Merge branch 'drm-rockchip-2015-07-13' of https://github.com/markyzq/kernel-drm-rockc...
[firefly-linux-kernel-4.4.55.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65                               int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70                                       int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72                                  int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74                                  int slot,
75                                  enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78                                             int slot_num,
79                                             struct ocfs2_dinode *la_dinode,
80                                             struct ocfs2_dinode *tl_dinode,
81                                             struct ocfs2_quota_recovery *qrec,
82                                             enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86         return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91         return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98
99 enum ocfs2_replay_state {
100         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
101         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
102         REPLAY_DONE             /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106         unsigned int rm_slots;
107         enum ocfs2_replay_state rm_state;
108         unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113         if (!osb->replay_map)
114                 return;
115
116         /* If we've already queued the replay, we don't have any more to do */
117         if (osb->replay_map->rm_state == REPLAY_DONE)
118                 return;
119
120         osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125         struct ocfs2_replay_map *replay_map;
126         int i, node_num;
127
128         /* If replay map is already set, we don't do it again */
129         if (osb->replay_map)
130                 return 0;
131
132         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135         if (!replay_map) {
136                 mlog_errno(-ENOMEM);
137                 return -ENOMEM;
138         }
139
140         spin_lock(&osb->osb_lock);
141
142         replay_map->rm_slots = osb->max_slots;
143         replay_map->rm_state = REPLAY_UNNEEDED;
144
145         /* set rm_replay_slots for offline slot(s) */
146         for (i = 0; i < replay_map->rm_slots; i++) {
147                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148                         replay_map->rm_replay_slots[i] = 1;
149         }
150
151         osb->replay_map = replay_map;
152         spin_unlock(&osb->osb_lock);
153         return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157                 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159         struct ocfs2_replay_map *replay_map = osb->replay_map;
160         int i;
161
162         if (!replay_map)
163                 return;
164
165         if (replay_map->rm_state != REPLAY_NEEDED)
166                 return;
167
168         for (i = 0; i < replay_map->rm_slots; i++)
169                 if (replay_map->rm_replay_slots[i])
170                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171                                                         NULL, NULL,
172                                                         orphan_reco_type);
173         replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178         struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180         if (!osb->replay_map)
181                 return;
182
183         kfree(replay_map);
184         osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189         struct ocfs2_recovery_map *rm;
190
191         mutex_init(&osb->recovery_lock);
192         osb->disable_recovery = 0;
193         osb->recovery_thread_task = NULL;
194         init_waitqueue_head(&osb->recovery_event);
195
196         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197                      osb->max_slots * sizeof(unsigned int),
198                      GFP_KERNEL);
199         if (!rm) {
200                 mlog_errno(-ENOMEM);
201                 return -ENOMEM;
202         }
203
204         rm->rm_entries = (unsigned int *)((char *)rm +
205                                           sizeof(struct ocfs2_recovery_map));
206         osb->recovery_map = rm;
207
208         return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216         mb();
217         return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222         struct ocfs2_recovery_map *rm;
223
224         /* disable any new recovery threads and wait for any currently
225          * running ones to exit. Do this before setting the vol_state. */
226         mutex_lock(&osb->recovery_lock);
227         osb->disable_recovery = 1;
228         mutex_unlock(&osb->recovery_lock);
229         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231         /* At this point, we know that no more recovery threads can be
232          * launched, so wait for any recovery completion work to
233          * complete. */
234         flush_workqueue(ocfs2_wq);
235
236         /*
237          * Now that recovery is shut down, and the osb is about to be
238          * freed,  the osb_lock is not taken here.
239          */
240         rm = osb->recovery_map;
241         /* XXX: Should we bug if there are dirty entries? */
242
243         kfree(rm);
244 }
245
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247                                      unsigned int node_num)
248 {
249         int i;
250         struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252         assert_spin_locked(&osb->osb_lock);
253
254         for (i = 0; i < rm->rm_used; i++) {
255                 if (rm->rm_entries[i] == node_num)
256                         return 1;
257         }
258
259         return 0;
260 }
261
262 /* Behaves like test-and-set.  Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264                                   unsigned int node_num)
265 {
266         struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268         spin_lock(&osb->osb_lock);
269         if (__ocfs2_recovery_map_test(osb, node_num)) {
270                 spin_unlock(&osb->osb_lock);
271                 return 1;
272         }
273
274         /* XXX: Can this be exploited? Not from o2dlm... */
275         BUG_ON(rm->rm_used >= osb->max_slots);
276
277         rm->rm_entries[rm->rm_used] = node_num;
278         rm->rm_used++;
279         spin_unlock(&osb->osb_lock);
280
281         return 0;
282 }
283
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285                                      unsigned int node_num)
286 {
287         int i;
288         struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290         spin_lock(&osb->osb_lock);
291
292         for (i = 0; i < rm->rm_used; i++) {
293                 if (rm->rm_entries[i] == node_num)
294                         break;
295         }
296
297         if (i < rm->rm_used) {
298                 /* XXX: be careful with the pointer math */
299                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300                         (rm->rm_used - i - 1) * sizeof(unsigned int));
301                 rm->rm_used--;
302         }
303
304         spin_unlock(&osb->osb_lock);
305 }
306
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309         int status = 0;
310         unsigned int flushed;
311         struct ocfs2_journal *journal = NULL;
312
313         journal = osb->journal;
314
315         /* Flush all pending commits and checkpoint the journal. */
316         down_write(&journal->j_trans_barrier);
317
318         flushed = atomic_read(&journal->j_num_trans);
319         trace_ocfs2_commit_cache_begin(flushed);
320         if (flushed == 0) {
321                 up_write(&journal->j_trans_barrier);
322                 goto finally;
323         }
324
325         jbd2_journal_lock_updates(journal->j_journal);
326         status = jbd2_journal_flush(journal->j_journal);
327         jbd2_journal_unlock_updates(journal->j_journal);
328         if (status < 0) {
329                 up_write(&journal->j_trans_barrier);
330                 mlog_errno(status);
331                 goto finally;
332         }
333
334         ocfs2_inc_trans_id(journal);
335
336         flushed = atomic_read(&journal->j_num_trans);
337         atomic_set(&journal->j_num_trans, 0);
338         up_write(&journal->j_trans_barrier);
339
340         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342         ocfs2_wake_downconvert_thread(osb);
343         wake_up(&journal->j_checkpointed);
344 finally:
345         return status;
346 }
347
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350         journal_t *journal = osb->journal->j_journal;
351         handle_t *handle;
352
353         BUG_ON(!osb || !osb->journal->j_journal);
354
355         if (ocfs2_is_hard_readonly(osb))
356                 return ERR_PTR(-EROFS);
357
358         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359         BUG_ON(max_buffs <= 0);
360
361         /* Nested transaction? Just return the handle... */
362         if (journal_current_handle())
363                 return jbd2_journal_start(journal, max_buffs);
364
365         sb_start_intwrite(osb->sb);
366
367         down_read(&osb->journal->j_trans_barrier);
368
369         handle = jbd2_journal_start(journal, max_buffs);
370         if (IS_ERR(handle)) {
371                 up_read(&osb->journal->j_trans_barrier);
372                 sb_end_intwrite(osb->sb);
373
374                 mlog_errno(PTR_ERR(handle));
375
376                 if (is_journal_aborted(journal)) {
377                         ocfs2_abort(osb->sb, "Detected aborted journal");
378                         handle = ERR_PTR(-EROFS);
379                 }
380         } else {
381                 if (!ocfs2_mount_local(osb))
382                         atomic_inc(&(osb->journal->j_num_trans));
383         }
384
385         return handle;
386 }
387
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389                        handle_t *handle)
390 {
391         int ret, nested;
392         struct ocfs2_journal *journal = osb->journal;
393
394         BUG_ON(!handle);
395
396         nested = handle->h_ref > 1;
397         ret = jbd2_journal_stop(handle);
398         if (ret < 0)
399                 mlog_errno(ret);
400
401         if (!nested) {
402                 up_read(&journal->j_trans_barrier);
403                 sb_end_intwrite(osb->sb);
404         }
405
406         return ret;
407 }
408
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428         int status, old_nblocks;
429
430         BUG_ON(!handle);
431         BUG_ON(nblocks < 0);
432
433         if (!nblocks)
434                 return 0;
435
436         old_nblocks = handle->h_buffer_credits;
437
438         trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441         status = 1;
442 #else
443         status = jbd2_journal_extend(handle, nblocks);
444         if (status < 0) {
445                 mlog_errno(status);
446                 goto bail;
447         }
448 #endif
449
450         if (status > 0) {
451                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452                 status = jbd2_journal_restart(handle,
453                                               old_nblocks + nblocks);
454                 if (status < 0) {
455                         mlog_errno(status);
456                         goto bail;
457                 }
458         }
459
460         status = 0;
461 bail:
462         return status;
463 }
464
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473         int status, old_nblks;
474
475         BUG_ON(!handle);
476
477         old_nblks = handle->h_buffer_credits;
478         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480         if (old_nblks < thresh)
481                 return 0;
482
483         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484         if (status < 0) {
485                 mlog_errno(status);
486                 goto bail;
487         }
488
489         if (status > 0) {
490                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491                 if (status < 0)
492                         mlog_errno(status);
493         }
494
495 bail:
496         return status;
497 }
498
499
500 struct ocfs2_triggers {
501         struct jbd2_buffer_trigger_type ot_triggers;
502         int                             ot_offset;
503 };
504
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511                                  struct buffer_head *bh,
512                                  void *data, size_t size)
513 {
514         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516         /*
517          * We aren't guaranteed to have the superblock here, so we
518          * must unconditionally compute the ecc data.
