1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
41 #include <cluster/masklog.h>
49 #include "extent_map.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
65 #include "buffer_head_io.h"
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 struct ocfs2_file_private *fp;
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
92 file->private_data = NULL;
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
110 spin_lock(&oi->ip_lock);
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
126 spin_unlock(&oi->ip_lock);
128 status = ocfs2_init_file_private(inode, file);
131 * We want to set open count back if we're failing the
134 spin_lock(&oi->ip_lock);
136 spin_unlock(&oi->ip_lock);
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
156 spin_unlock(&oi->ip_lock);
158 ocfs2_free_file_private(inode, file);
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
165 return ocfs2_init_file_private(inode, file);
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
170 ocfs2_free_file_private(inode, file);
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
178 struct inode *inode = file->f_mapping->host;
179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
180 struct ocfs2_inode_info *oi = OCFS2_I(inode);
181 journal_t *journal = osb->journal->j_journal;
184 bool needs_barrier = false;
186 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
187 OCFS2_I(inode)->ip_blkno,
188 file->f_path.dentry->d_name.len,
189 file->f_path.dentry->d_name.name,
190 (unsigned long long)datasync);
192 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
195 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
199 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
200 if (journal->j_flags & JBD2_BARRIER &&
201 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
202 needs_barrier = true;
203 err = jbd2_complete_transaction(journal, commit_tid);
205 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
213 return (err < 0) ? -EIO : 0;
216 int ocfs2_should_update_atime(struct inode *inode,
217 struct vfsmount *vfsmnt)
220 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
222 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
225 if ((inode->i_flags & S_NOATIME) ||
226 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 * We can be called with no vfsmnt structure - NFSD will
233 * Note that our action here is different than touch_atime() -
234 * if we can't tell whether this is a noatime mount, then we
235 * don't know whether to trust the value of s_atime_quantum.
240 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
241 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
244 if (vfsmnt->mnt_flags & MNT_RELATIME) {
245 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
246 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
253 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
259 int ocfs2_update_inode_atime(struct inode *inode,
260 struct buffer_head *bh)
263 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
267 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
268 if (IS_ERR(handle)) {
269 ret = PTR_ERR(handle);
274 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
275 OCFS2_JOURNAL_ACCESS_WRITE);
282 * Don't use ocfs2_mark_inode_dirty() here as we don't always
283 * have i_mutex to guard against concurrent changes to other
286 inode->i_atime = CURRENT_TIME;
287 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
288 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
289 ocfs2_update_inode_fsync_trans(handle, inode, 0);
290 ocfs2_journal_dirty(handle, bh);
293 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 int ocfs2_set_inode_size(handle_t *handle,
300 struct buffer_head *fe_bh,
305 i_size_write(inode, new_i_size);
306 inode->i_blocks = ocfs2_inode_sector_count(inode);
307 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
309 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
319 int ocfs2_simple_size_update(struct inode *inode,
320 struct buffer_head *di_bh,
324 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
325 handle_t *handle = NULL;
327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
328 if (IS_ERR(handle)) {
329 ret = PTR_ERR(handle);
334 ret = ocfs2_set_inode_size(handle, inode, di_bh,
339 ocfs2_update_inode_fsync_trans(handle, inode, 0);
340 ocfs2_commit_trans(osb, handle);
345 static int ocfs2_cow_file_pos(struct inode *inode,
346 struct buffer_head *fe_bh,
350 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
351 unsigned int num_clusters = 0;
352 unsigned int ext_flags = 0;
355 * If the new offset is aligned to the range of the cluster, there is
356 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
359 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
362 status = ocfs2_get_clusters(inode, cpos, &phys,
363 &num_clusters, &ext_flags);
369 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
372 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
378 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 struct buffer_head *fe_bh,
385 struct ocfs2_dinode *di;
389 * We need to CoW the cluster contains the offset if it is reflinked
390 * since we will call ocfs2_zero_range_for_truncate later which will
391 * write "0" from offset to the end of the cluster.
393 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
399 /* TODO: This needs to actually orphan the inode in this
402 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
403 if (IS_ERR(handle)) {
404 status = PTR_ERR(handle);
409 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
410 OCFS2_JOURNAL_ACCESS_WRITE);
417 * Do this before setting i_size.
419 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
420 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
427 i_size_write(inode, new_i_size);
428 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430 di = (struct ocfs2_dinode *) fe_bh->b_data;
431 di->i_size = cpu_to_le64(new_i_size);
432 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
433 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
434 ocfs2_update_inode_fsync_trans(handle, inode, 0);
436 ocfs2_journal_dirty(handle, fe_bh);
439 ocfs2_commit_trans(osb, handle);
444 int ocfs2_truncate_file(struct inode *inode,
445 struct buffer_head *di_bh,
449 struct ocfs2_dinode *fe = NULL;
450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe = (struct ocfs2_dinode *) di_bh->b_data;
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 (unsigned long long)new_i_size);
460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)le64_to_cpu(fe->i_size),
466 le32_to_cpu(fe->i_flags));
468 if (new_i_size > le64_to_cpu(fe->i_size)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe->i_size),
471 (unsigned long long)new_i_size);
477 down_write(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_resv_discard(&osb->osb_la_resmap,
480 &OCFS2_I(inode)->ip_la_data_resv);
483 * The inode lock forced other nodes to sync and drop their
484 * pages, which (correctly) happens even if we have a truncate
485 * without allocation change - ocfs2 cluster sizes can be much
486 * greater than page size, so we have to truncate them
489 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
490 truncate_inode_pages(inode->i_mapping, new_i_size);
492 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
493 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
494 i_size_read(inode), 1);
498 goto bail_unlock_sem;
501 /* alright, we're going to need to do a full blown alloc size
502 * change. Orphan the inode so that recovery can complete the
503 * truncate if necessary. This does the task of marking
505 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
508 goto bail_unlock_sem;
511 status = ocfs2_commit_truncate(osb, inode, di_bh);
514 goto bail_unlock_sem;
517 /* TODO: orphan dir cleanup here. */
519 up_write(&OCFS2_I(inode)->ip_alloc_sem);
522 if (!status && OCFS2_I(inode)->ip_clusters == 0)
523 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529 * extend file allocation only here.
