163         block_start = 0;
1164         do {
1165                 block_end = block_start + bh->b_size;
1166
1167                 if (buffer_new(bh)) {
1168                         if (block_end > from && block_start < to) {
1169                                 if (!PageUptodate(page)) {
1170                                         unsigned start, end;
1171
1172                                         start = max(from, block_start);
1173                                         end = min(to, block_end);
1174
1175                                         zero_user_segment(page, start, end);
1176                                         set_buffer_uptodate(bh);
1177                                 }
1178
1179                                 clear_buffer_new(bh);
1180                                 mark_buffer_dirty(bh);
1181                         }
1182                 }
1183
1184                 block_start = block_end;
1185                 bh = bh->b_this_page;
1186         } while (bh != head);
1187 }
1188
1189 /*
1190  * Only called when we have a failure during allocating write to write
1191  * zero's to the newly allocated region.
1192  */
1193 static void ocfs2_write_failure(struct inode *inode,
1194                                 struct ocfs2_write_ctxt *wc,
1195                                 loff_t user_pos, unsigned user_len)
1196 {
1197         int i;
1198         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1199                 to = user_pos + user_len;
1200         struct page *tmppage;
1201
1202         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1203
1204         for(i = 0; i < wc->w_num_pages; i++) {
1205                 tmppage = wc->w_pages[i];
1206
1207                 if (page_has_buffers(tmppage)) {
1208                         if (ocfs2_should_order_data(inode))
1209                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1210
1211                         block_commit_write(tmppage, from, to);
1212                 }
1213         }
1214 }
1215
1216 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1217                                         struct ocfs2_write_ctxt *wc,
1218                                         struct page *page, u32 cpos,
1219                                         loff_t user_pos, unsigned user_len,
1220                                         int new)
1221 {
1222         int ret;
1223         unsigned int map_from = 0, map_to = 0;
1224         unsigned int cluster_start, cluster_end;
1225         unsigned int user_data_from = 0, user_data_to = 0;
1226
1227         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1228                                         &cluster_start, &cluster_end);
1229
1230         /* treat the write as new if the a hole/lseek spanned across
1231          * the page boundary.
1232          */
1233         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1234                         (page_offset(page) <= user_pos));
1235
1236         if (page == wc->w_target_page) {
1237                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1238                 map_to = map_from + user_len;
1239
1240                 if (new)
1241                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1242                                                     cluster_start, cluster_end,
1243                                                     new);
1244                 else
1245                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1246                                                     map_from, map_to, new);
1247                 if (ret) {
1248                         mlog_errno(ret);
1249                         goto out;
1250                 }
1251
1252                 user_data_from = map_from;
1253                 user_data_to = map_to;
1254                 if (new) {
1255                         map_from = cluster_start;
1256                         map_to = cluster_end;
1257                 }
1258         } else {
1259                 /*
1260                  * If we haven't allocated the new page yet, we
1261                  * shouldn't be writing it out without copying user
1262                  * data. This is likely a math error from the caller.
1263                  */
1264                 BUG_ON(!new);
1265
1266                 map_from = cluster_start;
1267                 map_to = cluster_end;
1268
1269                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1270                                             cluster_start, cluster_end, new);
1271                 if (ret) {
1272                         mlog_errno(ret);
1273                         goto out;
1274                 }
1275         }
1276
1277         /*
1278          * Parts of newly allocated pages need to be zero'd.
1279          *
1280          * Above, we have also rewritten 'to' and 'from' - as far as
1281          * the rest of the function is concerned, the entire cluster
1282          * range inside of a page needs to be written.
1283          *
1284          * We can skip this if the page is up to date - it's already
1285          * been zero'd from being read in as a hole.
1286          */
1287         if (new && !PageUptodate(page))
1288                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1289                                          cpos, user_data_from, user_data_to);
1290
1291         flush_dcache_page(page);
1292
1293 out:
1294         return ret;
1295 }
1296
1297 /*
1298  * This function will only grab one clusters worth of pages.