519          * __ocfs2_journal_access() will only set the triggers if
520          * metaecc is enabled.
521          */
522         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530                                  struct buffer_head *bh,
531                                  void *data, size_t size)
532 {
533         struct ocfs2_disk_dqtrailer *dqt =
534                 ocfs2_block_dqtrailer(size, data);
535
536         /*
537          * We aren't guaranteed to have the superblock here, so we
538          * must unconditionally compute the ecc data.
539          * __ocfs2_journal_access() will only set the triggers if
540          * metaecc is enabled.
541          */
542         ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550                                  struct buffer_head *bh,
551                                  void *data, size_t size)
552 {
553         struct ocfs2_dir_block_trailer *trailer =
554                 ocfs2_dir_trailer_from_size(size, data);
555
556         /*
557          * We aren't guaranteed to have the superblock here, so we
558          * must unconditionally compute the ecc data.
559          * __ocfs2_journal_access() will only set the triggers if
560          * metaecc is enabled.
561          */
562         ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566                                 struct buffer_head *bh)
567 {
568         mlog(ML_ERROR,
569              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570              "bh->b_blocknr = %llu\n",
571              (unsigned long)bh,
572              (unsigned long long)bh->b_blocknr);
573
574         ocfs2_error(bh->b_bdev->bd_super,
575                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577
578 static struct ocfs2_triggers di_triggers = {
579         .ot_triggers = {
580                 .t_frozen = ocfs2_frozen_trigger,
581                 .t_abort = ocfs2_abort_trigger,
582         },
583         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
584 };
585
586 static struct ocfs2_triggers eb_triggers = {
587         .ot_triggers = {
588                 .t_frozen = ocfs2_frozen_trigger,
589                 .t_abort = ocfs2_abort_trigger,
590         },
591         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
592 };
593
594 static struct ocfs2_triggers rb_triggers = {
595         .ot_triggers = {
596                 .t_frozen = ocfs2_frozen_trigger,
597                 .t_abort = ocfs2_abort_trigger,
598         },
599         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601
602 static struct ocfs2_triggers gd_triggers = {
603         .ot_triggers = {
604                 .t_frozen = ocfs2_frozen_trigger,
605                 .t_abort = ocfs2_abort_trigger,
606         },
607         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
608 };
609
610 static struct ocfs2_triggers db_triggers = {
611         .ot_triggers = {
612                 .t_frozen = ocfs2_db_frozen_trigger,
613                 .t_abort = ocfs2_abort_trigger,
614         },
615 };
616
617 static struct ocfs2_triggers xb_triggers = {
618         .ot_triggers = {
619                 .t_frozen = ocfs2_frozen_trigger,
620                 .t_abort = ocfs2_abort_trigger,
621         },
622         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624
625 static struct ocfs2_triggers dq_triggers = {
626         .ot_triggers = {
627                 .t_frozen = ocfs2_dq_frozen_trigger,
628                 .t_abort = ocfs2_abort_trigger,
629         },
630 };
631
632 static struct ocfs2_triggers dr_triggers = {
633         .ot_triggers = {
634                 .t_frozen = ocfs2_frozen_trigger,
635                 .t_abort = ocfs2_abort_trigger,
636         },
637         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639
640 static struct ocfs2_triggers dl_triggers = {
641         .ot_triggers = {
642                 .t_frozen = ocfs2_frozen_trigger,
643                 .t_abort = ocfs2_abort_trigger,
644         },
645         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647
648 static int __ocfs2_journal_access(handle_t *handle,
649                                   struct ocfs2_caching_info *ci,
650                                   struct buffer_head *bh,
651                                   struct ocfs2_triggers *triggers,
652                                   int type)
653 {
654         int status;
655         struct ocfs2_super *osb =
656                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657
658         BUG_ON(!ci || !ci->ci_ops);
659         BUG_ON(!handle);
660         BUG_ON(!bh);
661
662         trace_ocfs2_journal_access(
663                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
665
666         /* we can safely remove this assertion after testing. */
667         if (!buffer_uptodate(bh)) {
668                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669                 mlog(ML_ERROR, "b_blocknr=%llu\n",
670                      (unsigned long long)bh->b_blocknr);
671                 BUG();
672         }
673
674         /* Set the current transaction information on the ci so
675          * that the locking code knows whether it can drop it's locks
676          * on this ci or not. We're protected from the commit
677          * thread updating the current transaction id until
678          * ocfs2_commit_trans() because ocfs2_start_trans() took
679          * j_trans_barrier for us. */
680         ocfs2_set_ci_lock_trans(osb->journal, ci);
681
682         ocfs2_metadata_cache_io_lock(ci);
683         switch (type) {
684         case OCFS2_JOURNAL_ACCESS_CREATE:
685         case OCFS2_JOURNAL_ACCESS_WRITE:
686                 status = jbd2_journal_get_write_access(handle, bh);
687                 break;
688
689         case OCFS2_JOURNAL_ACCESS_UNDO:
690                 status = jbd2_journal_get_undo_access(handle, bh);
691                 break;
692
693         default:
694                 status = -EINVAL;
695                 mlog(ML_ERROR, "Unknown access type!\n");
696         }
697         if (!status && ocfs2_meta_ecc(osb) && triggers)
698                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
699         ocfs2_metadata_cache_io_unlock(ci);
700
701         if (status < 0)
702                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
703                      status, type);
704
705         return status;
706 }
707
708 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
709                             struct buffer_head *bh, int type)
710 {
711         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
712 }
713
714 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
715                             struct buffer_head *bh, int type)
716 {
717         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
718 }
719
720 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
721                             struct buffer_head *bh, int type)
722 {
723         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
724                                       type);
725 }
726
727 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
728                             struct buffer_head *bh, int type)
729 {
730         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
731 }
732
733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
734                             struct buffer_head *bh, int type)
735 {
736         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
737 }
738
739 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
740                             struct buffer_head *bh, int type)
741 {
742         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
743 }
744
745 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
746                             struct buffer_head *bh, int type)
747 {
748         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
749 }
750
751 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
752                             struct buffer_head *bh, int type)
