Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98  *      Implementing inode permission operations in /proc is almost
99  *      certainly an error.  Permission checks need to happen during
100  *      each system call not at open time.  The reason is that most of
101  *      what we wish to check for permissions in /proc varies at runtime.
102  *
103  *      The classic example of a problem is opening file descriptors
104  *      in /proc for a task before it execs a suid executable.
105  */
106
107 struct pid_entry {
108         const char *name;
109         int len;
110         umode_t mode;
111         const struct inode_operations *iop;
112         const struct file_operations *fop;
113         union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
117         .name = (NAME),                                 \
118         .len  = sizeof(NAME) - 1,                       \
119         .mode = MODE,                                   \
120         .iop  = IOP,                                    \
121         .fop  = FOP,                                    \
122         .op   = OP,                                     \
123 }
124
125 #define DIR(NAME, MODE, iops, fops)     \
126         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)                                     \
128         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
129                 &proc_pid_link_inode_operations, NULL,          \
130                 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)                           \
132         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)                           \
134         NOD(NAME, (S_IFREG|(MODE)),                     \
135                 NULL, &proc_single_file_operations,     \
136                 { .proc_show = show } )
137
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143         unsigned int n)
144 {
145         unsigned int i;
146         unsigned int count;
147
148         count = 0;
149         for (i = 0; i < n; ++i) {
150                 if (S_ISDIR(entries[i].mode))
151                         ++count;
152         }
153
154         return count;
155 }
156
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159         int result = -ENOENT;
160
161         task_lock(task);
162         if (task->fs) {
163                 get_fs_root(task->fs, root);
164                 result = 0;
165         }
166         task_unlock(task);
167         return result;
168 }
169
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172         struct task_struct *task = get_proc_task(d_inode(dentry));
173         int result = -ENOENT;
174
175         if (task) {
176                 task_lock(task);
177                 if (task->fs) {
178                         get_fs_pwd(task->fs, path);
179                         result = 0;
180                 }
181                 task_unlock(task);
182                 put_task_struct(task);
183         }
184         return result;
185 }
186
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189         struct task_struct *task = get_proc_task(d_inode(dentry));
190         int result = -ENOENT;
191
192         if (task) {
193                 result = get_task_root(task, path);
194                 put_task_struct(task);
195         }
196         return result;
197 }
198
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200                                      size_t _count, loff_t *pos)
201 {
202         struct task_struct *tsk;
203         struct mm_struct *mm;
204         char *page;
205         unsigned long count = _count;
206         unsigned long arg_start, arg_end, env_start, env_end;
207         unsigned long len1, len2, len;
208         unsigned long p;
209         char c;
210         ssize_t rv;
211
212         BUG_ON(*pos < 0);
213
214         tsk = get_proc_task(file_inode(file));
215         if (!tsk)
216                 return -ESRCH;
217         mm = get_task_mm(tsk);
218         put_task_struct(tsk);
219         if (!mm)
220                 return 0;
221         /* Check if process spawned far enough to have cmdline. */
222         if (!mm->env_end) {
223                 rv = 0;
224                 goto out_mmput;
225         }
226
227         page = (char *)__get_free_page(GFP_TEMPORARY);
228         if (!page) {
229                 rv = -ENOMEM;
230                 goto out_mmput;
231         }
232
233         down_read(&mm->mmap_sem);
234         arg_start = mm->arg_start;
235         arg_end = mm->arg_end;
236         env_start = mm->env_start;
237         env_end = mm->env_end;
238         up_read(&mm->mmap_sem);
239
240         BUG_ON(arg_start > arg_end);
241         BUG_ON(env_start > env_end);
242
243         len1 = arg_end - arg_start;
244         len2 = env_end - env_start;
245
246         /* Empty ARGV. */
247         if (len1 == 0) {
248                 rv = 0;
249                 goto out_free_page;
250         }
251         /*
252          * Inherently racy -- command line shares address space
253          * with code and data.
254          */
255         rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256         if (rv <= 0)
257                 goto out_free_page;
258
259         rv = 0;
260
261         if (c == '\0') {
262                 /* Command line (set of strings) occupies whole ARGV. */
263                 if (len1 <= *pos)
264                         goto out_free_page;
265
266                 p = arg_start + *pos;
267                 len = len1 - *pos;
268                 while (count > 0 && len > 0) {
269                         unsigned int _count;
270                         int nr_read;
271
272                         _count = min3(count, len, PAGE_SIZE);
273                         nr_read = access_remote_vm(mm, p, page, _count, 0);
274                         if (nr_read < 0)
275                                 rv = nr_read;
276                         if (nr_read <= 0)
277                                 goto out_free_page;
278
279                         if (copy_to_user(buf, page, nr_read)) {
280                                 rv = -EFAULT;
281                                 goto out_free_page;
282                         }
283
284                         p       += nr_read;
285                         len     -= nr_read;
286                         buf     += nr_read;
287                         count   -= nr_read;
288                         rv      += nr_read;
289                 }
290         } else {
291                 /*
292                  * Command line (1 string) occupies ARGV and maybe
293                  * extends into ENVP.
294                  */
295                 if (len1 + len2 <= *pos)
296                         goto skip_argv_envp;
297                 if (len1 <= *pos)
298                         goto skip_argv;
299
300                 p = arg_start + *pos;
301                 len = len1 - *pos;
302                 while (count > 0 && len > 0) {
303                         unsigned int _count, l;
304                         int nr_read;
305                         bool final;
306
307                         _count = min3(count, len, PAGE_SIZE);
308                         nr_read = access_remote_vm(mm, p, page, _count, 0);
309                         if (nr_read < 0)
310                                 rv = nr_read;
311                         if (nr_read <= 0)
312                                 goto out_free_page;
313
314                         /*
315                          * Command line can be shorter than whole ARGV
316                          * even if last "marker" byte says it is not.
317                          */
318                         final = false;
319                         l = strnlen(page, nr_read);
320                         if (l < nr_read) {
321                                 nr_read = l;
322                                 final = true;
323                         }
324
325                         if (copy_to_user(buf, page, nr_read)) {
326                                 rv = -EFAULT;
327                                 goto out_free_page;
328                         }
329
330                         p       += nr_read;
331                         len     -= nr_read;
332                         buf     += nr_read;
333                         count   -= nr_read;
334                         rv      += nr_read;
335
336                         if (final)
337                                 goto out_free_page;
338                 }
339 skip_argv:
340                 /*
341                  * Command line (1 string) occupies ARGV and
342                  * extends into ENVP.