1299  */
1300 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1301                                       struct ocfs2_write_ctxt *wc,
1302                                       u32 cpos, loff_t user_pos,
1303                                       unsigned user_len, int new,
1304                                       struct page *mmap_page)
1305 {
1306         int ret = 0, i;
1307         unsigned long start, target_index, end_index, index;
1308         struct inode *inode = mapping->host;
1309         loff_t last_byte;
1310
1311         target_index = user_pos >> PAGE_CACHE_SHIFT;
1312
1313         /*
1314          * Figure out how many pages we'll be manipulating here. For
1315          * non allocating write, we just change the one
1316          * page. Otherwise, we'll need a whole clusters worth.  If we're
1317          * writing past i_size, we only need enough pages to cover the
1318          * last page of the write.
1319          */
1320         if (new) {
1321                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1322                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1323                 /*
1324                  * We need the index *past* the last page we could possibly
1325                  * touch.  This is the page past the end of the write or
1326                  * i_size, whichever is greater.
1327                  */
1328                 last_byte = max(user_pos + user_len, i_size_read(inode));
1329                 BUG_ON(last_byte < 1);
1330                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1331                 if ((start + wc->w_num_pages) > end_index)
1332                         wc->w_num_pages = end_index - start;
1333         } else {
1334                 wc->w_num_pages = 1;
1335                 start = target_index;
1336         }
1337
1338         for(i = 0; i < wc->w_num_pages; i++) {
1339                 index = start + i;
1340
1341                 if (index == target_index && mmap_page) {
1342                         /*
1343                          * ocfs2_pagemkwrite() is a little different
1344                          * and wants us to directly use the page
1345                          * passed in.
1346                          */
1347                         lock_page(mmap_page);
1348
1349                         /* Exit and let the caller retry */
1350                         if (mmap_page->mapping != mapping) {
1351                                 WARN_ON(mmap_page->mapping);
1352                                 unlock_page(mmap_page);
1353                                 ret = -EAGAIN;
1354                                 goto out;
1355                         }
1356
1357                         page_cache_get(mmap_page);
1358                         wc->w_pages[i] = mmap_page;
1359                         wc->w_target_locked = true;
1360                 } else {
1361                         wc->w_pages[i] = find_or_create_page(mapping, index,
1362                                                              GFP_NOFS);
1363                         if (!wc->w_pages[i]) {
1364                                 ret = -ENOMEM;
1365                                 mlog_errno(ret);
1366                                 goto out;
1367                         }
1368                 }
1369                 wait_for_stable_page(wc->w_pages[i]);
1370
1371                 if (index == target_index)
1372                         wc->w_target_page = wc->w_pages[i];
1373         }
1374 out:
1375         if (ret)
1376                 wc->w_target_locked = false;
1377         return ret;
1378 }
1379
1380 /*
1381  * Prepare a single cluster for write one cluster into the file.
1382  */
1383 static int ocfs2_write_cluster(struct address_space *mapping,
1384                                u32 phys, unsigned int unwritten,
1385                                unsigned int should_zero,
1386                                struct ocfs2_alloc_context *data_ac,
1387                                struct ocfs2_alloc_context *meta_ac,
1388                                struct ocfs2_write_ctxt *wc, u32 cpos,
1389                                loff_t user_pos, unsigned user_len)
1390 {
1391         int ret, i, new;
1392         u64 v_blkno, p_blkno;
1393         struct inode *inode = mapping->host;
1394         struct ocfs2_extent_tree et;
1395
1396         new = phys == 0 ? 1 : 0;
1397         if (new) {
1398                 u32 tmp_pos;
1399
1400                 /*
1401                  * This is safe to call with the page locks - it won't take
1402                  * any additional semaphores or cluster locks.
1403                  */
1404                 tmp_pos = cpos;
1405                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1406                                            &tmp_pos, 1, 0, wc->w_di_bh,
1407                                            wc->w_handle, data_ac,
1408                                            meta_ac, NULL);
1409                 /*
1410                  * This shouldn't happen because we must have already
1411                  * calculated the correct meta data allocation required. The
1412                  * internal tree allocation code should know how to increase
1413                  * transaction credits itself.
1414                  *
1415                  * If need be, we could handle -EAGAIN for a
1416                  * RESTART_TRANS here.