753 {
754         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
755 }
756
757 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
758                             struct buffer_head *bh, int type)
759 {
760         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
761 }
762
763 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
764                          struct buffer_head *bh, int type)
765 {
766         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
767 }
768
769 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
770 {
771         int status;
772
773         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
774
775         status = jbd2_journal_dirty_metadata(handle, bh);
776         if (status) {
777                 mlog_errno(status);
778                 if (!is_handle_aborted(handle)) {
779                         journal_t *journal = handle->h_transaction->t_journal;
780                         struct super_block *sb = bh->b_bdev->bd_super;
781
782                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
783                                         "Aborting transaction and journal.\n");
784                         handle->h_err = status;
785                         jbd2_journal_abort_handle(handle);
786                         jbd2_journal_abort(journal, status);
787                         ocfs2_abort(sb, "Journal already aborted.\n");
788                 }
789         }
790 }
791
792 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
793
794 void ocfs2_set_journal_params(struct ocfs2_super *osb)
795 {
796         journal_t *journal = osb->journal->j_journal;
797         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
798
799         if (osb->osb_commit_interval)
800                 commit_interval = osb->osb_commit_interval;
801
802         write_lock(&journal->j_state_lock);
803         journal->j_commit_interval = commit_interval;
804         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
805                 journal->j_flags |= JBD2_BARRIER;
806         else
807                 journal->j_flags &= ~JBD2_BARRIER;
808         write_unlock(&journal->j_state_lock);
809 }
810
811 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
812 {
813         int status = -1;
814         struct inode *inode = NULL; /* the journal inode */
815         journal_t *j_journal = NULL;
816         struct ocfs2_dinode *di = NULL;
817         struct buffer_head *bh = NULL;
818         struct ocfs2_super *osb;
819         int inode_lock = 0;
820
821         BUG_ON(!journal);
822
823         osb = journal->j_osb;
824
825         /* already have the inode for our journal */
826         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
827                                             osb->slot_num);
828         if (inode == NULL) {
829                 status = -EACCES;
830                 mlog_errno(status);
831                 goto done;
832         }
833         if (is_bad_inode(inode)) {
834                 mlog(ML_ERROR, "access error (bad inode)\n");
835                 iput(inode);
836                 inode = NULL;
837                 status = -EACCES;
838                 goto done;
839         }
840
841         SET_INODE_JOURNAL(inode);
842         OCFS2_I(inode)->ip_open_count++;
843
844         /* Skip recovery waits here - journal inode metadata never
845          * changes in a live cluster so it can be considered an
846          * exception to the rule. */
847         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
848         if (status < 0) {
849                 if (status != -ERESTARTSYS)
850                         mlog(ML_ERROR, "Could not get lock on journal!\n");
851                 goto done;
852         }
853
854         inode_lock = 1;
855         di = (struct ocfs2_dinode *)bh->b_data;
856
857         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
858                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
859                      i_size_read(inode));
860                 status = -EINVAL;
861                 goto done;
862         }
863
864         trace_ocfs2_journal_init(i_size_read(inode),
865                                  (unsigned long long)inode->i_blocks,
866                                  OCFS2_I(inode)->ip_clusters);
867
868         /* call the kernels journal init function now */
869         j_journal = jbd2_journal_init_inode(inode);
870         if (j_journal == NULL) {
871                 mlog(ML_ERROR, "Linux journal layer error\n");
872                 status = -EINVAL;
873                 goto done;
874         }
875
876         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
877
878         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
879                   OCFS2_JOURNAL_DIRTY_FL);
880
881         journal->j_journal = j_journal;
882         journal->j_inode = inode;
883         journal->j_bh = bh;
884
885         ocfs2_set_journal_params(osb);
886
887         journal->j_state = OCFS2_JOURNAL_LOADED;
888
889         status = 0;
890 done:
891         if (status < 0) {
892                 if (inode_lock)
893                         ocfs2_inode_unlock(inode, 1);
894                 brelse(bh);
895                 if (inode) {
896                         OCFS2_I(inode)->ip_open_count--;
897                         iput(inode);
898                 }
899         }
900
901         return status;
902 }
903
904 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
905 {
906         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
907 }
908
909 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
910 {
911         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
912 }
913
914 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
915                                       int dirty, int replayed)
916 {
917         int status;
918         unsigned int flags;
919         struct ocfs2_journal *journal = osb->journal;
920         struct buffer_head *bh = journal->j_bh;
921         struct ocfs2_dinode *fe;
922
923         fe = (struct ocfs2_dinode *)bh->b_data;
924
925         /* The journal bh on the osb always comes from ocfs2_journal_init()
926          * and was validated there inside ocfs2_inode_lock_full().  It's a
927          * code bug if we mess it up. */
928         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
929
930         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
931         if (dirty)
932                 flags |= OCFS2_JOURNAL_DIRTY_FL;
933         else
934                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
935         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
936
937         if (replayed)
938                 ocfs2_bump_recovery_generation(fe);
939
940         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
941         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
942         if (status < 0)
943                 mlog_errno(status);
944
945         return status;
946 }
947
948 /*
949  * If the journal has been kmalloc'd it needs to be freed after this
950  * call.
951  */
952 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
953 {
954         struct ocfs2_journal *journal = NULL;
955         int status = 0;
956         struct inode *inode = NULL;
957         int num_running_trans = 0;
958
959         BUG_ON(!osb);
960
961         journal = osb->journal;
962         if (!journal)
963                 goto done;
964
965         inode = journal->j_inode;
966
967         if (journal->j_state != OCFS2_JOURNAL_LOADED)
968                 goto done;
969
970         /* need to inc inode use count - jbd2_journal_destroy will iput. */
971         if (!igrab(inode))
972                 BUG();
973
974         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
975         trace_ocfs2_journal_shutdown(num_running_trans);
976
977         /* Do a commit_cache here. It will flush our journal, *and*
978          * release any locks that are still held.
979          * set the SHUTDOWN flag and release the trans lock.