343                  */
344                 if (len1 <= *pos) {
345                         p = env_start + *pos - len1;
346                         len = len1 + len2 - *pos;
347                 } else {
348                         p = env_start;
349                         len = len2;
350                 }
351                 while (count > 0 && len > 0) {
352                         unsigned int _count, l;
353                         int nr_read;
354                         bool final;
355
356                         _count = min3(count, len, PAGE_SIZE);
357                         nr_read = access_remote_vm(mm, p, page, _count, 0);
358                         if (nr_read < 0)
359                                 rv = nr_read;
360                         if (nr_read <= 0)
361                                 goto out_free_page;
362
363                         /* Find EOS. */
364                         final = false;
365                         l = strnlen(page, nr_read);
366                         if (l < nr_read) {
367                                 nr_read = l;
368                                 final = true;
369                         }
370
371                         if (copy_to_user(buf, page, nr_read)) {
372                                 rv = -EFAULT;
373                                 goto out_free_page;
374                         }
375
376                         p       += nr_read;
377                         len     -= nr_read;
378                         buf     += nr_read;
379                         count   -= nr_read;
380                         rv      += nr_read;
381
382                         if (final)
383                                 goto out_free_page;
384                 }
385 skip_argv_envp:
386                 ;
387         }
388
389 out_free_page:
390         free_page((unsigned long)page);
391 out_mmput:
392         mmput(mm);
393         if (rv > 0)
394                 *pos += rv;
395         return rv;
396 }
397
398 static const struct file_operations proc_pid_cmdline_ops = {
399         .read   = proc_pid_cmdline_read,
400         .llseek = generic_file_llseek,
401 };
402
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404                          struct pid *pid, struct task_struct *task)
405 {
406         struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407         if (mm && !IS_ERR(mm)) {
408                 unsigned int nwords = 0;
409                 do {
410                         nwords += 2;
411                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412                 seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413                 mmput(mm);
414                 return 0;
415         } else
416                 return PTR_ERR(mm);
417 }
418
419
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426                           struct pid *pid, struct task_struct *task)
427 {
428         unsigned long wchan;
429         char symname[KSYM_NAME_LEN];
430
431         wchan = get_wchan(task);
432
433         if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434                         && !lookup_symbol_name(wchan, symname))
435                 seq_printf(m, "%s", symname);
436         else
437                 seq_putc(m, '0');
438
439         return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442
443 static int lock_trace(struct task_struct *task)
444 {
445         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446         if (err)
447                 return err;
448         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449                 mutex_unlock(&task->signal->cred_guard_mutex);
450                 return -EPERM;
451         }
452         return 0;
453 }
454
455 static void unlock_trace(struct task_struct *task)
456 {
457         mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459
460 #ifdef CONFIG_STACKTRACE
461
462 #define MAX_STACK_TRACE_DEPTH   64
463
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465                           struct pid *pid, struct task_struct *task)
466 {
467         struct stack_trace trace;
468         unsigned long *entries;
469         int err;
470         int i;
471
472         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473         if (!entries)
474                 return -ENOMEM;
475
476         trace.nr_entries        = 0;
477         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
478         trace.entries           = entries;
479         trace.skip              = 0;
480
481         err = lock_trace(task);
482         if (!err) {
483                 save_stack_trace_tsk(task, &trace);
484
485                 for (i = 0; i < trace.nr_entries; i++) {
486                         seq_printf(m, "[<%pK>] %pS\n",
487                                    (void *)entries[i], (void *)entries[i]);
488                 }
489                 unlock_trace(task);
490         }
491         kfree(entries);
492
493         return err;
494 }
495 #endif
496
497 #ifdef CONFIG_SCHED_INFO
498 /*
499  * Provides /proc/PID/schedstat
500  */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502                               struct pid *pid, struct task_struct *task)
503 {
504         if (unlikely(!sched_info_on()))
505                 seq_printf(m, "0 0 0\n");
506         else
507                 seq_printf(m, "%llu %llu %lu\n",
508                    (unsigned long long)task->se.sum_exec_runtime,
509                    (unsigned long long)task->sched_info.run_delay,
510                    task->sched_info.pcount);
511
512         return 0;
513 }
514 #endif
515
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519         int i;
520         struct inode *inode = m->private;
521         struct task_struct *task = get_proc_task(inode);
522
523         if (!task)
524                 return -ESRCH;
525         seq_puts(m, "Latency Top version : v0.1\n");
526         for (i = 0; i < 32; i++) {
527                 struct latency_record *lr = &task->latency_record[i];
528                 if (lr->backtrace[0]) {
529                         int q;
530                         seq_printf(m, "%i %li %li",
531                                    lr->count, lr->time, lr->max);
532                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533                                 unsigned long bt = lr->backtrace[q];
534                                 if (!bt)
535                                         break;
536                                 if (bt == ULONG_MAX)
537                                         break;
538                                 seq_printf(m, " %ps", (void *)bt);
539                         }
540                         seq_putc(m, '\n');
541                 }
542
543         }
544         put_task_struct(task);
545         return 0;
546 }
547
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550         return single_open(file, lstats_show_proc, inode);
551 }
552
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554                             size_t count, loff_t *offs)
555 {
556         struct task_struct *task = get_proc_task(file_inode(file));
557
558         if (!task)
559                 return -ESRCH;
560         clear_all_latency_tracing(task);
561         put_task_struct(task);
562
563         return count;
564 }
565
566 static const struct file_operations proc_lstats_operations = {
567         .open           = lstats_open,
568         .read           = seq_read,
569         .write          = lstats_write,
570         .llseek         = seq_lseek,
571         .release        = single_release,
572 };
573
574 #endif
575
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577                           struct pid *pid, struct task_struct *task)
578 {
579         unsigned long totalpages = totalram_pages + total_swap_pages;
580         unsigned long points = 0;
581
582         read_lock(&tasklist_lock);
583         if (pid_alive(task))
584                 points = oom_badness(task, NULL, NULL, totalpages) *
585                                                 1000 / totalpages;
586         read_unlock(&tasklist_lock);
587         seq_printf(m, "%lu\n", points);
588
589         return 0;
590 }
591
592 struct limit_names {
593         const char *name;
594         const char *unit;
595 };
596
597 static const struct limit_names lnames[RLIM_NLIMITS] = {
598         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
599         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
600         [RLIMIT_DATA] = {"Max data size", "bytes"},