1417                  */
1418                 mlog_bug_on_msg(ret == -EAGAIN,
1419                                 "Inode %llu: EAGAIN return during allocation.\n",
1420                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1421                 if (ret < 0) {
1422                         mlog_errno(ret);
1423                         goto out;
1424                 }
1425         } else if (unwritten) {
1426                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1427                                               wc->w_di_bh);
1428                 ret = ocfs2_mark_extent_written(inode, &et,
1429                                                 wc->w_handle, cpos, 1, phys,
1430                                                 meta_ac, &wc->w_dealloc);
1431                 if (ret < 0) {
1432                         mlog_errno(ret);
1433                         goto out;
1434                 }
1435         }
1436
1437         if (should_zero)
1438                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1439         else
1440                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1441
1442         /*
1443          * The only reason this should fail is due to an inability to
1444          * find the extent added.
1445          */
1446         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1447                                           NULL);
1448         if (ret < 0) {
1449                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1450                             "at logical block %llu",
1451                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1452                             (unsigned long long)v_blkno);
1453                 goto out;
1454         }
1455
1456         BUG_ON(p_blkno == 0);
1457
1458         for(i = 0; i < wc->w_num_pages; i++) {
1459                 int tmpret;
1460
1461                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1462                                                       wc->w_pages[i], cpos,
1463                                                       user_pos, user_len,
1464                                                       should_zero);
1465                 if (tmpret) {
1466                         mlog_errno(tmpret);
1467                         if (ret == 0)
1468                                 ret = tmpret;
1469                 }
1470         }
1471
1472         /*
1473          * We only have cleanup to do in case of allocating write.
1474          */
1475         if (ret && new)
1476                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1477
1478 out:
1479
1480         return ret;
1481 }
1482
1483 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1484                                        struct ocfs2_alloc_context *data_ac,
1485                                        struct ocfs2_alloc_context *meta_ac,
1486                                        struct ocfs2_write_ctxt *wc,
1487                                        loff_t pos, unsigned len)
1488 {
1489         int ret, i;
1490         loff_t cluster_off;
1491         unsigned int local_len = len;
1492         struct ocfs2_write_cluster_desc *desc;
1493         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1494
1495         for (i = 0; i < wc->w_clen; i++) {
1496                 desc = &wc->w_desc[i];
1497
1498                 /*
1499                  * We have to make sure that the total write passed in
1500                  * doesn't extend past a single cluster.
1501                  */
1502                 local_len = len;
1503                 cluster_off = pos & (osb->s_clustersize - 1);
1504                 if ((cluster_off + local_len) > osb->s_clustersize)
1505                         local_len = osb->s_clustersize - cluster_off;
1506
1507                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1508                                           desc->c_unwritten,
1509                                           desc->c_needs_zero,
1510                                           data_ac, meta_ac,
1511                                           wc, desc->c_cpos, pos, local_len);
1512                 if (ret) {
1513                         mlog_errno(ret);
1514                         goto out;
1515                 }
1516
1517                 len -= local_len;
1518                 pos += local_len;
1519         }
1520
1521         ret = 0;
1522 out:
1523         return ret;
1524 }
1525
1526 /*
1527  * ocfs2_write_end() wants to know which parts of the target page it
1528  * should complete the write on. It's easiest to compute them ahead of
1529  * time when a more complete view of the write is available.
1530  */
1531 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1532                                         struct ocfs2_write_ctxt *wc,
1533                                         loff_t pos, unsigned len, int alloc)
1534 {
1535         struct ocfs2_write_cluster_desc *desc;
1536
1537         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1538         wc->w_target_to = wc->w_target_from + len;
1539
1540         if (alloc == 0)
1541                 return;
1542
1543         /*
1544          * Allocating write - we may have different boundaries based
1545          * on page size and cluster size.
1546          *
1547          * NOTE: We can no longer compute one value from the other as
1548          * the actual write length and user provided length may be
1549          * different.
1550          */
1551
1552         if (wc->w_large_pages) {
1553                 /*
1554                  * We only care about the 1st and last cluster within
1555                  * our range and whether they should be zero'd or not. Either
1556                  * value may be extended out to the start/end of a
1557                  * newly allocated cluster.