980          * the commit thread will take the trans lock for us below. */
981         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
982
983         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
984          * drop the trans_lock (which we want to hold until we
985          * completely destroy the journal. */
986         if (osb->commit_task) {
987                 /* Wait for the commit thread */
988                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
989                 kthread_stop(osb->commit_task);
990                 osb->commit_task = NULL;
991         }
992
993         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
994
995         if (ocfs2_mount_local(osb)) {
996                 jbd2_journal_lock_updates(journal->j_journal);
997                 status = jbd2_journal_flush(journal->j_journal);
998                 jbd2_journal_unlock_updates(journal->j_journal);
999                 if (status < 0)
1000                         mlog_errno(status);
1001         }
1002
1003         if (status == 0) {
1004                 /*
1005                  * Do not toggle if flush was unsuccessful otherwise
1006                  * will leave dirty metadata in a "clean" journal
1007                  */
1008                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1009                 if (status < 0)
1010                         mlog_errno(status);
1011         }
1012
1013         /* Shutdown the kernel journal system */
1014         jbd2_journal_destroy(journal->j_journal);
1015         journal->j_journal = NULL;
1016
1017         OCFS2_I(inode)->ip_open_count--;
1018
1019         /* unlock our journal */
1020         ocfs2_inode_unlock(inode, 1);
1021
1022         brelse(journal->j_bh);
1023         journal->j_bh = NULL;
1024
1025         journal->j_state = OCFS2_JOURNAL_FREE;
1026
1027 //      up_write(&journal->j_trans_barrier);
1028 done:
1029         if (inode)
1030                 iput(inode);
1031 }
1032
1033 static void ocfs2_clear_journal_error(struct super_block *sb,
1034                                       journal_t *journal,
1035                                       int slot)
1036 {
1037         int olderr;
1038
1039         olderr = jbd2_journal_errno(journal);
1040         if (olderr) {
1041                 mlog(ML_ERROR, "File system error %d recorded in "
1042                      "journal %u.\n", olderr, slot);
1043                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1044                      sb->s_id);
1045
1046                 jbd2_journal_ack_err(journal);
1047                 jbd2_journal_clear_err(journal);
1048         }
1049 }
1050
1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1052 {
1053         int status = 0;
1054         struct ocfs2_super *osb;
1055
1056         BUG_ON(!journal);
1057
1058         osb = journal->j_osb;
1059
1060         status = jbd2_journal_load(journal->j_journal);
1061         if (status < 0) {
1062                 mlog(ML_ERROR, "Failed to load journal!\n");
1063                 goto done;
1064         }
1065
1066         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1067
1068         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1069         if (status < 0) {
1070                 mlog_errno(status);
1071                 goto done;
1072         }
1073
1074         /* Launch the commit thread */
1075         if (!local) {
1076                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1077                                                "ocfs2cmt");
1078                 if (IS_ERR(osb->commit_task)) {
1079                         status = PTR_ERR(osb->commit_task);
1080                         osb->commit_task = NULL;
1081                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1082                              "error=%d", status);
1083                         goto done;
1084                 }
1085         } else
1086                 osb->commit_task = NULL;
1087
1088 done:
1089         return status;
1090 }
1091
1092
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094  * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1096 {
1097         int status;
1098
1099         BUG_ON(!journal);
1100
1101         status = jbd2_journal_wipe(journal->j_journal, full);
1102         if (status < 0) {
1103                 mlog_errno(status);
1104                 goto bail;
1105         }
1106
1107         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1108         if (status < 0)
1109                 mlog_errno(status);
1110
1111 bail:
1112         return status;
1113 }
1114
1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1116 {
1117         int empty;
1118         struct ocfs2_recovery_map *rm = osb->recovery_map;
1119
1120         spin_lock(&osb->osb_lock);
1121         empty = (rm->rm_used == 0);
1122         spin_unlock(&osb->osb_lock);
1123
1124         return empty;
1125 }
1126
1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1128 {
1129         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1130 }
1131
1132 /*
1133  * JBD Might read a cached version of another nodes journal file. We
1134  * don't want this as this file changes often and we get no
1135  * notification on those changes. The only way to be sure that we've
1136  * got the most up to date version of those blocks then is to force
1137  * read them off disk. Just searching through the buffer cache won't
1138  * work as there may be pages backing this file which are still marked
1139  * up to date. We know things can't change on this file underneath us
1140  * as we have the lock by now :)
1141  */
1142 static int ocfs2_force_read_journal(struct inode *inode)
1143 {
1144         int status = 0;
1145         int i;
1146         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1147 #define CONCURRENT_JOURNAL_FILL 32ULL
1148         struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1149
1150         memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1151
1152         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1153         v_blkno = 0;
1154         while (v_blkno < num_blocks) {
1155                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1156                                                      &p_blkno, &p_blocks, NULL);
1157                 if (status < 0) {
1158                         mlog_errno(status);
1159                         goto bail;
1160                 }
1161
1162                 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1163                         p_blocks = CONCURRENT_JOURNAL_FILL;
1164
1165                 /* We are reading journal data which should not
1166                  * be put in the uptodate cache */
1167                 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1168                                                 p_blkno, p_blocks, bhs);
1169                 if (status < 0) {
1170                         mlog_errno(status);
1171                         goto bail;
1172                 }
1173
1174                 for(i = 0; i < p_blocks; i++) {
1175                         brelse(bhs[i]);
1176                         bhs[i] = NULL;
1177                 }
1178
1179                 v_blkno += p_blocks;
1180         }
1181
1182 bail:
1183         for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1184                 brelse(bhs[i]);
1185         return status;
1186 }
1187
1188 struct ocfs2_la_recovery_item {
1189         struct list_head        lri_list;
1190         int                     lri_slot;
1191         struct ocfs2_dinode     *lri_la_dinode;
1192         struct ocfs2_dinode     *lri_tl_dinode;
1193         struct ocfs2_quota_recovery *lri_qrec;
1194         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1195 };
1196
1197 /* Does the second half of the recovery process. By this point, the
1198  * node is marked clean and can actually be considered recovered,
1199  * hence it's no longer in the recovery map, but there's still some
1200  * cleanup we can do which shouldn't happen within the recovery thread
1201  * as locking in that context becomes very difficult if we are to take
1202  * recovering nodes into account.
1203  *
1204  * NOTE: This function can and will sleep on recovery of other nodes
1205  * during cluster locking, just like any other ocfs2 process.
1206  */
1207 void ocfs2_complete_recovery(struct work_struct *work)
1208 {
1209         int ret = 0;
1210         struct ocfs2_journal *journal =
1211                 container_of(work, struct ocfs2_journal, j_recovery_work);
1212         struct ocfs2_super *osb = journal->j_osb;
1213         struct ocfs2_dinode *la_dinode, *tl_dinode;
1214         struct ocfs2_la_recovery_item *item, *n;
1215         struct ocfs2_quota_recovery *qrec;
1216         enum ocfs2_orphan_reco_type orphan_reco_type;
1217         LIST_HEAD(tmp_la_list);
1218
1219         trace_ocfs2_complete_recovery(
1220                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1221
1222         spin_lock(&journal->j_lock);
1223         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1224         spin_unlock(&journal->j_lock);
1225
1226         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1227                 list_del_init(&item->lri_list);
1228
1229                 ocfs2_wait_on_quotas(osb);
1230
1231                 la_dinode = item->lri_la_dinode;
1232                 tl_dinode = item->lri_tl_dinode;
1233                 qrec = item->lri_qrec;
1234                 orphan_reco_type = item->lri_orphan_reco_type;
1235
1236                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1237                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1238                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1239                         qrec);
1240
1241                 if (la_dinode) {
1242                         ret = ocfs2_complete_local_alloc_recovery(osb,
1243                                                                   la_dinode);
1244                         if (ret < 0)
1245                                 mlog_errno(ret);
1246
1247                         kfree(la_dinode);
1248                 }
1249
1250                 if (tl_dinode) {
1251                         ret = ocfs2_complete_truncate_log_recovery(osb,
1252                                                                    tl_dinode);
1253                         if (ret < 0)
1254                                 mlog_errno(ret);
1255
1256                         kfree(tl_dinode);
1257                 }
1258
1259                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1260                                 orphan_reco_type);
1261                 if (ret < 0)
1262                         mlog_errno(ret);
1263
1264                 if (qrec) {
1265                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1266                                                           item->lri_slot);
1267                         if (ret < 0)
1268                                 mlog_errno(ret);
1269                         /* Recovery info is already freed now */
1270                 }
1271
1272                 kfree(item);
1273         }
1274
1275         trace_ocfs2_complete_recovery_end(ret);
1276 }
1277
1278 /* NOTE: This function always eats your references to la_dinode and
1279  * tl_dinode, either manually on error, or by passing them to
1280  * ocfs2_complete_recovery */
1281 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1282                                             int slot_num,
1283                                             struct ocfs2_dinode *la_dinode,
1284                                             struct ocfs2_dinode *tl_dinode,