601         [RLIMIT_STACK] = {"Max stack size", "bytes"},
602         [RLIMIT_CORE] = {"Max core file size", "bytes"},
603         [RLIMIT_RSS] = {"Max resident set", "bytes"},
604         [RLIMIT_NPROC] = {"Max processes", "processes"},
605         [RLIMIT_NOFILE] = {"Max open files", "files"},
606         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
607         [RLIMIT_AS] = {"Max address space", "bytes"},
608         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
609         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
610         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
611         [RLIMIT_NICE] = {"Max nice priority", NULL},
612         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
613         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
614 };
615
616 /* Display limits for a process */
617 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
618                            struct pid *pid, struct task_struct *task)
619 {
620         unsigned int i;
621         unsigned long flags;
622
623         struct rlimit rlim[RLIM_NLIMITS];
624
625         if (!lock_task_sighand(task, &flags))
626                 return 0;
627         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
628         unlock_task_sighand(task, &flags);
629
630         /*
631          * print the file header
632          */
633        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
634                   "Limit", "Soft Limit", "Hard Limit", "Units");
635
636         for (i = 0; i < RLIM_NLIMITS; i++) {
637                 if (rlim[i].rlim_cur == RLIM_INFINITY)
638                         seq_printf(m, "%-25s %-20s ",
639                                    lnames[i].name, "unlimited");
640                 else
641                         seq_printf(m, "%-25s %-20lu ",
642                                    lnames[i].name, rlim[i].rlim_cur);
643
644                 if (rlim[i].rlim_max == RLIM_INFINITY)
645                         seq_printf(m, "%-20s ", "unlimited");
646                 else
647                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
648
649                 if (lnames[i].unit)
650                         seq_printf(m, "%-10s\n", lnames[i].unit);
651                 else
652                         seq_putc(m, '\n');
653         }
654
655         return 0;
656 }
657
658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
659 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
660                             struct pid *pid, struct task_struct *task)
661 {
662         long nr;
663         unsigned long args[6], sp, pc;
664         int res;
665
666         res = lock_trace(task);
667         if (res)
668                 return res;
669
670         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
671                 seq_puts(m, "running\n");
672         else if (nr < 0)
673                 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
674         else
675                 seq_printf(m,
676                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
677                        nr,
678                        args[0], args[1], args[2], args[3], args[4], args[5],
679                        sp, pc);
680         unlock_trace(task);
681
682         return 0;
683 }
684 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
685
686 /************************************************************************/
687 /*                       Here the fs part begins                        */
688 /************************************************************************/
689
690 /* permission checks */
691 static int proc_fd_access_allowed(struct inode *inode)
692 {
693         struct task_struct *task;
694         int allowed = 0;
695         /* Allow access to a task's file descriptors if it is us or we
696          * may use ptrace attach to the process and find out that
697          * information.
698          */
699         task = get_proc_task(inode);
700         if (task) {
701                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
702                 put_task_struct(task);
703         }
704         return allowed;
705 }
706
707 int proc_setattr(struct dentry *dentry, struct iattr *attr)
708 {
709         int error;
710         struct inode *inode = d_inode(dentry);
711
712         if (attr->ia_valid & ATTR_MODE)
713                 return -EPERM;
714
715         error = inode_change_ok(inode, attr);
716         if (error)
717                 return error;
718
719         setattr_copy(inode, attr);
720         mark_inode_dirty(inode);
721         return 0;
722 }
723
724 /*
725  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
726  * or euid/egid (for hide_pid_min=2)?
727  */
728 static bool has_pid_permissions(struct pid_namespace *pid,
729                                  struct task_struct *task,
730                                  int hide_pid_min)
731 {
732         if (pid->hide_pid < hide_pid_min)
733                 return true;
734         if (in_group_p(pid->pid_gid))
735                 return true;
736         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
737 }
738
739
740 static int proc_pid_permission(struct inode *inode, int mask)
741 {
742         struct pid_namespace *pid = inode->i_sb->s_fs_info;
743         struct task_struct *task;
744         bool has_perms;
745
746         task = get_proc_task(inode);
747         if (!task)
748                 return -ESRCH;
749         has_perms = has_pid_permissions(pid, task, 1);
750         put_task_struct(task);
751
752         if (!has_perms) {
753                 if (pid->hide_pid == 2) {
754                         /*
755                          * Let's make getdents(), stat(), and open()
756                          * consistent with each other.  If a process
757                          * may not stat() a file, it shouldn't be seen
758                          * in procfs at all.
759                          */
760                         return -ENOENT;
761                 }
762
763                 return -EPERM;
764         }
765         return generic_permission(inode, mask);
766 }
767
768
769
770 static const struct inode_operations proc_def_inode_operations = {
771         .setattr        = proc_setattr,
772 };
773
774 static int proc_single_show(struct seq_file *m, void *v)
775 {
776         struct inode *inode = m->private;
777         struct pid_namespace *ns;
778         struct pid *pid;
779         struct task_struct *task;
780         int ret;
781
782         ns = inode->i_sb->s_fs_info;
783         pid = proc_pid(inode);
784         task = get_pid_task(pid, PIDTYPE_PID);
785         if (!task)
786                 return -ESRCH;
787
788         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
789
790         put_task_struct(task);
791         return ret;
792 }
793
794 static int proc_single_open(struct inode *inode, struct file *filp)
795 {
796         return single_open(filp, proc_single_show, inode);
797 }
798
799 static const struct file_operations proc_single_file_operations = {
800         .open           = proc_single_open,
801         .read           = seq_read,
802         .llseek         = seq_lseek,
803         .release        = single_release,
804 };
805
806
807 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
808 {
809         struct task_struct *task = get_proc_task(inode);
810         struct mm_struct *mm = ERR_PTR(-ESRCH);
811
812         if (task) {
813                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
814                 put_task_struct(task);
815
816                 if (!IS_ERR_OR_NULL(mm)) {
817                         /* ensure this mm_struct can't be freed */
818                         atomic_inc(&mm->mm_count);
819                         /* but do not pin its memory */
820                         mmput(mm);
821                 }
822         }
823
824         return mm;
825 }
826
827 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
828 {
829         struct mm_struct *mm = proc_mem_open(inode, mode);
830
831         if (IS_ERR(mm))
832                 return PTR_ERR(mm);
833
834         file->private_data = mm;
835         return 0;
836 }
837
838 static int mem_open(struct inode *inode, struct file *file)
839 {
840         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
841
842         /* OK to pass negative loff_t, we can catch out-of-range */
843         file->f_mode |= FMODE_UNSIGNED_OFFSET;
844
845         return ret;
846 }
847