1558                  */
1559                 desc = &wc->w_desc[0];
1560                 if (desc->c_needs_zero)
1561                         ocfs2_figure_cluster_boundaries(osb,
1562                                                         desc->c_cpos,
1563                                                         &wc->w_target_from,
1564                                                         NULL);
1565
1566                 desc = &wc->w_desc[wc->w_clen - 1];
1567                 if (desc->c_needs_zero)
1568                         ocfs2_figure_cluster_boundaries(osb,
1569                                                         desc->c_cpos,
1570                                                         NULL,
1571                                                         &wc->w_target_to);
1572         } else {
1573                 wc->w_target_from = 0;
1574                 wc->w_target_to = PAGE_CACHE_SIZE;
1575         }
1576 }
1577
1578 /*
1579  * Populate each single-cluster write descriptor in the write context
1580  * with information about the i/o to be done.
1581  *
1582  * Returns the number of clusters that will have to be allocated, as
1583  * well as a worst case estimate of the number of extent records that
1584  * would have to be created during a write to an unwritten region.
1585  */
1586 static int ocfs2_populate_write_desc(struct inode *inode,
1587                                      struct ocfs2_write_ctxt *wc,
1588                                      unsigned int *clusters_to_alloc,
1589                                      unsigned int *extents_to_split)
1590 {
1591         int ret;
1592         struct ocfs2_write_cluster_desc *desc;
1593         unsigned int num_clusters = 0;
1594         unsigned int ext_flags = 0;
1595         u32 phys = 0;
1596         int i;
1597
1598         *clusters_to_alloc = 0;
1599         *extents_to_split = 0;
1600
1601         for (i = 0; i < wc->w_clen; i++) {
1602                 desc = &wc->w_desc[i];
1603                 desc->c_cpos = wc->w_cpos + i;
1604
1605                 if (num_clusters == 0) {
1606                         /*
1607                          * Need to look up the next extent record.
1608                          */
1609                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1610                                                  &num_clusters, &ext_flags);
1611                         if (ret) {
1612                                 mlog_errno(ret);
1613                                 goto out;
1614                         }
1615
1616                         /* We should already CoW the refcountd extent. */
1617                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1618
1619                         /*
1620                          * Assume worst case - that we're writing in
1621                          * the middle of the extent.
1622                          *
1623                          * We can assume that the write proceeds from
1624                          * left to right, in which case the extent
1625                          * insert code is smart enough to coalesce the
1626                          * next splits into the previous records created.
1627                          */
1628                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1629                                 *extents_to_split = *extents_to_split + 2;
1630                 } else if (phys) {
1631                         /*
1632                          * Only increment phys if it doesn't describe
1633                          * a hole.
1634                          */
1635                         phys++;
1636                 }
1637
1638                 /*
1639                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1640                  * file that got extended.  w_first_new_cpos tells us
1641                  * where the newly allocated clusters are so we can
1642                  * zero them.
1643                  */
1644                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1645                         BUG_ON(phys == 0);
1646                         desc->c_needs_zero = 1;
1647                 }
1648
1649                 desc->c_phys = phys;
1650                 if (phys == 0) {
1651                         desc->c_new = 1;
1652                         desc->c_needs_zero = 1;
1653                         *clusters_to_alloc = *clusters_to_alloc + 1;
1654                 }
1655
1656                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1657                         desc->c_unwritten = 1;
1658                         desc->c_needs_zero = 1;
1659                 }
1660
1661                 num_clusters--;
1662         }
1663
1664         ret = 0;
1665 out:
1666         return ret;
1667 }
1668
1669 static int ocfs2_write_begin_inline(struct address_space *mapping,
1670                                     struct inode *inode,
1671                                     struct ocfs2_write_ctxt *wc)
1672 {
1673         int ret;
1674         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1675         struct page *page;
1676         handle_t *handle;
1677         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1678
1679         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1680         if (IS_ERR(handle)) {
1681                 ret = PTR_ERR(handle);
1682                 mlog_errno(ret);
1683                 goto out;
1684         }
1685
1686         page = find_or_create_page(mapping, 0, GFP_NOFS);
1687         if (!page) {
1688                 ocfs2_commit_trans(osb, handle);
1689                 ret = -ENOMEM;
1690                 mlog_errno(ret);
1691                 goto out;
1692         }
1693         /*
1694          * If we don't set w_num_pages then this page won't get unlocked
1695          * and freed on cleanup of the write context.