1285                                             struct ocfs2_quota_recovery *qrec,
1286                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1287 {
1288         struct ocfs2_la_recovery_item *item;
1289
1290         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1291         if (!item) {
1292                 /* Though we wish to avoid it, we are in fact safe in
1293                  * skipping local alloc cleanup as fsck.ocfs2 is more
1294                  * than capable of reclaiming unused space. */
1295                 kfree(la_dinode);
1296                 kfree(tl_dinode);
1297
1298                 if (qrec)
1299                         ocfs2_free_quota_recovery(qrec);
1300
1301                 mlog_errno(-ENOMEM);
1302                 return;
1303         }
1304
1305         INIT_LIST_HEAD(&item->lri_list);
1306         item->lri_la_dinode = la_dinode;
1307         item->lri_slot = slot_num;
1308         item->lri_tl_dinode = tl_dinode;
1309         item->lri_qrec = qrec;
1310         item->lri_orphan_reco_type = orphan_reco_type;
1311
1312         spin_lock(&journal->j_lock);
1313         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1314         queue_work(ocfs2_wq, &journal->j_recovery_work);
1315         spin_unlock(&journal->j_lock);
1316 }
1317
1318 /* Called by the mount code to queue recovery the last part of
1319  * recovery for it's own and offline slot(s). */
1320 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1321 {
1322         struct ocfs2_journal *journal = osb->journal;
1323
1324         if (ocfs2_is_hard_readonly(osb))
1325                 return;
1326
1327         /* No need to queue up our truncate_log as regular cleanup will catch
1328          * that */
1329         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1330                                         osb->local_alloc_copy, NULL, NULL,
1331                                         ORPHAN_NEED_TRUNCATE);
1332         ocfs2_schedule_truncate_log_flush(osb, 0);
1333
1334         osb->local_alloc_copy = NULL;
1335         osb->dirty = 0;
1336
1337         /* queue to recover orphan slots for all offline slots */
1338         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1339         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1340         ocfs2_free_replay_slots(osb);
1341 }
1342
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1344 {
1345         if (osb->quota_rec) {
1346                 ocfs2_queue_recovery_completion(osb->journal,
1347                                                 osb->slot_num,
1348                                                 NULL,
1349                                                 NULL,
1350                                                 osb->quota_rec,
1351                                                 ORPHAN_NEED_TRUNCATE);
1352                 osb->quota_rec = NULL;
1353         }
1354 }
1355
1356 static int __ocfs2_recovery_thread(void *arg)
1357 {
1358         int status, node_num, slot_num;
1359         struct ocfs2_super *osb = arg;
1360         struct ocfs2_recovery_map *rm = osb->recovery_map;
1361         int *rm_quota = NULL;
1362         int rm_quota_used = 0, i;
1363         struct ocfs2_quota_recovery *qrec;
1364
1365         status = ocfs2_wait_on_mount(osb);
1366         if (status < 0) {
1367                 goto bail;
1368         }
1369
1370         rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1371         if (!rm_quota) {
1372                 status = -ENOMEM;
1373                 goto bail;
1374         }
1375 restart:
1376         status = ocfs2_super_lock(osb, 1);
1377         if (status < 0) {
1378                 mlog_errno(status);
1379                 goto bail;
1380         }
1381
1382         status = ocfs2_compute_replay_slots(osb);
1383         if (status < 0)
1384                 mlog_errno(status);
1385
1386         /* queue recovery for our own slot */
1387         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1388                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1389
1390         spin_lock(&osb->osb_lock);
1391         while (rm->rm_used) {
1392                 /* It's always safe to remove entry zero, as we won't
1393                  * clear it until ocfs2_recover_node() has succeeded. */
1394                 node_num = rm->rm_entries[0];
1395                 spin_unlock(&osb->osb_lock);
1396                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1397                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1398                 if (slot_num == -ENOENT) {
1399                         status = 0;
1400                         goto skip_recovery;
1401                 }
1402
1403                 /* It is a bit subtle with quota recovery. We cannot do it
1404                  * immediately because we have to obtain cluster locks from
1405                  * quota files and we also don't want to just skip it because
1406                  * then quota usage would be out of sync until some node takes
1407                  * the slot. So we remember which nodes need quota recovery
1408                  * and when everything else is done, we recover quotas. */
1409                 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1410                 if (i == rm_quota_used)
1411                         rm_quota[rm_quota_used++] = slot_num;
1412
1413                 status = ocfs2_recover_node(osb, node_num, slot_num);
1414 skip_recovery:
1415                 if (!status) {
1416                         ocfs2_recovery_map_clear(osb, node_num);
1417                 } else {
1418                         mlog(ML_ERROR,
1419                              "Error %d recovering node %d on device (%u,%u)!\n",
1420                              status, node_num,
1421                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1422                         mlog(ML_ERROR, "Volume requires unmount.\n");
1423                 }
1424
1425                 spin_lock(&osb->osb_lock);
1426         }
1427         spin_unlock(&osb->osb_lock);
1428         trace_ocfs2_recovery_thread_end(status);
1429
1430         /* Refresh all journal recovery generations from disk */
1431         status = ocfs2_check_journals_nolocks(osb);
1432         status = (status == -EROFS) ? 0 : status;
1433         if (status < 0)
1434                 mlog_errno(status);
1435
1436         /* Now it is right time to recover quotas... We have to do this under
1437          * superblock lock so that no one can start using the slot (and crash)
1438          * before we recover it */
1439         for (i = 0; i < rm_quota_used; i++) {
1440                 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1441                 if (IS_ERR(qrec)) {
1442                         status = PTR_ERR(qrec);
1443                         mlog_errno(status);
1444                         continue;
1445                 }
1446                 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1447                                                 NULL, NULL, qrec,
1448                                                 ORPHAN_NEED_TRUNCATE);
1449         }
1450
1451         ocfs2_super_unlock(osb, 1);
1452
1453         /* queue recovery for offline slots */
1454         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1455
1456 bail:
1457         mutex_lock(&osb->recovery_lock);
1458         if (!status && !ocfs2_recovery_completed(osb)) {
1459                 mutex_unlock(&osb->recovery_lock);
1460                 goto restart;
1461         }
1462
1463         ocfs2_free_replay_slots(osb);
1464         osb->recovery_thread_task = NULL;
1465         mb(); /* sync with ocfs2_recovery_thread_running */
1466         wake_up(&osb->recovery_event);
1467
1468         mutex_unlock(&osb->recovery_lock);
1469
1470         kfree(rm_quota);
1471
1472         /* no one is callint kthread_stop() for us so the kthread() api
1473          * requires that we call do_exit().  And it isn't exported, but
1474          * complete_and_exit() seems to be a minimal wrapper around it. */
1475         complete_and_exit(NULL, status);
1476 }
1477
1478 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1479 {
1480         mutex_lock(&osb->recovery_lock);
1481
1482         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1483                 osb->disable_recovery, osb->recovery_thread_task,
1484                 osb->disable_recovery ?
1485                 -1 : ocfs2_recovery_map_set(osb, node_num));
1486
1487         if (osb->disable_recovery)
1488                 goto out;
1489
1490         if (osb->recovery_thread_task)
1491                 goto out;
1492
1493         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1494                                                  "ocfs2rec");
1495         if (IS_ERR(osb->recovery_thread_task)) {
1496                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1497                 osb->recovery_thread_task = NULL;
1498         }
1499
1500 out:
1501         mutex_unlock(&osb->recovery_lock);
1502         wake_up(&osb->recovery_event);
1503 }
1504
1505 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1506                                     int slot_num,
1507                                     struct buffer_head **bh,
1508                                     struct inode **ret_inode)
1509 {
1510         int status = -EACCES;
1511         struct inode *inode = NULL;
1512
1513         BUG_ON(slot_num >= osb->max_slots);
1514
1515         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1516                                             slot_num);
1517         if (!inode || is_bad_inode(inode)) {
1518                 mlog_errno(status);
1519                 goto bail;
1520         }
1521         SET_INODE_JOURNAL(inode);
1522
1523         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1524         if (status < 0) {
1525                 mlog_errno(status);
1526                 goto bail;
1527         }
1528
1529         status = 0;
1530
1531 bail:
1532         if (inode) {
1533                 if (status || !ret_inode)
1534                         iput(inode);
1535                 else
1536                         *ret_inode = inode;
1537         }
1538         return status;
1539 }
1540
1541 /* Does the actual journal replay and marks the journal inode as
1542  * clean. Will only replay if the journal inode is marked dirty. */
1543 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1544                                 int node_num,
1545                                 int slot_num)
1546 {
1547         int status;
1548         int got_lock = 0;
1549         unsigned int flags;
1550         struct inode *inode = NULL;
1551         struct ocfs2_dinode *fe;
1552         journal_t *journal = NULL;
1553         struct buffer_head *bh = NULL;
1554         u32 slot_reco_gen;
1555
1556         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1557         if (status) {
1558                 mlog_errno(status);
1559                 goto done;
1560         }
1561
1562         fe = (struct ocfs2_dinode *)bh->b_data;
1563         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1564         brelse(bh);
1565         bh = NULL;
1566
1567         /*
1568          * As the fs recovery is asynchronous, there is a small chance that
1569          * another node mounted (and recovered) the slot before the recovery
1570          * thread could get the lock. To handle that, we dirty read the journal
1571          * inode for that slot to get the recovery generation. If it is
1572          * different than what we expected, the slot has been recovered.