848 static ssize_t mem_rw(struct file *file, char __user *buf,
849                         size_t count, loff_t *ppos, int write)
850 {
851         struct mm_struct *mm = file->private_data;
852         unsigned long addr = *ppos;
853         ssize_t copied;
854         char *page;
855
856         if (!mm)
857                 return 0;
858
859         page = (char *)__get_free_page(GFP_TEMPORARY);
860         if (!page)
861                 return -ENOMEM;
862
863         copied = 0;
864         if (!atomic_inc_not_zero(&mm->mm_users))
865                 goto free;
866
867         while (count > 0) {
868                 int this_len = min_t(int, count, PAGE_SIZE);
869
870                 if (write && copy_from_user(page, buf, this_len)) {
871                         copied = -EFAULT;
872                         break;
873                 }
874
875                 this_len = access_remote_vm(mm, addr, page, this_len, write);
876                 if (!this_len) {
877                         if (!copied)
878                                 copied = -EIO;
879                         break;
880                 }
881
882                 if (!write && copy_to_user(buf, page, this_len)) {
883                         copied = -EFAULT;
884                         break;
885                 }
886
887                 buf += this_len;
888                 addr += this_len;
889                 copied += this_len;
890                 count -= this_len;
891         }
892         *ppos = addr;
893
894         mmput(mm);
895 free:
896         free_page((unsigned long) page);
897         return copied;
898 }
899
900 static ssize_t mem_read(struct file *file, char __user *buf,
901                         size_t count, loff_t *ppos)
902 {
903         return mem_rw(file, buf, count, ppos, 0);
904 }
905
906 static ssize_t mem_write(struct file *file, const char __user *buf,
907                          size_t count, loff_t *ppos)
908 {
909         return mem_rw(file, (char __user*)buf, count, ppos, 1);
910 }
911
912 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
913 {
914         switch (orig) {
915         case 0:
916                 file->f_pos = offset;
917                 break;
918         case 1:
919                 file->f_pos += offset;
920                 break;
921         default:
922                 return -EINVAL;
923         }
924         force_successful_syscall_return();
925         return file->f_pos;
926 }
927
928 static int mem_release(struct inode *inode, struct file *file)
929 {
930         struct mm_struct *mm = file->private_data;
931         if (mm)
932                 mmdrop(mm);
933         return 0;
934 }
935
936 static const struct file_operations proc_mem_operations = {
937         .llseek         = mem_lseek,
938         .read           = mem_read,
939         .write          = mem_write,
940         .open           = mem_open,
941         .release        = mem_release,
942 };
943
944 static int environ_open(struct inode *inode, struct file *file)
945 {
946         return __mem_open(inode, file, PTRACE_MODE_READ);
947 }
948
949 static ssize_t environ_read(struct file *file, char __user *buf,
950                         size_t count, loff_t *ppos)
951 {
952         char *page;
953         unsigned long src = *ppos;
954         int ret = 0;
955         struct mm_struct *mm = file->private_data;
956
957         /* Ensure the process spawned far enough to have an environment. */
958         if (!mm || !mm->env_end)
959                 return 0;
960
961         page = (char *)__get_free_page(GFP_TEMPORARY);
962         if (!page)
963                 return -ENOMEM;
964
965         ret = 0;
966         if (!atomic_inc_not_zero(&mm->mm_users))
967                 goto free;
968         while (count > 0) {
969                 size_t this_len, max_len;
970                 int retval;
971
972                 if (src >= (mm->env_end - mm->env_start))
973                         break;
974
975                 this_len = mm->env_end - (mm->env_start + src);
976
977                 max_len = min_t(size_t, PAGE_SIZE, count);
978                 this_len = min(max_len, this_len);
979
980                 retval = access_remote_vm(mm, (mm->env_start + src),
981                         page, this_len, 0);
982
983                 if (retval <= 0) {
984                         ret = retval;
985                         break;
986                 }
987
988                 if (copy_to_user(buf, page, retval)) {
989                         ret = -EFAULT;
990                         break;
991                 }
992
993                 ret += retval;
994                 src += retval;
995                 buf += retval;
996                 count -= retval;
997         }
998         *ppos = src;
999         mmput(mm);
1000
1001 free:
1002         free_page((unsigned long) page);
1003         return ret;
1004 }
1005
1006 static const struct file_operations proc_environ_operations = {
1007         .open           = environ_open,
1008         .read           = environ_read,
1009         .llseek         = generic_file_llseek,
1010         .release        = mem_release,
1011 };
1012
1013 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1014                             loff_t *ppos)
1015 {
1016         struct task_struct *task = get_proc_task(file_inode(file));
1017         char buffer[PROC_NUMBUF];
1018         int oom_adj = OOM_ADJUST_MIN;
1019         size_t len;
1020         unsigned long flags;
1021
1022         if (!task)
1023                 return -ESRCH;
1024         if (lock_task_sighand(task, &flags)) {
1025                 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1026                         oom_adj = OOM_ADJUST_MAX;
1027                 else
1028                         oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1029                                   OOM_SCORE_ADJ_MAX;
1030                 unlock_task_sighand(task, &flags);
1031         }
1032         put_task_struct(task);
1033         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035 }
1036
1037 /*
1038  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1039  * kernels.  The effective policy is defined by oom_score_adj, which has a
1040  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1041  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1042  * Processes that become oom disabled via oom_adj will still be oom disabled
1043  * with this implementation.
1044  *
1045  * oom_adj cannot be removed since existing userspace binaries use it.
1046  */
1047 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1048                              size_t count, loff_t *ppos)
1049 {
1050         struct task_struct *task;
1051         char buffer[PROC_NUMBUF];
1052         int oom_adj;
1053         unsigned long flags;
1054         int err;
1055
1056         memset(buffer, 0, sizeof(buffer));
1057         if (count > sizeof(buffer) - 1)
1058                 count = sizeof(buffer) - 1;
1059         if (copy_from_user(buffer, buf, count)) {
1060                 err = -EFAULT;
1061                 goto out;
1062         }
1063
1064         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1065         if (err)
1066                 goto out;
1067         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1068              oom_adj != OOM_DISABLE) {
1069                 err = -EINVAL;
1070                 goto out;
1071         }
1072
1073         task = get_proc_task(file_inode(file));
1074         if (!task) {
1075                 err = -ESRCH;
1076                 goto out;
1077         }
1078
1079         task_lock(task);
1080         if (!task->mm) {
1081                 err = -EINVAL;
1082                 goto err_task_lock;
1083         }
1084
1085         if (!lock_task_sighand(task, &flags)) {
1086                 err = -ESRCH;
1087                 goto err_task_lock;
1088         }
1089
1090         /*
1091          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1092          * value is always attainable.
1093          */
1094         if (oom_adj == OOM_ADJUST_MAX)
1095                 oom_adj = OOM_SCORE_ADJ_MAX;
1096         else
1097                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1098
1099         if (oom_adj < task->signal->oom_score_adj &&
1100             !capable(CAP_SYS_RESOURCE)) {
1101                 err = -EACCES;
1102                 goto err_sighand;
1103         }
1104
1105         /*
1106          * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1107          * /proc/pid/oom_score_adj instead.