530 * we'll update all the disk stuff, and oip->alloc_size
532 * expect stuff to be locked, a transaction started and enough data /
533 * metadata reservations in the contexts.
535 * Will return -EAGAIN, and a reason if a restart is needed.
536 * If passed in, *reason will always be set, even in error.
538 int ocfs2_add_inode_data(struct ocfs2_super *osb,
543 struct buffer_head *fe_bh,
545 struct ocfs2_alloc_context *data_ac,
546 struct ocfs2_alloc_context *meta_ac,
547 enum ocfs2_alloc_restarted *reason_ret)
550 struct ocfs2_extent_tree et;
552 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
553 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
554 clusters_to_add, mark_unwritten,
555 data_ac, meta_ac, reason_ret);
560 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
561 u32 clusters_to_add, int mark_unwritten)
564 int restart_func = 0;
567 struct buffer_head *bh = NULL;
568 struct ocfs2_dinode *fe = NULL;
569 handle_t *handle = NULL;
570 struct ocfs2_alloc_context *data_ac = NULL;
571 struct ocfs2_alloc_context *meta_ac = NULL;
572 enum ocfs2_alloc_restarted why = RESTART_NONE;
573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
574 struct ocfs2_extent_tree et;
578 * Unwritten extent only exists for file systems which
581 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
583 status = ocfs2_read_inode_block(inode, &bh);
588 fe = (struct ocfs2_dinode *) bh->b_data;
591 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
593 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
594 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
601 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
602 handle = ocfs2_start_trans(osb, credits);
603 if (IS_ERR(handle)) {
604 status = PTR_ERR(handle);
610 restarted_transaction:
611 trace_ocfs2_extend_allocation(
612 (unsigned long long)OCFS2_I(inode)->ip_blkno,
613 (unsigned long long)i_size_read(inode),
614 le32_to_cpu(fe->i_clusters), clusters_to_add,
617 status = dquot_alloc_space_nodirty(inode,
618 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
623 /* reserve a write to the file entry early on - that we if we
624 * run out of credits in the allocation path, we can still
626 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
627 OCFS2_JOURNAL_ACCESS_WRITE);
633 prev_clusters = OCFS2_I(inode)->ip_clusters;
635 status = ocfs2_add_inode_data(osb,
645 if ((status < 0) && (status != -EAGAIN)) {
646 if (status != -ENOSPC)
650 ocfs2_update_inode_fsync_trans(handle, inode, 1);
651 ocfs2_journal_dirty(handle, bh);
653 spin_lock(&OCFS2_I(inode)->ip_lock);
654 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
655 spin_unlock(&OCFS2_I(inode)->ip_lock);
656 /* Release unused quota reservation */
657 dquot_free_space(inode,
658 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
661 if (why != RESTART_NONE && clusters_to_add) {
662 if (why == RESTART_META) {
666 BUG_ON(why != RESTART_TRANS);
668 status = ocfs2_allocate_extend_trans(handle, 1);
670 /* handle still has to be committed at
676 goto restarted_transaction;
680 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
681 le32_to_cpu(fe->i_clusters),
682 (unsigned long long)le64_to_cpu(fe->i_size),
683 OCFS2_I(inode)->ip_clusters,
684 (unsigned long long)i_size_read(inode));
687 if (status < 0 && did_quota)
688 dquot_free_space(inode,
689 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
691 ocfs2_commit_trans(osb, handle);
695 ocfs2_free_alloc_context(data_ac);
699 ocfs2_free_alloc_context(meta_ac);
702 if ((!status) && restart_func) {
712 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
713 u32 clusters_to_add, int mark_unwritten)
715 return __ocfs2_extend_allocation(inode, logical_start,
716 clusters_to_add, mark_unwritten);
720 * While a write will already be ordering the data, a truncate will not.
721 * Thus, we need to explicitly order the zeroed pages.
723 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
724 struct buffer_head *di_bh)
726 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
727 handle_t *handle = NULL;
730 if (!ocfs2_should_order_data(inode))
733 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
734 if (IS_ERR(handle)) {
740 ret = ocfs2_jbd2_file_inode(handle, inode);
746 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
747 OCFS2_JOURNAL_ACCESS_WRITE);
750 ocfs2_update_inode_fsync_trans(handle, inode, 1);
755 ocfs2_commit_trans(osb, handle);
756 handle = ERR_PTR(ret);
761 /* Some parts of this taken from generic_cont_expand, which turned out
762 * to be too fragile to do exactly what we need without us having to
763 * worry about recursive locking in ->write_begin() and ->write_end(). */
764 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
765 u64 abs_to, struct buffer_head *di_bh)
767 struct address_space *mapping = inode->i_mapping;
769 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
772 unsigned zero_from, zero_to, block_start, block_end;
773 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
775 BUG_ON(abs_from >= abs_to);
776 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
777 BUG_ON(abs_from & (inode->i_blkbits - 1));
779 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
780 if (IS_ERR(handle)) {
781 ret = PTR_ERR(handle);
785 page = find_or_create_page(mapping, index, GFP_NOFS);
789 goto out_commit_trans;
792 /* Get the offsets within the page that we want to zero */
793 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
794 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
796 zero_to = PAGE_CACHE_SIZE;
798 trace_ocfs2_write_zero_page(
799 (unsigned long long)OCFS2_I(inode)->ip_blkno,
800 (unsigned long long)abs_from,
801 (unsigned long long)abs_to,
802 index, zero_from, zero_to);
804 /* We know that zero_from is block aligned */
805 for (block_start = zero_from; block_start < zero_to;
806 block_start = block_end) {
807 block_end = block_start + (1 << inode->i_blkbits);
810 * block_start is block-aligned. Bump it by one to force
811 * __block_write_begin and block_commit_write to zero the
814 ret = __block_write_begin(page, block_start + 1, 0,
822 /* must not update i_size! */
823 ret = block_commit_write(page, block_start + 1,
832 * fs-writeback will release the dirty pages without page lock
833 * whose offset are over inode size, the release happens at
834 * block_write_full_page().