1573          * If not, it needs recovery.
1574          */
1575         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1576                 trace_ocfs2_replay_journal_recovered(slot_num,
1577                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1578                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1579                 status = -EBUSY;
1580                 goto done;
1581         }
1582
1583         /* Continue with recovery as the journal has not yet been recovered */
1584
1585         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1586         if (status < 0) {
1587                 trace_ocfs2_replay_journal_lock_err(status);
1588                 if (status != -ERESTARTSYS)
1589                         mlog(ML_ERROR, "Could not lock journal!\n");
1590                 goto done;
1591         }
1592         got_lock = 1;
1593
1594         fe = (struct ocfs2_dinode *) bh->b_data;
1595
1596         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1597         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1598
1599         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1600                 trace_ocfs2_replay_journal_skip(node_num);
1601                 /* Refresh recovery generation for the slot */
1602                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1603                 goto done;
1604         }
1605
1606         /* we need to run complete recovery for offline orphan slots */
1607         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1608
1609         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1610                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1611                MINOR(osb->sb->s_dev));
1612
1613         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1614
1615         status = ocfs2_force_read_journal(inode);
1616         if (status < 0) {
1617                 mlog_errno(status);
1618                 goto done;
1619         }
1620
1621         journal = jbd2_journal_init_inode(inode);
1622         if (journal == NULL) {
1623                 mlog(ML_ERROR, "Linux journal layer error\n");
1624                 status = -EIO;
1625                 goto done;
1626         }
1627
1628         status = jbd2_journal_load(journal);
1629         if (status < 0) {
1630                 mlog_errno(status);
1631                 if (!igrab(inode))
1632                         BUG();
1633                 jbd2_journal_destroy(journal);
1634                 goto done;
1635         }
1636
1637         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1638
1639         /* wipe the journal */
1640         jbd2_journal_lock_updates(journal);
1641         status = jbd2_journal_flush(journal);
1642         jbd2_journal_unlock_updates(journal);
1643         if (status < 0)
1644                 mlog_errno(status);
1645
1646         /* This will mark the node clean */
1647         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1648         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1649         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1650
1651         /* Increment recovery generation to indicate successful recovery */
1652         ocfs2_bump_recovery_generation(fe);
1653         osb->slot_recovery_generations[slot_num] =
1654                                         ocfs2_get_recovery_generation(fe);
1655
1656         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1657         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1658         if (status < 0)
1659                 mlog_errno(status);
1660
1661         if (!igrab(inode))
1662                 BUG();
1663
1664         jbd2_journal_destroy(journal);
1665
1666         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1667                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1668                MINOR(osb->sb->s_dev));
1669 done:
1670         /* drop the lock on this nodes journal */
1671         if (got_lock)
1672                 ocfs2_inode_unlock(inode, 1);
1673
1674         if (inode)
1675                 iput(inode);
1676
1677         brelse(bh);
1678
1679         return status;
1680 }
1681
1682 /*
1683  * Do the most important parts of node recovery:
1684  *  - Replay it's journal
1685  *  - Stamp a clean local allocator file
1686  *  - Stamp a clean truncate log
1687  *  - Mark the node clean
1688  *
1689  * If this function completes without error, a node in OCFS2 can be
1690  * said to have been safely recovered. As a result, failure during the
1691  * second part of a nodes recovery process (local alloc recovery) is
1692  * far less concerning.
1693  */
1694 static int ocfs2_recover_node(struct ocfs2_super *osb,
1695                               int node_num, int slot_num)
1696 {
1697         int status = 0;
1698         struct ocfs2_dinode *la_copy = NULL;
1699         struct ocfs2_dinode *tl_copy = NULL;
1700
1701         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1702
1703         /* Should not ever be called to recover ourselves -- in that
1704          * case we should've called ocfs2_journal_load instead. */
1705         BUG_ON(osb->node_num == node_num);
1706
1707         status = ocfs2_replay_journal(osb, node_num, slot_num);
1708         if (status < 0) {
1709                 if (status == -EBUSY) {
1710                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1711                         status = 0;
1712                         goto done;
1713                 }
1714                 mlog_errno(status);
1715                 goto done;
1716         }
1717
1718         /* Stamp a clean local alloc file AFTER recovering the journal... */
1719         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1720         if (status < 0) {
1721                 mlog_errno(status);
1722                 goto done;
1723         }
1724
1725         /* An error from begin_truncate_log_recovery is not
1726          * serious enough to warrant halting the rest of
1727          * recovery. */
1728         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1729         if (status < 0)
1730                 mlog_errno(status);
1731
1732         /* Likewise, this would be a strange but ultimately not so
1733          * harmful place to get an error... */
1734         status = ocfs2_clear_slot(osb, slot_num);
1735         if (status < 0)
1736                 mlog_errno(status);
1737
1738         /* This will kfree the memory pointed to by la_copy and tl_copy */
1739         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1740                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1741
1742         status = 0;
1743 done:
1744
1745         return status;
1746 }
1747
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750  * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752                                  int slot_num)
1753 {
1754         int status, flags;
1755         struct inode *inode = NULL;
1756
1757         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758                                             slot_num);
1759         if (inode == NULL) {
1760                 mlog(ML_ERROR, "access error\n");
1761                 status = -EACCES;
1762                 goto bail;
1763         }
1764         if (is_bad_inode(inode)) {
1765                 mlog(ML_ERROR, "access error (bad inode)\n");
1766                 iput(inode);
1767                 inode = NULL;
1768                 status = -EACCES;
1769                 goto bail;
1770         }
1771         SET_INODE_JOURNAL(inode);
1772
1773         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1774         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1775         if (status < 0) {
1776                 if (status != -EAGAIN)
1777                         mlog_errno(status);
1778                 goto bail;
1779         }
1780
1781         ocfs2_inode_unlock(inode, 1);
1782 bail:
1783         if (inode)
1784                 iput(inode);
1785
1786         return status;
1787 }
1788
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790  * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1792 {
1793         unsigned int node_num;
1794         int status, i;
1795         u32 gen;
1796         struct buffer_head *bh = NULL;
1797         struct ocfs2_dinode *di;
1798
1799         /* This is called with the super block cluster lock, so we
1800          * know that the slot map can't change underneath us. */
1801
1802         for (i = 0; i < osb->max_slots; i++) {
1803                 /* Read journal inode to get the recovery generation */
1804                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805                 if (status) {
1806                         mlog_errno(status);
1807                         goto bail;
1808                 }
1809                 di = (struct ocfs2_dinode *)bh->b_data;
1810                 gen = ocfs2_get_recovery_generation(di);
1811                 brelse(bh);
1812                 bh = NULL;
1813
1814                 spin_lock(&osb->osb_lock);
1815                 osb->slot_recovery_generations[i] = gen;
1816
1817                 trace_ocfs2_mark_dead_nodes(i,
1818                                             osb->slot_recovery_generations[i]);
1819
1820                 if (i == osb->slot_num) {
1821                         spin_unlock(&osb->osb_lock);
1822                         continue;
1823                 }
1824
1825                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1826                 if (status == -ENOENT) {
1827                         spin_unlock(&osb->osb_lock);
1828                         continue;
1829                 }
1830
1831                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1832                         spin_unlock(&osb->osb_lock);
1833                         continue;
1834                 }
1835                 spin_unlock(&osb->osb_lock);
1836
1837                 /* Ok, we have a slot occupied by another node which
1838                  * is not in the recovery map. We trylock his journal
1839                  * file here to test if he's alive. */
1840                 status = ocfs2_trylock_journal(osb, i);
1841                 if (!status) {
1842                         /* Since we're called from mount, we know that
1843                          * the recovery thread can't race us on
1844                          * setting / checking the recovery bits. */
1845                         ocfs2_recovery_thread(osb, node_num);
1846                 } else if ((status < 0) && (status != -EAGAIN)) {
1847                         mlog_errno(status);
1848                         goto bail;
1849                 }
1850         }
1851
1852         status = 0;
1853 bail:
1854         return status;
1855 }
1856
1857 /*
1858  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1859  * randomness to the timeout to minimize multple nodes firing the timer at the
1860  * same time.