1108          */
1109         pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1110                   current->comm, task_pid_nr(current), task_pid_nr(task),
1111                   task_pid_nr(task));
1112
1113         task->signal->oom_score_adj = oom_adj;
1114         trace_oom_score_adj_update(task);
1115 err_sighand:
1116         unlock_task_sighand(task, &flags);
1117 err_task_lock:
1118         task_unlock(task);
1119         put_task_struct(task);
1120 out:
1121         return err < 0 ? err : count;
1122 }
1123
1124 static const struct file_operations proc_oom_adj_operations = {
1125         .read           = oom_adj_read,
1126         .write          = oom_adj_write,
1127         .llseek         = generic_file_llseek,
1128 };
1129
1130 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1131                                         size_t count, loff_t *ppos)
1132 {
1133         struct task_struct *task = get_proc_task(file_inode(file));
1134         char buffer[PROC_NUMBUF];
1135         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1136         unsigned long flags;
1137         size_t len;
1138
1139         if (!task)
1140                 return -ESRCH;
1141         if (lock_task_sighand(task, &flags)) {
1142                 oom_score_adj = task->signal->oom_score_adj;
1143                 unlock_task_sighand(task, &flags);
1144         }
1145         put_task_struct(task);
1146         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1147         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1148 }
1149
1150 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1151                                         size_t count, loff_t *ppos)
1152 {
1153         struct task_struct *task;
1154         char buffer[PROC_NUMBUF];
1155         unsigned long flags;
1156         int oom_score_adj;
1157         int err;
1158
1159         memset(buffer, 0, sizeof(buffer));
1160         if (count > sizeof(buffer) - 1)
1161                 count = sizeof(buffer) - 1;
1162         if (copy_from_user(buffer, buf, count)) {
1163                 err = -EFAULT;
1164                 goto out;
1165         }
1166
1167         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1168         if (err)
1169                 goto out;
1170         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1171                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1172                 err = -EINVAL;
1173                 goto out;
1174         }
1175
1176         task = get_proc_task(file_inode(file));
1177         if (!task) {
1178                 err = -ESRCH;
1179                 goto out;
1180         }
1181
1182         task_lock(task);
1183         if (!task->mm) {
1184                 err = -EINVAL;
1185                 goto err_task_lock;
1186         }
1187
1188         if (!lock_task_sighand(task, &flags)) {
1189                 err = -ESRCH;
1190                 goto err_task_lock;
1191         }
1192
1193         if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1194                         !capable(CAP_SYS_RESOURCE)) {
1195                 err = -EACCES;
1196                 goto err_sighand;
1197         }
1198
1199         task->signal->oom_score_adj = (short)oom_score_adj;
1200         if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1201                 task->signal->oom_score_adj_min = (short)oom_score_adj;
1202         trace_oom_score_adj_update(task);
1203
1204 err_sighand:
1205         unlock_task_sighand(task, &flags);
1206 err_task_lock:
1207         task_unlock(task);
1208         put_task_struct(task);
1209 out:
1210         return err < 0 ? err : count;
1211 }
1212
1213 static const struct file_operations proc_oom_score_adj_operations = {
1214         .read           = oom_score_adj_read,
1215         .write          = oom_score_adj_write,
1216         .llseek         = default_llseek,
1217 };
1218
1219 #ifdef CONFIG_AUDITSYSCALL
1220 #define TMPBUFLEN 21
1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1222                                   size_t count, loff_t *ppos)
1223 {
1224         struct inode * inode = file_inode(file);
1225         struct task_struct *task = get_proc_task(inode);
1226         ssize_t length;
1227         char tmpbuf[TMPBUFLEN];
1228
1229         if (!task)
1230                 return -ESRCH;
1231         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1232                            from_kuid(file->f_cred->user_ns,
1233                                      audit_get_loginuid(task)));
1234         put_task_struct(task);
1235         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1236 }
1237
1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1239                                    size_t count, loff_t *ppos)
1240 {
1241         struct inode * inode = file_inode(file);
1242         uid_t loginuid;
1243         kuid_t kloginuid;
1244         int rv;
1245
1246         rcu_read_lock();
1247         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1248                 rcu_read_unlock();
1249                 return -EPERM;
1250         }
1251         rcu_read_unlock();
1252
1253         if (*ppos != 0) {
1254                 /* No partial writes. */
1255                 return -EINVAL;
1256         }
1257
1258         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1259         if (rv < 0)
1260                 return rv;
1261
1262         /* is userspace tring to explicitly UNSET the loginuid? */
1263         if (loginuid == AUDIT_UID_UNSET) {
1264                 kloginuid = INVALID_UID;
1265         } else {
1266                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267                 if (!uid_valid(kloginuid))
1268                         return -EINVAL;
1269         }
1270
1271         rv = audit_set_loginuid(kloginuid);
1272         if (rv < 0)
1273                 return rv;
1274         return count;
1275 }
1276
1277 static const struct file_operations proc_loginuid_operations = {
1278         .read           = proc_loginuid_read,
1279         .write          = proc_loginuid_write,
1280         .llseek         = generic_file_llseek,
1281 };
1282
1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1284                                   size_t count, loff_t *ppos)
1285 {
1286         struct inode * inode = file_inode(file);
1287         struct task_struct *task = get_proc_task(inode);
1288         ssize_t length;
1289         char tmpbuf[TMPBUFLEN];
1290
1291         if (!task)
1292                 return -ESRCH;
1293         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1294                                 audit_get_sessionid(task));
1295         put_task_struct(task);
1296         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1297 }
1298
1299 static const struct file_operations proc_sessionid_operations = {
1300         .read           = proc_sessionid_read,
1301         .llseek         = generic_file_llseek,
1302 };
1303 #endif
1304
1305 #ifdef CONFIG_FAULT_INJECTION
1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1307                                       size_t count, loff_t *ppos)
1308 {
1309         struct task_struct *task = get_proc_task(file_inode(file));
1310         char buffer[PROC_NUMBUF];
1311         size_t len;
1312         int make_it_fail;
1313
1314         if (!task)
1315                 return -ESRCH;
1316         make_it_fail = task->make_it_fail;
1317         put_task_struct(task);
1318
1319         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320
1321         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1322 }