1696          */
1697         wc->w_pages[0] = wc->w_target_page = page;
1698         wc->w_num_pages = 1;
1699
1700         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1701                                       OCFS2_JOURNAL_ACCESS_WRITE);
1702         if (ret) {
1703                 ocfs2_commit_trans(osb, handle);
1704
1705                 mlog_errno(ret);
1706                 goto out;
1707         }
1708
1709         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1710                 ocfs2_set_inode_data_inline(inode, di);
1711
1712         if (!PageUptodate(page)) {
1713                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1714                 if (ret) {
1715                         ocfs2_commit_trans(osb, handle);
1716
1717                         goto out;
1718                 }
1719         }
1720
1721         wc->w_handle = handle;
1722 out:
1723         return ret;
1724 }
1725
1726 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1727 {
1728         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1729
1730         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1731                 return 1;
1732         return 0;
1733 }
1734
1735 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1736                                           struct inode *inode, loff_t pos,
1737                                           unsigned len, struct page *mmap_page,
1738                                           struct ocfs2_write_ctxt *wc)
1739 {
1740         int ret, written = 0;
1741         loff_t end = pos + len;
1742         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1743         struct ocfs2_dinode *di = NULL;
1744
1745         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1746                                              len, (unsigned long long)pos,
1747                                              oi->ip_dyn_features);
1748
1749         /*
1750          * Handle inodes which already have inline data 1st.
1751          */
1752         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1753                 if (mmap_page == NULL &&
1754                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1755                         goto do_inline_write;
1756
1757                 /*
1758                  * The write won't fit - we have to give this inode an
1759                  * inline extent list now.
1760                  */
1761                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1762                 if (ret)
1763                         mlog_errno(ret);
1764                 goto out;
1765         }
1766
1767         /*
1768          * Check whether the inode can accept inline data.
1769          */
1770         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1771                 return 0;
1772
1773         /*
1774          * Check whether the write can fit.
1775          */
1776         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1777         if (mmap_page ||
1778             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1779                 return 0;
1780
1781 do_inline_write:
1782         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1783         if (ret) {
1784                 mlog_errno(ret);
1785                 goto out;
1786         }
1787
1788         /*
1789          * This signals to the caller that the data can be written
1790          * inline.
1791          */
1792         written = 1;
1793 out:
1794         return written ? written : ret;
1795 }
1796
1797 /*
1798  * This function only does anything for file systems which can't
1799  * handle sparse files.
1800  *
1801  * What we want to do here is fill in any hole between the current end
1802  * of allocation and the end of our write. That way the rest of the
1803  * write path can treat it as an non-allocating write, which has no
1804  * special case code for sparse/nonsparse files.
1805  */
1806 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1807                                         struct buffer_head *di_bh,
1808                                         loff_t pos, unsigned len,
1809                                         struct ocfs2_write_ctxt *wc)
1810 {
1811         int ret;
1812         loff_t newsize = pos + len;
1813
1814         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1815
1816         if (newsize <= i_size_read(inode))
1817                 return 0;
1818
1819         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1820         if (ret)
1821                 mlog_errno(ret);
1822
1823         wc->w_first_new_cpos =
1824                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1825
1826         return ret;
1827 }
1828
1829 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1830                            loff_t pos)
1831 {
1832         int ret = 0;
1833
1834         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1835         if (pos > i_size_read(inode))
1836                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1837
1838         return ret;
1839 }
1840
1841 /*
1842  * Try to flush truncate logs if we can free enough clusters from it.
1843  * As for return value, "< 0" means error, "0" no space and "1" means
1844  * we have freed enough spaces and let the caller try to allocate again.
1845  */
1846 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1847                                           unsigned int needed)
1848 {
1849         tid_t target;
1850         int ret = 0;
1851         unsigned int truncated_clusters;
1852
1853         mutex_lock(&osb->osb_tl_inode->i_mutex);
1854         truncated_clusters = osb->truncated_clusters;
1855         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1856
1857         /*
1858          * Check whether we can succeed in allocating if we free
1859          * the truncate log.