836 i_size_write(inode, abs_to);
837 inode->i_blocks = ocfs2_inode_sector_count(inode);
838 di->i_size = cpu_to_le64((u64)i_size_read(inode));
839 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
840 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
841 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
842 di->i_mtime_nsec = di->i_ctime_nsec;
844 ocfs2_journal_dirty(handle, di_bh);
845 ocfs2_update_inode_fsync_trans(handle, inode, 1);
850 page_cache_release(page);
853 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
859 * Find the next range to zero. We do this in terms of bytes because
860 * that's what ocfs2_zero_extend() wants, and it is dealing with the
861 * pagecache. We may return multiple extents.
863 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
864 * needs to be zeroed. range_start and range_end return the next zeroing
865 * range. A subsequent call should pass the previous range_end as its
866 * zero_start. If range_end is 0, there's nothing to do.
868 * Unwritten extents are skipped over. Refcounted extents are CoWd.
870 static int ocfs2_zero_extend_get_range(struct inode *inode,
871 struct buffer_head *di_bh,
872 u64 zero_start, u64 zero_end,
873 u64 *range_start, u64 *range_end)
875 int rc = 0, needs_cow = 0;
876 u32 p_cpos, zero_clusters = 0;
878 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
879 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
880 unsigned int num_clusters = 0;
881 unsigned int ext_flags = 0;
883 while (zero_cpos < last_cpos) {
884 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
885 &num_clusters, &ext_flags);
891 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
892 zero_clusters = num_clusters;
893 if (ext_flags & OCFS2_EXT_REFCOUNTED)
898 zero_cpos += num_clusters;
900 if (!zero_clusters) {
905 while ((zero_cpos + zero_clusters) < last_cpos) {
906 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
907 &p_cpos, &num_clusters,
914 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
916 if (ext_flags & OCFS2_EXT_REFCOUNTED)
918 zero_clusters += num_clusters;
920 if ((zero_cpos + zero_clusters) > last_cpos)
921 zero_clusters = last_cpos - zero_cpos;
924 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
925 zero_clusters, UINT_MAX);
932 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
933 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
934 zero_cpos + zero_clusters);
941 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
942 * has made sure that the entire range needs zeroing.
944 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
945 u64 range_end, struct buffer_head *di_bh)
949 u64 zero_pos = range_start;
951 trace_ocfs2_zero_extend_range(
952 (unsigned long long)OCFS2_I(inode)->ip_blkno,
953 (unsigned long long)range_start,
954 (unsigned long long)range_end);
955 BUG_ON(range_start >= range_end);
957 while (zero_pos < range_end) {
958 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
959 if (next_pos > range_end)
960 next_pos = range_end;
961 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
969 * Very large extends have the potential to lock up
970 * the cpu for extended periods of time.
978 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
982 u64 zero_start, range_start = 0, range_end = 0;
983 struct super_block *sb = inode->i_sb;
985 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
986 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
987 (unsigned long long)zero_start,
988 (unsigned long long)i_size_read(inode));
989 while (zero_start < zero_to_size) {
990 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
1001 if (range_start < zero_start)
1002 range_start = zero_start;
1003 if (range_end > zero_to_size)
1004 range_end = zero_to_size;
1006 ret = ocfs2_zero_extend_range(inode, range_start,
1012 zero_start = range_end;
1018 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1019 u64 new_i_size, u64 zero_to)
1022 u32 clusters_to_add;
1023 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1026 * Only quota files call this without a bh, and they can't be
1029 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1030 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1032 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1033 if (clusters_to_add < oi->ip_clusters)
1034 clusters_to_add = 0;
1036 clusters_to_add -= oi->ip_clusters;
1038 if (clusters_to_add) {
1039 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1040 clusters_to_add, 0);
1048 * Call this even if we don't add any clusters to the tree. We
1049 * still need to zero the area between the old i_size and the
1052 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1060 static int ocfs2_extend_file(struct inode *inode,
1061 struct buffer_head *di_bh,
1065 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1069 /* setattr sometimes calls us like this. */
1070 if (new_i_size == 0)
1073 if (i_size_read(inode) == new_i_size)
1075 BUG_ON(new_i_size < i_size_read(inode));
1078 * The alloc sem blocks people in read/write from reading our
1079 * allocation until we're done changing it. We depend on
1080 * i_mutex to block other extend/truncate calls while we're
1081 * here. We even have to hold it for sparse files because there
1082 * might be some tail zeroing.