1861  */
1862 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1863 {
1864         unsigned long time;
1865
1866         get_random_bytes(&time, sizeof(time));
1867         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1868         return msecs_to_jiffies(time);
1869 }
1870
1871 /*
1872  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1873  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1874  * is done to catch any orphans that are left over in orphan directories.
1875  *
1876  * It scans all slots, even ones that are in use. It does so to handle the
1877  * case described below:
1878  *
1879  *   Node 1 has an inode it was using. The dentry went away due to memory
1880  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1881  *   has the open lock.
1882  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1883  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1884  *   open lock, sees that another node has a PR, and does nothing.
1885  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1886  *   open lock, sees the PR still, and does nothing.
1887  *   Basically, we have to trigger an orphan iput on node 1. The only way
1888  *   for this to happen is if node 1 runs node 2's orphan dir.
1889  *
1890  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1891  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1892  * stored in LVB. If the sequence number has changed, it means some other
1893  * node has done the scan.  This node skips the scan and tracks the
1894  * sequence number.  If the sequence number didn't change, it means a scan
1895  * hasn't happened.  The node queues a scan and increments the
1896  * sequence number in the LVB.
1897  */
1898 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1899 {
1900         struct ocfs2_orphan_scan *os;
1901         int status, i;
1902         u32 seqno = 0;
1903
1904         os = &osb->osb_orphan_scan;
1905
1906         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1907                 goto out;
1908
1909         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1910                                             atomic_read(&os->os_state));
1911
1912         status = ocfs2_orphan_scan_lock(osb, &seqno);
1913         if (status < 0) {
1914                 if (status != -EAGAIN)
1915                         mlog_errno(status);
1916                 goto out;
1917         }
1918
1919         /* Do no queue the tasks if the volume is being umounted */
1920         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1921                 goto unlock;
1922
1923         if (os->os_seqno != seqno) {
1924                 os->os_seqno = seqno;
1925                 goto unlock;
1926         }
1927
1928         for (i = 0; i < osb->max_slots; i++)
1929                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1930                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1931         /*
1932          * We queued a recovery on orphan slots, increment the sequence
1933          * number and update LVB so other node will skip the scan for a while
1934          */
1935         seqno++;
1936         os->os_count++;
1937         os->os_scantime = CURRENT_TIME;
1938 unlock:
1939         ocfs2_orphan_scan_unlock(osb, seqno);
1940 out:
1941         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1942                                           atomic_read(&os->os_state));
1943         return;
1944 }
1945
1946 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1947 static void ocfs2_orphan_scan_work(struct work_struct *work)
1948 {
1949         struct ocfs2_orphan_scan *os;
1950         struct ocfs2_super *osb;
1951
1952         os = container_of(work, struct ocfs2_orphan_scan,
1953                           os_orphan_scan_work.work);
1954         osb = os->os_osb;
1955
1956         mutex_lock(&os->os_lock);
1957         ocfs2_queue_orphan_scan(osb);
1958         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1959                 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1960                                       ocfs2_orphan_scan_timeout());
1961         mutex_unlock(&os->os_lock);
1962 }
1963
1964 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1965 {
1966         struct ocfs2_orphan_scan *os;
1967
1968         os = &osb->osb_orphan_scan;
1969         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1970                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1971                 mutex_lock(&os->os_lock);
1972                 cancel_delayed_work(&os->os_orphan_scan_work);
1973                 mutex_unlock(&os->os_lock);
1974         }
1975 }
1976
1977 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1978 {
1979         struct ocfs2_orphan_scan *os;
1980
1981         os = &osb->osb_orphan_scan;
1982         os->os_osb = osb;
1983         os->os_count = 0;
1984         os->os_seqno = 0;
1985         mutex_init(&os->os_lock);
1986         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1987 }
1988
1989 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1990 {
1991         struct ocfs2_orphan_scan *os;
1992
1993         os = &osb->osb_orphan_scan;
1994         os->os_scantime = CURRENT_TIME;
1995         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1996                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1997         else {
1998                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1999                 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2000                                    ocfs2_orphan_scan_timeout());
2001         }
2002 }
2003
2004 struct ocfs2_orphan_filldir_priv {
2005         struct dir_context      ctx;
2006         struct inode            *head;
2007         struct ocfs2_super      *osb;
2008 };
2009
2010 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2011                                 int name_len, loff_t pos, u64 ino,
2012                                 unsigned type)
2013 {
2014         struct ocfs2_orphan_filldir_priv *p =
2015                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2016         struct inode *iter;
2017
2018         if (name_len == 1 && !strncmp(".", name, 1))
2019                 return 0;
2020         if (name_len == 2 && !strncmp("..", name, 2))
2021                 return 0;
2022
2023         /* Skip bad inodes so that recovery can continue */
2024         iter = ocfs2_iget(p->osb, ino,
2025                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2026         if (IS_ERR(iter))
2027                 return 0;
2028
2029         /* Skip inodes which are already added to recover list, since dio may
2030          * happen concurrently with unlink/rename */
2031         if (OCFS2_I(iter)->ip_next_orphan) {
2032                 iput(iter);
2033                 return 0;
2034         }
2035
2036         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2037         /* No locking is required for the next_orphan queue as there
2038          * is only ever a single process doing orphan recovery. */
2039         OCFS2_I(iter)->ip_next_orphan = p->head;
2040         p->head = iter;
2041
2042         return 0;
2043 }
2044
2045 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2046                                int slot,
2047                                struct inode **head)
2048 {
2049         int status;
2050         struct inode *orphan_dir_inode = NULL;
2051         struct ocfs2_orphan_filldir_priv priv = {
2052                 .ctx.actor = ocfs2_orphan_filldir,
2053                 .osb = osb,
2054                 .head = *head
2055         };
2056
2057         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2058                                                        ORPHAN_DIR_SYSTEM_INODE,
2059                                                        slot);
2060         if  (!orphan_dir_inode) {
2061                 status = -ENOENT;
2062                 mlog_errno(status);
2063                 return status;
2064         }
2065
2066         mutex_lock(&orphan_dir_inode->i_mutex);
2067         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2068         if (status < 0) {
2069                 mlog_errno(status);
2070                 goto out;
2071         }
2072
2073         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2074         if (status) {
2075                 mlog_errno(status);
2076                 goto out_cluster;
2077         }
2078
2079         *head = priv.head;
2080
2081 out_cluster:
2082         ocfs2_inode_unlock(orphan_dir_inode, 0);
2083 out:
2084         mutex_unlock(&orphan_dir_inode->i_mutex);
2085         iput(orphan_dir_inode);
2086         return status;
2087 }
2088
2089 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2090                                               int slot)
2091 {
2092         int ret;
2093
2094         spin_lock(&osb->osb_lock);
2095         ret = !osb->osb_orphan_wipes[slot];
2096         spin_unlock(&osb->osb_lock);
2097         return ret;
2098 }
2099
2100 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2101                                              int slot)
2102 {
2103         spin_lock(&osb->osb_lock);
2104         /* Mark ourselves such that new processes in delete_inode()
2105          * know to quit early. */
2106         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2107         while (osb->osb_orphan_wipes[slot]) {
2108                 /* If any processes are already in the middle of an
2109                  * orphan wipe on this dir, then we need to wait for
2110                  * them. */
2111                 spin_unlock(&osb->osb_lock);
2112                 wait_event_interruptible(osb->osb_wipe_event,
2113                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2114                 spin_lock(&osb->osb_lock);
2115         }
2116         spin_unlock(&osb->osb_lock);
2117 }
2118
2119 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2120                                               int slot)
2121 {
2122         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2123 }
2124
2125 /*
2126  * Orphan recovery. Each mounted node has it's own orphan dir which we
2127  * must run during recovery. Our strategy here is to build a list of
2128  * the inodes in the orphan dir and iget/iput them. The VFS does
2129  * (most) of the rest of the work.