1860          */
1861         if (truncated_clusters < needed)
1862                 goto out;
1863
1864         ret = ocfs2_flush_truncate_log(osb);
1865         if (ret) {
1866                 mlog_errno(ret);
1867                 goto out;
1868         }
1869
1870         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1871                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1872                 ret = 1;
1873         }
1874 out:
1875         return ret;
1876 }
1877
1878 int ocfs2_write_begin_nolock(struct file *filp,
1879                              struct address_space *mapping,
1880                              loff_t pos, unsigned len, unsigned flags,
1881                              struct page **pagep, void **fsdata,
1882                              struct buffer_head *di_bh, struct page *mmap_page)
1883 {
1884         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1885         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1886         struct ocfs2_write_ctxt *wc;
1887         struct inode *inode = mapping->host;
1888         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1889         struct ocfs2_dinode *di;
1890         struct ocfs2_alloc_context *data_ac = NULL;
1891         struct ocfs2_alloc_context *meta_ac = NULL;
1892         handle_t *handle;
1893         struct ocfs2_extent_tree et;
1894         int try_free = 1, ret1;
1895
1896 try_again:
1897         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1898         if (ret) {
1899                 mlog_errno(ret);
1900                 return ret;
1901         }
1902
1903         if (ocfs2_supports_inline_data(osb)) {
1904                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1905                                                      mmap_page, wc);
1906                 if (ret == 1) {
1907                         ret = 0;
1908                         goto success;
1909                 }
1910                 if (ret < 0) {
1911                         mlog_errno(ret);
1912                         goto out;
1913                 }
1914         }
1915
1916         if (ocfs2_sparse_alloc(osb))
1917                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1918         else
1919                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1920                                                    wc);
1921         if (ret) {
1922                 mlog_errno(ret);
1923                 goto out;
1924         }
1925
1926         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1927         if (ret < 0) {
1928                 mlog_errno(ret);
1929                 goto out;
1930         } else if (ret == 1) {
1931                 clusters_need = wc->w_clen;
1932                 ret = ocfs2_refcount_cow(inode, di_bh,
1933                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1934                 if (ret) {
1935                         mlog_errno(ret);
1936                         goto out;
1937                 }
1938         }
1939
1940         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1941                                         &extents_to_split);
1942         if (ret) {
1943                 mlog_errno(ret);
1944                 goto out;
1945         }
1946         clusters_need += clusters_to_alloc;
1947
1948         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1949
1950         trace_ocfs2_write_begin_nolock(
1951                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1952                         (long long)i_size_read(inode),
1953                         le32_to_cpu(di->i_clusters),
1954                         pos, len, flags, mmap_page,
1955                         clusters_to_alloc, extents_to_split);
1956
1957         /*
1958          * We set w_target_from, w_target_to here so that
1959          * ocfs2_write_end() knows which range in the target page to
1960          * write out. An allocation requires that we write the entire
1961          * cluster range.
1962          */
1963         if (clusters_to_alloc || extents_to_split) {
1964                 /*
1965                  * XXX: We are stretching the limits of
1966                  * ocfs2_lock_allocators(). It greatly over-estimates
1967                  * the work to be done.
1968                  */
1969                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1970                                               wc->w_di_bh);
1971                 ret = ocfs2_lock_allocators(inode, &et,
1972                                             clusters_to_alloc, extents_to_split,
1973                                             &data_ac, &meta_ac);
1974                 if (ret) {
1975                         mlog_errno(ret);
1976                         goto out;
1977                 }
1978
1979                 if (data_ac)
1980                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1981
1982                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1983                                                     &di->id2.i_list);
1984
1985         }
1986
1987         /*
1988          * We have to zero sparse allocated clusters, unwritten extent clusters,
1989          * and non-sparse clusters we just extended.  For non-sparse writes,
1990          * we know zeros will only be needed in the first and/or last cluster.