1084 down_write(&oi->ip_alloc_sem);
1086 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1088 * We can optimize small extends by keeping the inodes
1091 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1092 up_write(&oi->ip_alloc_sem);
1093 goto out_update_size;
1096 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1098 up_write(&oi->ip_alloc_sem);
1104 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1105 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1107 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1110 up_write(&oi->ip_alloc_sem);
1118 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1126 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1128 int status = 0, size_change;
1129 struct inode *inode = d_inode(dentry);
1130 struct super_block *sb = inode->i_sb;
1131 struct ocfs2_super *osb = OCFS2_SB(sb);
1132 struct buffer_head *bh = NULL;
1133 handle_t *handle = NULL;
1134 struct dquot *transfer_to[MAXQUOTAS] = { };
1137 trace_ocfs2_setattr(inode, dentry,
1138 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1139 dentry->d_name.len, dentry->d_name.name,
1140 attr->ia_valid, attr->ia_mode,
1141 from_kuid(&init_user_ns, attr->ia_uid),
1142 from_kgid(&init_user_ns, attr->ia_gid));
1144 /* ensuring we don't even attempt to truncate a symlink */
1145 if (S_ISLNK(inode->i_mode))
1146 attr->ia_valid &= ~ATTR_SIZE;
1148 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1149 | ATTR_GID | ATTR_UID | ATTR_MODE)
1150 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1153 status = inode_change_ok(inode, attr);
1157 if (is_quota_modification(inode, attr))
1158 dquot_initialize(inode);
1159 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1161 status = ocfs2_rw_lock(inode, 1);
1168 status = ocfs2_inode_lock(inode, &bh, 1);
1170 if (status != -ENOENT)
1172 goto bail_unlock_rw;
1176 status = inode_newsize_ok(inode, attr->ia_size);
1180 inode_dio_wait(inode);
1182 if (i_size_read(inode) >= attr->ia_size) {
1183 if (ocfs2_should_order_data(inode)) {
1184 status = ocfs2_begin_ordered_truncate(inode,
1189 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1191 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1193 if (status != -ENOSPC)
1200 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1201 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1203 * Gather pointers to quota structures so that allocation /
1204 * freeing of quota structures happens here and not inside
1205 * dquot_transfer() where we have problems with lock ordering
1207 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1208 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1209 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1210 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1211 if (!transfer_to[USRQUOTA]) {
1216 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1217 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1218 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1219 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1220 if (!transfer_to[GRPQUOTA]) {
1225 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1226 2 * ocfs2_quota_trans_credits(sb));
1227 if (IS_ERR(handle)) {
1228 status = PTR_ERR(handle);
1232 status = __dquot_transfer(inode, transfer_to);
1236 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1237 if (IS_ERR(handle)) {
1238 status = PTR_ERR(handle);
1244 setattr_copy(inode, attr);
1245 mark_inode_dirty(inode);
1247 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1252 ocfs2_commit_trans(osb, handle);
1254 ocfs2_inode_unlock(inode, 1);
1257 ocfs2_rw_unlock(inode, 1);
1261 /* Release quota pointers in case we acquired them */
1262 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1263 dqput(transfer_to[qtype]);
1265 if (!status && attr->ia_valid & ATTR_MODE) {
1266 status = posix_acl_chmod(inode, inode->i_mode);
1274 int ocfs2_getattr(struct vfsmount *mnt,
1275 struct dentry *dentry,
1278 struct inode *inode = d_inode(dentry);
1279 struct super_block *sb = d_inode(dentry)->i_sb;
1280 struct ocfs2_super *osb = sb->s_fs_info;
1283 err = ocfs2_inode_revalidate(dentry);
1290 generic_fillattr(inode, stat);
1292 /* We set the blksize from the cluster size for performance */
1293 stat->blksize = osb->s_clustersize;
1299 int ocfs2_permission(struct inode *inode, int mask)
1303 if (mask & MAY_NOT_BLOCK)
1306 ret = ocfs2_inode_lock(inode, NULL, 0);
1313 ret = generic_permission(inode, mask);
1315 ocfs2_inode_unlock(inode, 0);
1320 static int __ocfs2_write_remove_suid(struct inode *inode,
1321 struct buffer_head *bh)
1325 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1326 struct ocfs2_dinode *di;
1328 trace_ocfs2_write_remove_suid(
1329 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1332 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1333 if (IS_ERR(handle)) {
1334 ret = PTR_ERR(handle);
1339 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1340 OCFS2_JOURNAL_ACCESS_WRITE);
1346 inode->i_mode &= ~S_ISUID;
1347 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1348 inode->i_mode &= ~S_ISGID;
1350 di = (struct ocfs2_dinode *) bh->b_data;
1351 di->i_mode = cpu_to_le16(inode->i_mode);
1352 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1354 ocfs2_journal_dirty(handle, bh);
1357 ocfs2_commit_trans(osb, handle);
1363 * Will look for holes and unwritten extents in the range starting at
1364 * pos for count bytes (inclusive).
1366 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1370 unsigned int extent_flags;
1371 u32 cpos, clusters, extent_len, phys_cpos;
1372 struct super_block *sb = inode->i_sb;
1374 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1375 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1378 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1385 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1390 if (extent_len > clusters)
1391 extent_len = clusters;
1393 clusters -= extent_len;
1400 static int ocfs2_write_remove_suid(struct inode *inode)
1403 struct buffer_head *bh = NULL;
1405 ret = ocfs2_read_inode_block(inode, &bh);
1411 ret = __ocfs2_write_remove_suid(inode, bh);
1418 * Allocate enough extents to cover the region starting at byte offset
1419 * start for len bytes. Existing extents are skipped, any extents
1420 * added are marked as "unwritten".
1422 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1426 u32 cpos, phys_cpos, clusters, alloc_size;
1427 u64 end = start + len;
1428 struct buffer_head *di_bh = NULL;
1430 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1431 ret = ocfs2_read_inode_block(inode, &di_bh);
1438 * Nothing to do if the requested reservation range
1439 * fits within the inode.
1441 if (ocfs2_size_fits_inline_data(di_bh, end))
1444 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1452 * We consider both start and len to be inclusive.
1454 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1455 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1459 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1467 * Hole or existing extent len can be arbitrary, so
1468 * cap it to our own allocation request.
1470 if (alloc_size > clusters)
1471 alloc_size = clusters;
1475 * We already have an allocation at this
1476 * region so we can safely skip it.
1481 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1490 clusters -= alloc_size;
1501 * Truncate a byte range, avoiding pages within partial clusters. This
1502 * preserves those pages for the zeroing code to write to.