1323
1324 static ssize_t proc_fault_inject_write(struct file * file,
1325                         const char __user * buf, size_t count, loff_t *ppos)
1326 {
1327         struct task_struct *task;
1328         char buffer[PROC_NUMBUF];
1329         int make_it_fail;
1330         int rv;
1331
1332         if (!capable(CAP_SYS_RESOURCE))
1333                 return -EPERM;
1334         memset(buffer, 0, sizeof(buffer));
1335         if (count > sizeof(buffer) - 1)
1336                 count = sizeof(buffer) - 1;
1337         if (copy_from_user(buffer, buf, count))
1338                 return -EFAULT;
1339         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1340         if (rv < 0)
1341                 return rv;
1342         if (make_it_fail < 0 || make_it_fail > 1)
1343                 return -EINVAL;
1344
1345         task = get_proc_task(file_inode(file));
1346         if (!task)
1347                 return -ESRCH;
1348         task->make_it_fail = make_it_fail;
1349         put_task_struct(task);
1350
1351         return count;
1352 }
1353
1354 static const struct file_operations proc_fault_inject_operations = {
1355         .read           = proc_fault_inject_read,
1356         .write          = proc_fault_inject_write,
1357         .llseek         = generic_file_llseek,
1358 };
1359 #endif
1360
1361
1362 #ifdef CONFIG_SCHED_DEBUG
1363 /*
1364  * Print out various scheduling related per-task fields:
1365  */
1366 static int sched_show(struct seq_file *m, void *v)
1367 {
1368         struct inode *inode = m->private;
1369         struct task_struct *p;
1370
1371         p = get_proc_task(inode);
1372         if (!p)
1373                 return -ESRCH;
1374         proc_sched_show_task(p, m);
1375
1376         put_task_struct(p);
1377
1378         return 0;
1379 }
1380
1381 static ssize_t
1382 sched_write(struct file *file, const char __user *buf,
1383             size_t count, loff_t *offset)
1384 {
1385         struct inode *inode = file_inode(file);
1386         struct task_struct *p;
1387
1388         p = get_proc_task(inode);
1389         if (!p)
1390                 return -ESRCH;
1391         proc_sched_set_task(p);
1392
1393         put_task_struct(p);
1394
1395         return count;
1396 }
1397
1398 static int sched_open(struct inode *inode, struct file *filp)
1399 {
1400         return single_open(filp, sched_show, inode);
1401 }
1402
1403 static const struct file_operations proc_pid_sched_operations = {
1404         .open           = sched_open,
1405         .read           = seq_read,
1406         .write          = sched_write,
1407         .llseek         = seq_lseek,
1408         .release        = single_release,
1409 };
1410
1411 #endif
1412
1413 #ifdef CONFIG_SCHED_AUTOGROUP
1414 /*
1415  * Print out autogroup related information:
1416  */
1417 static int sched_autogroup_show(struct seq_file *m, void *v)
1418 {
1419         struct inode *inode = m->private;
1420         struct task_struct *p;
1421
1422         p = get_proc_task(inode);
1423         if (!p)
1424                 return -ESRCH;
1425         proc_sched_autogroup_show_task(p, m);
1426
1427         put_task_struct(p);
1428
1429         return 0;
1430 }
1431
1432 static ssize_t
1433 sched_autogroup_write(struct file *file, const char __user *buf,
1434             size_t count, loff_t *offset)
1435 {
1436         struct inode *inode = file_inode(file);
1437         struct task_struct *p;
1438         char buffer[PROC_NUMBUF];
1439         int nice;
1440         int err;
1441
1442         memset(buffer, 0, sizeof(buffer));
1443         if (count > sizeof(buffer) - 1)
1444                 count = sizeof(buffer) - 1;
1445         if (copy_from_user(buffer, buf, count))
1446                 return -EFAULT;
1447
1448         err = kstrtoint(strstrip(buffer), 0, &nice);
1449         if (err < 0)
1450                 return err;
1451
1452         p = get_proc_task(inode);
1453         if (!p)
1454                 return -ESRCH;
1455
1456         err = proc_sched_autogroup_set_nice(p, nice);
1457         if (err)
1458                 count = err;
1459
1460         put_task_struct(p);
1461
1462         return count;
1463 }
1464
1465 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1466 {
1467         int ret;
1468
1469         ret = single_open(filp, sched_autogroup_show, NULL);
1470         if (!ret) {
1471                 struct seq_file *m = filp->private_data;
1472
1473                 m->private = inode;
1474         }
1475         return ret;
1476 }
1477
1478 static const struct file_operations proc_pid_sched_autogroup_operations = {
1479         .open           = sched_autogroup_open,
1480         .read           = seq_read,
1481         .write          = sched_autogroup_write,
1482         .llseek         = seq_lseek,
1483         .release        = single_release,
1484 };
1485
1486 #endif /* CONFIG_SCHED_AUTOGROUP */
1487
1488 static ssize_t comm_write(struct file *file, const char __user *buf,
1489                                 size_t count, loff_t *offset)
1490 {
1491         struct inode *inode = file_inode(file);
1492         struct task_struct *p;
1493         char buffer[TASK_COMM_LEN];
1494         const size_t maxlen = sizeof(buffer) - 1;
1495
1496         memset(buffer, 0, sizeof(buffer));
1497         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1498                 return -EFAULT;
1499
1500         p = get_proc_task(inode);
1501         if (!p)
1502                 return -ESRCH;
1503
1504         if (same_thread_group(current, p))
1505                 set_task_comm(p, buffer);
1506         else
1507                 count = -EINVAL;
1508
1509         put_task_struct(p);
1510
1511         return count;
1512 }
1513
1514 static int comm_show(struct seq_file *m, void *v)
1515 {
1516         struct inode *inode = m->private;
1517         struct task_struct *p;
1518
1519         p = get_proc_task(inode);
1520         if (!p)
1521                 return -ESRCH;
1522
1523         task_lock(p);
1524         seq_printf(m, "%s\n", p->comm);
1525         task_unlock(p);
1526
1527         put_task_struct(p);
1528
1529         return 0;
1530 }
1531
1532 static int comm_open(struct inode *inode, struct file *filp)
1533 {
1534         return single_open(filp, comm_show, inode);
1535 }
1536
1537 static const struct file_operations proc_pid_set_comm_operations = {
1538         .open           = comm_open,
1539         .read           = seq_read,
1540         .write          = comm_write,
1541         .llseek         = seq_lseek,
1542         .release        = single_release,
1543 };
1544
1545 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1546 {
1547         struct task_struct *task;
1548         struct mm_struct *mm;
1549         struct file *exe_file;
1550
1551         task = get_proc_task(d_inode(dentry));
1552         if (!task)
1553                 return -ENOENT;
1554         mm = get_task_mm(task);
1555         put_task_struct(task);
1556         if (!mm)
1557                 return -ENOENT;
1558         exe_file = get_mm_exe_file(mm);
1559         mmput(mm);
1560         if (exe_file) {
1561                 *exe_path = exe_file->f_path;
1562                 path_get(&exe_file->f_path);
1563                 fput(exe_file);
1564                 return 0;
1565         } else
1566                 return -ENOENT;
1567 }
1568
1569 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1570 {
1571         struct inode *inode = d_inode(dentry);
1572         struct path path;
1573         int error = -EACCES;
1574