1991          */
1992         if (clusters_to_alloc || extents_to_split ||
1993             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1994                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1995                 cluster_of_pages = 1;
1996         else
1997                 cluster_of_pages = 0;
1998
1999         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2000
2001         handle = ocfs2_start_trans(osb, credits);
2002         if (IS_ERR(handle)) {
2003                 ret = PTR_ERR(handle);
2004                 mlog_errno(ret);
2005                 goto out;
2006         }
2007
2008         wc->w_handle = handle;
2009
2010         if (clusters_to_alloc) {
2011                 ret = dquot_alloc_space_nodirty(inode,
2012                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2013                 if (ret)
2014                         goto out_commit;
2015         }
2016         /*
2017          * We don't want this to fail in ocfs2_write_end(), so do it
2018          * here.
2019          */
2020         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2021                                       OCFS2_JOURNAL_ACCESS_WRITE);
2022         if (ret) {
2023                 mlog_errno(ret);
2024                 goto out_quota;
2025         }
2026
2027         /*
2028          * Fill our page array first. That way we've grabbed enough so
2029          * that we can zero and flush if we error after adding the
2030          * extent.
2031          */
2032         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2033                                          cluster_of_pages, mmap_page);
2034         if (ret && ret != -EAGAIN) {
2035                 mlog_errno(ret);
2036                 goto out_quota;
2037         }
2038
2039         /*
2040          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2041          * the target page. In this case, we exit with no error and no target
2042          * page. This will trigger the caller, page_mkwrite(), to re-try
2043          * the operation.
2044          */
2045         if (ret == -EAGAIN) {
2046                 BUG_ON(wc->w_target_page);
2047                 ret = 0;
2048                 goto out_quota;
2049         }
2050
2051         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2052                                           len);
2053         if (ret) {
2054                 mlog_errno(ret);
2055                 goto out_quota;
2056         }
2057
2058         if (data_ac)
2059                 ocfs2_free_alloc_context(data_ac);
2060         if (meta_ac)
2061                 ocfs2_free_alloc_context(meta_ac);
2062
2063 success:
2064         *pagep = wc->w_target_page;
2065         *fsdata = wc;
2066         return 0;
2067 out_quota:
2068         if (clusters_to_alloc)
2069                 dquot_free_space(inode,
2070                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2071 out_commit:
2072         ocfs2_commit_trans(osb, handle);
2073
2074 out:
2075         ocfs2_free_write_ctxt(wc);
2076
2077         if (data_ac) {
2078                 ocfs2_free_alloc_context(data_ac);
2079                 data_ac = NULL;
2080         }
2081         if (meta_ac) {
2082                 ocfs2_free_alloc_context(meta_ac);
2083                 meta_ac = NULL;
2084         }
2085
2086         if (ret == -ENOSPC && try_free) {
2087                 /*
2088                  * Try to free some truncate log so that we can have enough
2089                  * clusters to allocate.
2090                  */
2091                 try_free = 0;
2092
2093                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2094                 if (ret1 == 1)
2095                         goto try_again;
2096
2097                 if (ret1 < 0)
2098                         mlog_errno(ret1);
2099         }
2100
2101         return ret;
2102 }
2103
2104 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2105                              loff_t pos, unsigned len, unsigned flags,
2106                              struct page **pagep, void **fsdata)
2107 {
2108         int ret;
2109         struct buffer_head *di_bh = NULL;
2110         struct inode *inode = mapping->host;
2111
2112         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2113         if (ret) {
2114                 mlog_errno(ret);
2115                 return ret;
2116         }
2117
2118         /*
2119          * Take alloc sem here to prevent concurrent lookups. That way
2120          * the mapping, zeroing and tree manipulation within
2121          * ocfs2_write() will be safe against ->readpage(). This
2122          * should also serve to lock out allocation from a shared
2123          * writeable region.