1504 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1507 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1509 struct address_space *mapping = inode->i_mapping;
1511 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1512 end = byte_start + byte_len;
1513 end = end & ~(osb->s_clustersize - 1);
1516 unmap_mapping_range(mapping, start, end - start, 0);
1517 truncate_inode_pages_range(mapping, start, end - 1);
1521 static int ocfs2_zero_partial_clusters(struct inode *inode,
1525 u64 tmpend, end = start + len;
1526 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1527 unsigned int csize = osb->s_clustersize;
1531 * The "start" and "end" values are NOT necessarily part of
1532 * the range whose allocation is being deleted. Rather, this
1533 * is what the user passed in with the request. We must zero
1534 * partial clusters here. There's no need to worry about
1535 * physical allocation - the zeroing code knows to skip holes.
1537 trace_ocfs2_zero_partial_clusters(
1538 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1539 (unsigned long long)start, (unsigned long long)end);
1542 * If both edges are on a cluster boundary then there's no
1543 * zeroing required as the region is part of the allocation to
1546 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1549 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1550 if (IS_ERR(handle)) {
1551 ret = PTR_ERR(handle);
1557 * We want to get the byte offset of the end of the 1st cluster.
1559 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1563 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1564 (unsigned long long)tmpend);
1566 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1572 * This may make start and end equal, but the zeroing
1573 * code will skip any work in that case so there's no
1574 * need to catch it up here.
1576 start = end & ~(osb->s_clustersize - 1);
1578 trace_ocfs2_zero_partial_clusters_range2(
1579 (unsigned long long)start, (unsigned long long)end);
1581 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1585 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1587 ocfs2_commit_trans(osb, handle);
1592 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1595 struct ocfs2_extent_rec *rec = NULL;
1597 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1599 rec = &el->l_recs[i];
1601 if (le32_to_cpu(rec->e_cpos) < pos)
1609 * Helper to calculate the punching pos and length in one run, we handle the
1610 * following three cases in order:
1612 * - remove the entire record
1613 * - remove a partial record
1614 * - no record needs to be removed (hole-punching completed)
1616 static void ocfs2_calc_trunc_pos(struct inode *inode,
1617 struct ocfs2_extent_list *el,
1618 struct ocfs2_extent_rec *rec,
1619 u32 trunc_start, u32 *trunc_cpos,
1620 u32 *trunc_len, u32 *trunc_end,
1621 u64 *blkno, int *done)
1626 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1628 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1630 * remove an entire extent record.
1632 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1634 * Skip holes if any.
1636 if (range < *trunc_end)
1638 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1639 *blkno = le64_to_cpu(rec->e_blkno);
1640 *trunc_end = le32_to_cpu(rec->e_cpos);
1641 } else if (range > trunc_start) {
1643 * remove a partial extent record, which means we're
1644 * removing the last extent record.
1646 *trunc_cpos = trunc_start;
1650 if (range < *trunc_end)
1652 *trunc_len = *trunc_end - trunc_start;
1653 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1654 *blkno = le64_to_cpu(rec->e_blkno) +
1655 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1656 *trunc_end = trunc_start;
1659 * It may have two following possibilities:
1661 * - last record has been removed
1662 * - trunc_start was within a hole
1664 * both two cases mean the completion of hole punching.
1672 static int ocfs2_remove_inode_range(struct inode *inode,
1673 struct buffer_head *di_bh, u64 byte_start,
1676 int ret = 0, flags = 0, done = 0, i;
1677 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1679 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1680 struct ocfs2_cached_dealloc_ctxt dealloc;
1681 struct address_space *mapping = inode->i_mapping;
1682 struct ocfs2_extent_tree et;
1683 struct ocfs2_path *path = NULL;
1684 struct ocfs2_extent_list *el = NULL;
1685 struct ocfs2_extent_rec *rec = NULL;
1686 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1687 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1689 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1690 ocfs2_init_dealloc_ctxt(&dealloc);
1692 trace_ocfs2_remove_inode_range(
1693 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1694 (unsigned long long)byte_start,
1695 (unsigned long long)byte_len);
1700 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1701 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1702 byte_start + byte_len, 0);
1708 * There's no need to get fancy with the page cache
1709 * truncate of an inline-data inode. We're talking
1710 * about less than a page here, which will be cached
1711 * in the dinode buffer anyway.
1713 unmap_mapping_range(mapping, 0, 0, 0);
1714 truncate_inode_pages(mapping, 0);
1719 * For reflinks, we may need to CoW 2 clusters which might be
1720 * partially zero'd later, if hole's start and end offset were
1721 * within one cluster(means is not exactly aligned to clustersize).
1724 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1726 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1732 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1739 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1740 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1741 cluster_in_el = trunc_end;
1743 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1749 path = ocfs2_new_path_from_et(&et);
1756 while (trunc_end > trunc_start) {
1758 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1765 el = path_leaf_el(path);
1767 i = ocfs2_find_rec(el, trunc_end);
1769 * Need to go to previous extent block.
1772 if (path->p_tree_depth == 0)
1775 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1784 * We've reached the leftmost extent block,
1785 * it's safe to leave.
1787 if (cluster_in_el == 0)
1791 * The 'pos' searched for previous extent block is
1792 * always one cluster less than actual trunc_end.