1575         /* Are we allowed to snoop on the tasks file descriptors? */
1576         if (!proc_fd_access_allowed(inode))
1577                 goto out;
1578
1579         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1580         if (error)
1581                 goto out;
1582
1583         nd_jump_link(&path);
1584         return NULL;
1585 out:
1586         return ERR_PTR(error);
1587 }
1588
1589 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1590 {
1591         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1592         char *pathname;
1593         int len;
1594
1595         if (!tmp)
1596                 return -ENOMEM;
1597
1598         pathname = d_path(path, tmp, PAGE_SIZE);
1599         len = PTR_ERR(pathname);
1600         if (IS_ERR(pathname))
1601                 goto out;
1602         len = tmp + PAGE_SIZE - 1 - pathname;
1603
1604         if (len > buflen)
1605                 len = buflen;
1606         if (copy_to_user(buffer, pathname, len))
1607                 len = -EFAULT;
1608  out:
1609         free_page((unsigned long)tmp);
1610         return len;
1611 }
1612
1613 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1614 {
1615         int error = -EACCES;
1616         struct inode *inode = d_inode(dentry);
1617         struct path path;
1618
1619         /* Are we allowed to snoop on the tasks file descriptors? */
1620         if (!proc_fd_access_allowed(inode))
1621                 goto out;
1622
1623         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1624         if (error)
1625                 goto out;
1626
1627         error = do_proc_readlink(&path, buffer, buflen);
1628         path_put(&path);
1629 out:
1630         return error;
1631 }
1632
1633 const struct inode_operations proc_pid_link_inode_operations = {
1634         .readlink       = proc_pid_readlink,
1635         .follow_link    = proc_pid_follow_link,
1636         .setattr        = proc_setattr,
1637 };
1638
1639
1640 /* building an inode */
1641
1642 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1643 {
1644         struct inode * inode;
1645         struct proc_inode *ei;
1646         const struct cred *cred;
1647
1648         /* We need a new inode */
1649
1650         inode = new_inode(sb);
1651         if (!inode)
1652                 goto out;
1653
1654         /* Common stuff */
1655         ei = PROC_I(inode);
1656         inode->i_ino = get_next_ino();
1657         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1658         inode->i_op = &proc_def_inode_operations;
1659
1660         /*
1661          * grab the reference to task.
1662          */
1663         ei->pid = get_task_pid(task, PIDTYPE_PID);
1664         if (!ei->pid)
1665                 goto out_unlock;
1666
1667         if (task_dumpable(task)) {
1668                 rcu_read_lock();
1669                 cred = __task_cred(task);
1670                 inode->i_uid = cred->euid;
1671                 inode->i_gid = cred->egid;
1672                 rcu_read_unlock();
1673         }
1674         security_task_to_inode(task, inode);
1675
1676 out:
1677         return inode;
1678
1679 out_unlock:
1680         iput(inode);
1681         return NULL;
1682 }
1683
1684 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1685 {
1686         struct inode *inode = d_inode(dentry);
1687         struct task_struct *task;
1688         const struct cred *cred;
1689         struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1690
1691         generic_fillattr(inode, stat);
1692
1693         rcu_read_lock();
1694         stat->uid = GLOBAL_ROOT_UID;
1695         stat->gid = GLOBAL_ROOT_GID;
1696         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1697         if (task) {
1698                 if (!has_pid_permissions(pid, task, 2)) {
1699                         rcu_read_unlock();
1700                         /*
1701                          * This doesn't prevent learning whether PID exists,
1702                          * it only makes getattr() consistent with readdir().
1703                          */
1704                         return -ENOENT;
1705                 }
1706                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1707                     task_dumpable(task)) {
1708                         cred = __task_cred(task);
1709                         stat->uid = cred->euid;
1710                         stat->gid = cred->egid;
1711                 }
1712         }
1713         rcu_read_unlock();
1714         return 0;
1715 }
1716
1717 /* dentry stuff */
1718
1719 /*
1720  *      Exceptional case: normally we are not allowed to unhash a busy
1721  * directory. In this case, however, we can do it - no aliasing problems
1722  * due to the way we treat inodes.
1723  *
1724  * Rewrite the inode's ownerships here because the owning task may have
1725  * performed a setuid(), etc.
1726  *
1727  * Before the /proc/pid/status file was created the only way to read
1728  * the effective uid of a /process was to stat /proc/pid.  Reading
1729  * /proc/pid/status is slow enough that procps and other packages
1730  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1731  * made this apply to all per process world readable and executable
1732  * directories.
1733  */
1734 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1735 {
1736         struct inode *inode;
1737         struct task_struct *task;
1738         const struct cred *cred;
1739
1740         if (flags & LOOKUP_RCU)
1741                 return -ECHILD;
1742
1743         inode = d_inode(dentry);
1744         task = get_proc_task(inode);
1745
1746         if (task) {
1747                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1748                     task_dumpable(task)) {
1749                         rcu_read_lock();
1750                         cred = __task_cred(task);
1751                         inode->i_uid = cred->euid;
1752                         inode->i_gid = cred->egid;
1753                         rcu_read_unlock();
1754                 } else {
1755                         inode->i_uid = GLOBAL_ROOT_UID;
1756                         inode->i_gid = GLOBAL_ROOT_GID;
1757                 }
1758                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1759                 security_task_to_inode(task, inode);
1760                 put_task_struct(task);
1761                 return 1;
1762         }
1763         return 0;
1764 }
1765
1766 static inline bool proc_inode_is_dead(struct inode *inode)
1767 {
1768         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1769 }
1770
1771 int pid_delete_dentry(const struct dentry *dentry)
1772 {
1773         /* Is the task we represent dead?
1774          * If so, then don't put the dentry on the lru list,
1775          * kill it immediately.
1776          */
1777         return proc_inode_is_dead(d_inode(dentry));
1778 }
1779
1780 const struct dentry_operations pid_dentry_operations =
1781 {
1782         .d_revalidate   = pid_revalidate,
1783         .d_delete       = pid_delete_dentry,
1784 };
1785
1786 /* Lookups */
1787
1788 /*
1789  * Fill a directory entry.
1790  *
1791  * If possible create the dcache entry and derive our inode number and
1792  * file type from dcache entry.
1793  *
1794  * Since all of the proc inode numbers are dynamically generated, the inode
1795  * numbers do not exist until the inode is cache.  This means creating the
1796  * the dcache entry in readdir is necessary to keep the inode numbers
1797  * reported by readdir in sync with the inode numbers reported
1798  * by stat.