2130  *
2131  * Orphan recovery can happen at any time, not just mount so we have a
2132  * couple of extra considerations.
2133  *
2134  * - We grab as many inodes as we can under the orphan dir lock -
2135  *   doing iget() outside the orphan dir risks getting a reference on
2136  *   an invalid inode.
2137  * - We must be sure not to deadlock with other processes on the
2138  *   system wanting to run delete_inode(). This can happen when they go
2139  *   to lock the orphan dir and the orphan recovery process attempts to
2140  *   iget() inside the orphan dir lock. This can be avoided by
2141  *   advertising our state to ocfs2_delete_inode().
2142  */
2143 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2144                                  int slot,
2145                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2146 {
2147         int ret = 0;
2148         struct inode *inode = NULL;
2149         struct inode *iter;
2150         struct ocfs2_inode_info *oi;
2151         struct buffer_head *di_bh = NULL;
2152         struct ocfs2_dinode *di = NULL;
2153
2154         trace_ocfs2_recover_orphans(slot);
2155
2156         ocfs2_mark_recovering_orphan_dir(osb, slot);
2157         ret = ocfs2_queue_orphans(osb, slot, &inode);
2158         ocfs2_clear_recovering_orphan_dir(osb, slot);
2159
2160         /* Error here should be noted, but we want to continue with as
2161          * many queued inodes as we've got. */
2162         if (ret)
2163                 mlog_errno(ret);
2164
2165         while (inode) {
2166                 oi = OCFS2_I(inode);
2167                 trace_ocfs2_recover_orphans_iput(
2168                                         (unsigned long long)oi->ip_blkno);
2169
2170                 iter = oi->ip_next_orphan;
2171                 oi->ip_next_orphan = NULL;
2172
2173                 ret = ocfs2_rw_lock(inode, 1);
2174                 if (ret < 0) {
2175                         mlog_errno(ret);
2176                         goto next;
2177                 }
2178                 /*
2179                  * We need to take and drop the inode lock to
2180                  * force read inode from disk.
2181                  */
2182                 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2183                 if (ret) {
2184                         mlog_errno(ret);
2185                         goto unlock_rw;
2186                 }
2187
2188                 di = (struct ocfs2_dinode *)di_bh->b_data;
2189
2190                 if (inode->i_nlink == 0) {
2191                         spin_lock(&oi->ip_lock);
2192                         /* Set the proper information to get us going into
2193                          * ocfs2_delete_inode. */
2194                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2195                         spin_unlock(&oi->ip_lock);
2196                 } else if ((orphan_reco_type == ORPHAN_NEED_TRUNCATE) &&
2197                                 (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) {
2198                         ret = ocfs2_truncate_file(inode, di_bh,
2199                                         i_size_read(inode));
2200                         if (ret < 0) {
2201                                 if (ret != -ENOSPC)
2202                                         mlog_errno(ret);
2203                                 goto unlock_inode;
2204                         }
2205
2206                         ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0);
2207                         if (ret)
2208                                 mlog_errno(ret);
2209
2210                         wake_up(&OCFS2_I(inode)->append_dio_wq);
2211                 } /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2212 unlock_inode:
2213                 ocfs2_inode_unlock(inode, 1);
2214 unlock_rw:
2215                 ocfs2_rw_unlock(inode, 1);
2216 next:
2217                 iput(inode);
2218                 brelse(di_bh);
2219                 di_bh = NULL;
2220                 inode = iter;
2221         }
2222
2223         return ret;
2224 }
2225
2226 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2227 {
2228         /* This check is good because ocfs2 will wait on our recovery
2229          * thread before changing it to something other than MOUNTED
2230          * or DISABLED. */
2231         wait_event(osb->osb_mount_event,
2232                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2233                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2234                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2235
2236         /* If there's an error on mount, then we may never get to the
2237          * MOUNTED flag, but this is set right before
2238          * dismount_volume() so we can trust it. */
2239         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2240                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2241                 mlog(0, "mount error, exiting!\n");
2242                 return -EBUSY;
2243         }
2244
2245         return 0;
2246 }
2247
2248 static int ocfs2_commit_thread(void *arg)
2249 {
2250         int status;
2251         struct ocfs2_super *osb = arg;
2252         struct ocfs2_journal *journal = osb->journal;
2253
2254         /* we can trust j_num_trans here because _should_stop() is only set in
2255          * shutdown and nobody other than ourselves should be able to start
2256          * transactions.  committing on shutdown might take a few iterations
2257          * as final transactions put deleted inodes on the list */
2258         while (!(kthread_should_stop() &&
2259                  atomic_read(&journal->j_num_trans) == 0)) {
2260
2261                 wait_event_interruptible(osb->checkpoint_event,
2262                                          atomic_read(&journal->j_num_trans)
2263                                          || kthread_should_stop());
2264
2265                 status = ocfs2_commit_cache(osb);
2266                 if (status < 0) {
2267                         static unsigned long abort_warn_time;
2268
2269                         /* Warn about this once per minute */
2270                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2271                                 mlog(ML_ERROR, "status = %d, journal is "
2272                                                 "already aborted.\n", status);
2273                         /*
2274                          * After ocfs2_commit_cache() fails, j_num_trans has a
2275                          * non-zero value.  Sleep here to avoid a busy-wait
2276                          * loop.
2277                          */
2278                         msleep_interruptible(1000);
2279                 }
2280
2281                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2282                         mlog(ML_KTHREAD,
2283                              "commit_thread: %u transactions pending on "
2284                              "shutdown\n",
2285                              atomic_read(&journal->j_num_trans));
2286                 }
2287         }
2288
2289         return 0;
2290 }
2291
2292 /* Reads all the journal inodes without taking any cluster locks. Used
2293  * for hard readonly access to determine whether any journal requires
2294  * recovery. Also used to refresh the recovery generation numbers after
2295  * a journal has been recovered by another node.
2296  */
2297 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2298 {
2299         int ret = 0;
2300         unsigned int slot;
2301         struct buffer_head *di_bh = NULL;
2302         struct ocfs2_dinode *di;
2303         int journal_dirty = 0;
2304
2305         for(slot = 0; slot < osb->max_slots; slot++) {
2306                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2307                 if (ret) {
2308                         mlog_errno(ret);
2309                         goto out;
2310                 }
2311
2312                 di = (struct ocfs2_dinode *) di_bh->b_data;
2313
2314                 osb->slot_recovery_generations[slot] =
2315                                         ocfs2_get_recovery_generation(di);
2316
2317                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2318                     OCFS2_JOURNAL_DIRTY_FL)
2319                         journal_dirty = 1;
2320
2321                 brelse(di_bh);
2322                 di_bh = NULL;
2323         }
2324
2325 out:
2326         if (journal_dirty)
2327                 ret = -EROFS;
2328         return ret;
2329 }