1794 trunc_end = cluster_in_el + 1;
1796 ocfs2_reinit_path(path, 1);
1801 rec = &el->l_recs[i];
1803 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1804 &trunc_len, &trunc_end, &blkno, &done);
1808 flags = rec->e_flags;
1809 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1811 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1812 phys_cpos, trunc_len, flags,
1813 &dealloc, refcount_loc, false);
1819 cluster_in_el = trunc_end;
1821 ocfs2_reinit_path(path, 1);
1824 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1827 ocfs2_free_path(path);
1828 ocfs2_schedule_truncate_log_flush(osb, 1);
1829 ocfs2_run_deallocs(osb, &dealloc);
1835 * Parts of this function taken from xfs_change_file_space()
1837 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1838 loff_t f_pos, unsigned int cmd,
1839 struct ocfs2_space_resv *sr,
1845 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1846 struct buffer_head *di_bh = NULL;
1848 unsigned long long max_off = inode->i_sb->s_maxbytes;
1850 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1853 mutex_lock(&inode->i_mutex);
1856 * This prevents concurrent writes on other nodes
1858 ret = ocfs2_rw_lock(inode, 1);
1864 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1870 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1872 goto out_inode_unlock;
1875 switch (sr->l_whence) {
1876 case 0: /*SEEK_SET*/
1878 case 1: /*SEEK_CUR*/
1879 sr->l_start += f_pos;
1881 case 2: /*SEEK_END*/
1882 sr->l_start += i_size_read(inode);
1886 goto out_inode_unlock;
1890 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1893 || sr->l_start > max_off
1894 || (sr->l_start + llen) < 0
1895 || (sr->l_start + llen) > max_off) {
1897 goto out_inode_unlock;
1899 size = sr->l_start + sr->l_len;
1901 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1902 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1903 if (sr->l_len <= 0) {
1905 goto out_inode_unlock;
1909 if (file && should_remove_suid(file->f_path.dentry)) {
1910 ret = __ocfs2_write_remove_suid(inode, di_bh);
1913 goto out_inode_unlock;
1917 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1919 case OCFS2_IOC_RESVSP:
1920 case OCFS2_IOC_RESVSP64:
1922 * This takes unsigned offsets, but the signed ones we
1923 * pass have been checked against overflow above.
1925 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1928 case OCFS2_IOC_UNRESVSP:
1929 case OCFS2_IOC_UNRESVSP64:
1930 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1936 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1939 goto out_inode_unlock;
1943 * We update c/mtime for these changes
1945 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1946 if (IS_ERR(handle)) {
1947 ret = PTR_ERR(handle);
1949 goto out_inode_unlock;
1952 if (change_size && i_size_read(inode) < size)
1953 i_size_write(inode, size);
1955 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1956 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1960 if (file && (file->f_flags & O_SYNC))
1963 ocfs2_commit_trans(osb, handle);
1967 ocfs2_inode_unlock(inode, 1);
1969 ocfs2_rw_unlock(inode, 1);
1972 mutex_unlock(&inode->i_mutex);
1976 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1977 struct ocfs2_space_resv *sr)
1979 struct inode *inode = file_inode(file);
1980 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1983 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1984 !ocfs2_writes_unwritten_extents(osb))
1986 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1987 !ocfs2_sparse_alloc(osb))
1990 if (!S_ISREG(inode->i_mode))
1993 if (!(file->f_mode & FMODE_WRITE))
1996 ret = mnt_want_write_file(file);
1999 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2000 mnt_drop_write_file(file);
2004 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2007 struct inode *inode = file_inode(file);
2008 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2009 struct ocfs2_space_resv sr;
2010 int change_size = 1;
2011 int cmd = OCFS2_IOC_RESVSP64;
2013 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2015 if (!ocfs2_writes_unwritten_extents(osb))
2018 if (mode & FALLOC_FL_KEEP_SIZE)
2021 if (mode & FALLOC_FL_PUNCH_HOLE)
2022 cmd = OCFS2_IOC_UNRESVSP64;
2025 sr.l_start = (s64)offset;
2026 sr.l_len = (s64)len;
2028 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2032 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2036 unsigned int extent_flags;
2037 u32 cpos, clusters, extent_len, phys_cpos;
2038 struct super_block *sb = inode->i_sb;
2040 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2041 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2042 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2045 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2046 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2049 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2056 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2061 if (extent_len > clusters)
2062 extent_len = clusters;
2064 clusters -= extent_len;
2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2073 int blockmask = inode->i_sb->s_blocksize - 1;
2074 loff_t final_size = pos + count;
2076 if ((pos & blockmask) || (final_size & blockmask))
2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2083 loff_t pos, size_t count,
2087 struct buffer_head *di_bh = NULL;
2088 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2090 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2092 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2100 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2108 static int ocfs2_prepare_inode_for_write(struct file *file,
2115 int ret = 0, meta_level = 0;
2116 struct dentry *dentry = file->f_path.dentry;
2117 struct inode *inode = d_inode(dentry);
2119 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2120 int full_coherency = !(osb->s_mount_opt &
2121 OCFS2_MOUNT_COHERENCY_BUFFERED);
2124 * We start with a read level meta lock and only jump to an ex
2125 * if we need to make modifications here.
2128 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2135 /* Clear suid / sgid if necessary. We do this here
2136 * instead of later in the write path because
2137 * remove_suid() calls ->setattr without any hint that
2138 * we may have already done our cluster locking. Since
2139 * ocfs2_setattr() *must* take cluster locks to
2140 * proceed, this will lead us to recursively lock the
2141 * inode. There's also the dinode i_size state which
2142 * can be lost via setattr during extending writes (we
2143 * set inode->i_size at the end of a write. */
2144 if (should_remove_suid(dentry)) {
2145 if (meta_level == 0) {
2146 ocfs2_inode_unlock(inode, meta_level);
2151 ret = ocfs2_write_remove_suid(inode);
2160 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2162 ocfs2_inode_unlock(inode, meta_level);
2165 ret = ocfs2_prepare_inode_for_refcount(inode,
2182 * Skip the O_DIRECT checks if we don't need
2185 if (!direct_io || !(*direct_io))
2189 * There's no sane way to do direct writes to an inode
2192 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2198 * Allowing concurrent direct writes means
2199 * i_size changes wouldn't be synchronized, so
2200 * one node could wind up truncating another
2203 if (end > i_size_read(inode) && !full_coherency) {
2209 * Fallback to old way if the feature bit is not set.