2124          */
2125         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2126
2127         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2128                                        fsdata, di_bh, NULL);
2129         if (ret) {
2130                 mlog_errno(ret);
2131                 goto out_fail;
2132         }
2133
2134         brelse(di_bh);
2135
2136         return 0;
2137
2138 out_fail:
2139         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2140
2141         brelse(di_bh);
2142         ocfs2_inode_unlock(inode, 1);
2143
2144         return ret;
2145 }
2146
2147 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2148                                    unsigned len, unsigned *copied,
2149                                    struct ocfs2_dinode *di,
2150                                    struct ocfs2_write_ctxt *wc)
2151 {
2152         void *kaddr;
2153
2154         if (unlikely(*copied < len)) {
2155                 if (!PageUptodate(wc->w_target_page)) {
2156                         *copied = 0;
2157                         return;
2158                 }
2159         }
2160
2161         kaddr = kmap_atomic(wc->w_target_page);
2162         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2163         kunmap_atomic(kaddr);
2164
2165         trace_ocfs2_write_end_inline(
2166              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2167              (unsigned long long)pos, *copied,
2168              le16_to_cpu(di->id2.i_data.id_count),
2169              le16_to_cpu(di->i_dyn_features));
2170 }
2171
2172 int ocfs2_write_end_nolock(struct address_space *mapping,
2173                            loff_t pos, unsigned len, unsigned copied,
2174                            struct page *page, void *fsdata)
2175 {
2176         int i;
2177         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2178         struct inode *inode = mapping->host;
2179         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2180         struct ocfs2_write_ctxt *wc = fsdata;
2181         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2182         handle_t *handle = wc->w_handle;
2183         struct page *tmppage;
2184
2185         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2186                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2187                 goto out_write_size;
2188         }
2189
2190         if (unlikely(copied < len)) {
2191                 if (!PageUptodate(wc->w_target_page))
2192                         copied = 0;
2193
2194                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2195                                        start+len);
2196         }
2197         flush_dcache_page(wc->w_target_page);
2198
2199         for(i = 0; i < wc->w_num_pages; i++) {
2200                 tmppage = wc->w_pages[i];
2201
2202                 if (tmppage == wc->w_target_page) {
2203                         from = wc->w_target_from;
2204                         to = wc->w_target_to;
2205
2206                         BUG_ON(from > PAGE_CACHE_SIZE ||
2207                                to > PAGE_CACHE_SIZE ||
2208                                to < from);
2209                 } else {
2210                         /*
2211                          * Pages adjacent to the target (if any) imply
2212                          * a hole-filling write in which case we want
2213                          * to flush their entire range.
2214                          */
2215                         from = 0;
2216                         to = PAGE_CACHE_SIZE;
2217                 }
2218
2219                 if (page_has_buffers(tmppage)) {
2220                         if (ocfs2_should_order_data(inode))
2221                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2222                         block_commit_write(tmppage, from, to);
2223                 }
2224         }
2225
2226 out_write_size:
2227         pos += copied;
2228         if (pos > i_size_read(inode)) {
2229                 i_size_write(inode, pos);
2230                 mark_inode_dirty(inode);
2231         }
2232         inode->i_blocks = ocfs2_inode_sector_count(inode);
2233         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2234         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2235         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2236         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2237         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2238         ocfs2_journal_dirty(handle, wc->w_di_bh);
2239
2240         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2241          * lock, or it will cause a deadlock since journal commit threads holds
2242          * this lock and will ask for the page lock when flushing the data.
2243          * put it here to preserve the unlock order.
2244          */
2245         ocfs2_unlock_pages(wc);
2246
2247         ocfs2_commit_trans(osb, handle);
2248
2249         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2250
2251         brelse(wc->w_di_bh);
2252         kfree(wc);
2253
2254         return copied;
2255 }
2256
2257 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2258                            loff_t pos, unsigned len, unsigned copied,
2259                            struct page *page, void *fsdata)
2260 {
2261         int ret;
2262         struct inode *inode = mapping->host;
2263
2264         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2265
2266         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2267         ocfs2_inode_unlock(inode, 1);
2268
2269         return ret;
2270 }
2271
2272 const struct address_space_operations ocfs2_aops = {
2273         .readpage               = ocfs2_readpage,
2274         .readpages              = ocfs2_readpages,
2275         .writepage              = ocfs2_writepage,
2276         .write_begin            = ocfs2_write_begin,
2277         .write_end              = ocfs2_write_end,
2278         .bmap                   = ocfs2_bmap,
2279         .direct_IO              = ocfs2_direct_IO,
2280         .invalidatepage         = block_invalidatepage,
2281         .releasepage            = ocfs2_releasepage,
2282         .migratepage            = buffer_migrate_page,
2283         .is_partially_uptodate  = block_is_partially_uptodate,
2284         .error_remove_page      = generic_error_remove_page,
2285 };