2211 if (end > i_size_read(inode) &&
2212 !ocfs2_supports_append_dio(osb)) {
2218 * We don't fill holes during direct io, so
2219 * check for them here. If any are found, the
2220 * caller will have to retake some cluster
2221 * locks and initiate the io as buffered.
2223 ret = ocfs2_check_range_for_holes(inode, pos, count);
2226 * Fallback to old way if the feature bit is not set.
2227 * Otherwise try dio first and then complete the rest
2228 * request through buffer io.
2230 if (!ocfs2_supports_append_dio(osb))
2239 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2240 pos, appending, count,
2241 direct_io, has_refcount);
2243 if (meta_level >= 0)
2244 ocfs2_inode_unlock(inode, meta_level);
2250 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2251 struct iov_iter *from)
2253 int direct_io, appending, rw_level, have_alloc_sem = 0;
2254 int can_do_direct, has_refcount = 0;
2255 ssize_t written = 0;
2257 size_t count = iov_iter_count(from), orig_count;
2260 struct file *file = iocb->ki_filp;
2261 struct inode *inode = file_inode(file);
2262 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2263 int full_coherency = !(osb->s_mount_opt &
2264 OCFS2_MOUNT_COHERENCY_BUFFERED);
2265 int unaligned_dio = 0;
2266 int dropped_dio = 0;
2268 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2269 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2270 file->f_path.dentry->d_name.len,
2271 file->f_path.dentry->d_name.name,
2272 (unsigned int)from->nr_segs); /* GRRRRR */
2277 appending = iocb->ki_flags & IOCB_APPEND ? 1 : 0;
2278 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2280 mutex_lock(&inode->i_mutex);
2282 ocfs2_iocb_clear_sem_locked(iocb);
2285 /* to match setattr's i_mutex -> rw_lock ordering */
2288 /* communicate with ocfs2_dio_end_io */
2289 ocfs2_iocb_set_sem_locked(iocb);
2293 * Concurrent O_DIRECT writes are allowed with
2294 * mount_option "coherency=buffered".
2296 rw_level = (!direct_io || full_coherency);
2298 ret = ocfs2_rw_lock(inode, rw_level);
2305 * O_DIRECT writes with "coherency=full" need to take EX cluster
2306 * inode_lock to guarantee coherency.
2308 if (direct_io && full_coherency) {
2310 * We need to take and drop the inode lock to force
2311 * other nodes to drop their caches. Buffered I/O
2312 * already does this in write_begin().
2314 ret = ocfs2_inode_lock(inode, NULL, 1);
2320 ocfs2_inode_unlock(inode, 1);
2323 orig_count = iov_iter_count(from);
2324 ret = generic_write_checks(iocb, from);
2332 can_do_direct = direct_io;
2333 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, appending,
2334 &can_do_direct, &has_refcount);
2340 if (direct_io && !is_sync_kiocb(iocb))
2341 unaligned_dio = ocfs2_is_io_unaligned(inode, count, iocb->ki_pos);
2344 * We can't complete the direct I/O as requested, fall back to
2347 if (direct_io && !can_do_direct) {
2348 ocfs2_rw_unlock(inode, rw_level);
2354 iocb->ki_flags &= ~IOCB_DIRECT;
2355 iov_iter_reexpand(from, orig_count);
2360 if (unaligned_dio) {
2362 * Wait on previous unaligned aio to complete before
2365 mutex_lock(&OCFS2_I(inode)->ip_unaligned_aio);
2366 /* Mark the iocb as needing an unlock in ocfs2_dio_end_io */
2367 ocfs2_iocb_set_unaligned_aio(iocb);
2371 * To later detect whether a journal commit for sync writes is
2372 * necessary, we sample i_size, and cluster count here.
2374 old_size = i_size_read(inode);
2375 old_clusters = OCFS2_I(inode)->ip_clusters;
2377 /* communicate with ocfs2_dio_end_io */
2378 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2380 written = __generic_file_write_iter(iocb, from);
2381 /* buffered aio wouldn't have proper lock coverage today */
2382 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2384 if (unlikely(written <= 0))
2387 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2388 IS_SYNC(inode) || dropped_dio) {
2389 ret = filemap_fdatawrite_range(file->f_mapping,
2390 iocb->ki_pos - written,
2396 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2402 ret = filemap_fdatawait_range(file->f_mapping,
2403 iocb->ki_pos - written,
2409 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2410 * function pointer which is called when o_direct io completes so that
2411 * it can unlock our rw lock.
2412 * Unfortunately there are error cases which call end_io and others
2413 * that don't. so we don't have to unlock the rw_lock if either an
2414 * async dio is going to do it in the future or an end_io after an
2415 * error has already done it.
2417 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2423 if (unaligned_dio) {
2424 ocfs2_iocb_clear_unaligned_aio(iocb);
2425 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
2430 ocfs2_rw_unlock(inode, rw_level);
2434 ocfs2_iocb_clear_sem_locked(iocb);
2436 mutex_unlock(&inode->i_mutex);
2443 static ssize_t ocfs2_file_splice_read(struct file *in,
2445 struct pipe_inode_info *pipe,
2449 int ret = 0, lock_level = 0;
2450 struct inode *inode = file_inode(in);
2452 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2453 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2454 in->f_path.dentry->d_name.len,
2455 in->f_path.dentry->d_name.name, len);
2458 * See the comment in ocfs2_file_read_iter()
2460 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2465 ocfs2_inode_unlock(inode, lock_level);
2467 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2473 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2474 struct iov_iter *to)
2476 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2477 struct file *filp = iocb->ki_filp;
2478 struct inode *inode = file_inode(filp);
2480 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2481 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2482 filp->f_path.dentry->d_name.len,
2483 filp->f_path.dentry->d_name.name,
2484 to->nr_segs); /* GRRRRR */
2493 ocfs2_iocb_clear_sem_locked(iocb);
2496 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2497 * need locks to protect pending reads from racing with truncate.
2499 if (iocb->ki_flags & IOCB_DIRECT) {
2501 ocfs2_iocb_set_sem_locked(iocb);
2503 ret = ocfs2_rw_lock(inode, 0);
2509 /* communicate with ocfs2_dio_end_io */
2510 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2514 * We're fine letting folks race truncates and extending
2515 * writes with read across the cluster, just like they can
2516 * locally. Hence no rw_lock during read.
2518 * Take and drop the meta data lock to update inode fields
2519 * like i_size. This allows the checks down below
2520 * generic_file_aio_read() a chance of actually working.
2522 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2527 ocfs2_inode_unlock(inode, lock_level);
2529 ret = generic_file_read_iter(iocb, to);
2530 trace_generic_file_aio_read_ret(ret);
2532 /* buffered aio wouldn't have proper lock coverage today */
2533 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2535 /* see ocfs2_file_write_iter */
2536 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2543 ocfs2_iocb_clear_sem_locked(iocb);
2546 ocfs2_rw_unlock(inode, rw_level);
2551 /* Refer generic_file_llseek_unlocked() */
2552 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2554 struct inode *inode = file->f_mapping->host;
2557 mutex_lock(&inode->i_mutex);
2563 /* SEEK_END requires the OCFS2 inode lock for the file
2564 * because it references the file's size.
2566 ret = ocfs2_inode_lock(inode, NULL, 0);
2571 offset += i_size_read(inode);
2572 ocfs2_inode_unlock(inode, 0);
2576 offset = file->f_pos;
2579 offset += file->f_pos;
2583 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2592 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2595 mutex_unlock(&inode->i_mutex);
2601 const struct inode_operations ocfs2_file_iops = {
2602 .setattr = ocfs2_setattr,
2603 .getattr = ocfs2_getattr,
2604 .permission = ocfs2_permission,
2605 .setxattr = generic_setxattr,
2606 .getxattr = generic_getxattr,
2607 .listxattr = ocfs2_listxattr,
2608 .removexattr = generic_removexattr,
2609 .fiemap = ocfs2_fiemap,
2610 .get_acl = ocfs2_iop_get_acl,
2611 .set_acl = ocfs2_iop_set_acl,
2614 const struct inode_operations ocfs2_special_file_iops = {
2615 .setattr = ocfs2_setattr,
2616 .getattr = ocfs2_getattr,
2617 .permission = ocfs2_permission,
2618 .get_acl = ocfs2_iop_get_acl,
2619 .set_acl = ocfs2_iop_set_acl,
2623 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2624 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2626 const struct file_operations ocfs2_fops = {
2627 .llseek = ocfs2_file_llseek,
2629 .fsync = ocfs2_sync_file,
2630 .release = ocfs2_file_release,
2631 .open = ocfs2_file_open,
2632 .read_iter = ocfs2_file_read_iter,
2633 .write_iter = ocfs2_file_write_iter,
2634 .unlocked_ioctl = ocfs2_ioctl,
2635 #ifdef CONFIG_COMPAT
2636 .compat_ioctl = ocfs2_compat_ioctl,
2639 .flock = ocfs2_flock,
2640 .splice_read = ocfs2_file_splice_read,
2641 .splice_write = iter_file_splice_write,
2642 .fallocate = ocfs2_fallocate,
2645 const struct file_operations ocfs2_dops = {
2646 .llseek = generic_file_llseek,
2647 .read = generic_read_dir,
2648 .iterate = ocfs2_readdir,
2649 .fsync = ocfs2_sync_file,
2650 .release = ocfs2_dir_release,
2651 .open = ocfs2_dir_open,
2652 .unlocked_ioctl = ocfs2_ioctl,
2653 #ifdef CONFIG_COMPAT
2654 .compat_ioctl = ocfs2_compat_ioctl,
2657 .flock = ocfs2_flock,
2661 * POSIX-lockless variants of our file_operations.
2663 * These will be used if the underlying cluster stack does not support
2664 * posix file locking, if the user passes the "localflocks" mount
2665 * option, or if we have a local-only fs.
2667 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2668 * so we still want it in the case of no stack support for
2669 * plocks. Internally, it will do the right thing when asked to ignore
2672 const struct file_operations ocfs2_fops_no_plocks = {
2673 .llseek = ocfs2_file_llseek,
2675 .fsync = ocfs2_sync_file,
2676 .release = ocfs2_file_release,
2677 .open = ocfs2_file_open,
2678 .read_iter = ocfs2_file_read_iter,
2679 .write_iter = ocfs2_file_write_iter,
2680 .unlocked_ioctl = ocfs2_ioctl,
2681 #ifdef CONFIG_COMPAT
2682 .compat_ioctl = ocfs2_compat_ioctl,
2684 .flock = ocfs2_flock,
2685 .splice_read = ocfs2_file_splice_read,
2686 .splice_write = iter_file_splice_write,
2687 .fallocate = ocfs2_fallocate,
2690 const struct file_operations ocfs2_dops_no_plocks = {
2691 .llseek = generic_file_llseek,
2692 .read = generic_read_dir,
2693 .iterate = ocfs2_readdir,
2694 .fsync = ocfs2_sync_file,
2695 .release = ocfs2_dir_release,
2696 .open = ocfs2_dir_open,
2697 .unlocked_ioctl = ocfs2_ioctl,
2698 #ifdef CONFIG_COMPAT
2699 .compat_ioctl = ocfs2_compat_ioctl,
2701 .flock = ocfs2_flock,