1799  */
1800 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1801         const char *name, int len,
1802         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1803 {
1804         struct dentry *child, *dir = file->f_path.dentry;
1805         struct qstr qname = QSTR_INIT(name, len);
1806         struct inode *inode;
1807         unsigned type;
1808         ino_t ino;
1809
1810         child = d_hash_and_lookup(dir, &qname);
1811         if (!child) {
1812                 child = d_alloc(dir, &qname);
1813                 if (!child)
1814                         goto end_instantiate;
1815                 if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1816                         dput(child);
1817                         goto end_instantiate;
1818                 }
1819         }
1820         inode = d_inode(child);
1821         ino = inode->i_ino;
1822         type = inode->i_mode >> 12;
1823         dput(child);
1824         return dir_emit(ctx, name, len, ino, type);
1825
1826 end_instantiate:
1827         return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1828 }
1829
1830 /*
1831  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1832  * which represent vma start and end addresses.
1833  */
1834 static int dname_to_vma_addr(struct dentry *dentry,
1835                              unsigned long *start, unsigned long *end)
1836 {
1837         if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1838                 return -EINVAL;
1839
1840         return 0;
1841 }
1842
1843 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1844 {
1845         unsigned long vm_start, vm_end;
1846         bool exact_vma_exists = false;
1847         struct mm_struct *mm = NULL;
1848         struct task_struct *task;
1849         const struct cred *cred;
1850         struct inode *inode;
1851         int status = 0;
1852
1853         if (flags & LOOKUP_RCU)
1854                 return -ECHILD;
1855
1856         inode = d_inode(dentry);
1857         task = get_proc_task(inode);
1858         if (!task)
1859                 goto out_notask;
1860
1861         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1862         if (IS_ERR_OR_NULL(mm))
1863                 goto out;
1864
1865         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1866                 down_read(&mm->mmap_sem);
1867                 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1868                 up_read(&mm->mmap_sem);
1869         }
1870
1871         mmput(mm);
1872
1873         if (exact_vma_exists) {
1874                 if (task_dumpable(task)) {
1875                         rcu_read_lock();
1876                         cred = __task_cred(task);
1877                         inode->i_uid = cred->euid;
1878                         inode->i_gid = cred->egid;
1879                         rcu_read_unlock();
1880                 } else {
1881                         inode->i_uid = GLOBAL_ROOT_UID;
1882                         inode->i_gid = GLOBAL_ROOT_GID;
1883                 }
1884                 security_task_to_inode(task, inode);
1885                 status = 1;
1886         }
1887
1888 out:
1889         put_task_struct(task);
1890
1891 out_notask:
1892         return status;
1893 }
1894
1895 static const struct dentry_operations tid_map_files_dentry_operations = {
1896         .d_revalidate   = map_files_d_revalidate,
1897         .d_delete       = pid_delete_dentry,
1898 };
1899
1900 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1901 {
1902         unsigned long vm_start, vm_end;
1903         struct vm_area_struct *vma;
1904         struct task_struct *task;
1905         struct mm_struct *mm;
1906         int rc;
1907
1908         rc = -ENOENT;
1909         task = get_proc_task(d_inode(dentry));
1910         if (!task)
1911                 goto out;
1912
1913         mm = get_task_mm(task);
1914         put_task_struct(task);
1915         if (!mm)
1916                 goto out;
1917
1918         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1919         if (rc)
1920                 goto out_mmput;
1921
1922         rc = -ENOENT;
1923         down_read(&mm->mmap_sem);
1924         vma = find_exact_vma(mm, vm_start, vm_end);
1925         if (vma && vma->vm_file) {
1926                 *path = vma->vm_file->f_path;
1927                 path_get(path);
1928                 rc = 0;
1929         }
1930         up_read(&mm->mmap_sem);
1931
1932 out_mmput:
1933         mmput(mm);
1934 out:
1935         return rc;
1936 }
1937
1938 struct map_files_info {
1939         fmode_t         mode;
1940         unsigned long   len;
1941         unsigned char   name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1942 };
1943
1944 /*
1945  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1946  * symlinks may be used to bypass permissions on ancestor directories in the
1947  * path to the file in question.
1948  */
1949 static const char *
1950 proc_map_files_follow_link(struct dentry *dentry, void **cookie)
1951 {
1952         if (!capable(CAP_SYS_ADMIN))
1953                 return ERR_PTR(-EPERM);
1954
1955         return proc_pid_follow_link(dentry, NULL);
1956 }
1957
1958 /*
1959  * Identical to proc_pid_link_inode_operations except for follow_link()
1960  */
1961 static const struct inode_operations proc_map_files_link_inode_operations = {
1962         .readlink       = proc_pid_readlink,
1963         .follow_link    = proc_map_files_follow_link,
1964         .setattr        = proc_setattr,
1965 };
1966
1967 static int
1968 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1969                            struct task_struct *task, const void *ptr)
1970 {
1971         fmode_t mode = (fmode_t)(unsigned long)ptr;
1972         struct proc_inode *ei;
1973         struct inode *inode;
1974
1975         inode = proc_pid_make_inode(dir->i_sb, task);
1976         if (!inode)
1977                 return -ENOENT;
1978
1979         ei = PROC_I(inode);
1980         ei->op.proc_get_link = proc_map_files_get_link;
1981
1982         inode->i_op = &proc_map_files_link_inode_operations;
1983         inode->i_size = 64;
1984         inode->i_mode = S_IFLNK;
1985
1986         if (mode & FMODE_READ)
1987                 inode->i_mode |= S_IRUSR;
1988         if (mode & FMODE_WRITE)
1989                 inode->i_mode |= S_IWUSR;
1990
1991         d_set_d_op(dentry, &tid_map_files_dentry_operations);
1992         d_add(dentry, inode);
1993
1994         return 0;
1995 }
1996
1997 static struct dentry *proc_map_files_lookup(struct inode *dir,
1998                 struct dentry *dentry, unsigned int flags)
1999 {
2000         unsigned long vm_start, vm_end;
2001         struct vm_area_struct *vma;
2002         struct task_struct *task;
2003         int result;
2004         struct mm_struct *mm;
2005
2006         result = -ENOENT;
2007         task = get_proc_task(dir);
2008         if (!task)
2009                 goto out;
2010
2011         result = -EACCES;
2012         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2013                 goto out_put_task;
2014
2015         result = -ENOENT;
2016         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2017                 goto out_put_task;
2018
2019         mm = get_task_mm(task);
2020         if (!mm)
2021                 goto out_put_task;
2022
2023         down_read(&mm->mmap_sem);
2024         vma = find_exact_vma(mm, vm_start, vm_end);
2025         if (!vma)
2026                 goto out_no_vma;
2027
2028         if (vma->vm_file)
2029                 result = proc_map_files_instantiate(dir, dentry, task,
2030                                 (void *)(unsigned long)vma->vm_file->f_mode);
2031
2032 out_no_vma:
2033         up_read(&mm->mmap_sem);
2034         mmput(mm);
2035 out_put_task:
2036         put_task_struct(task);
2037 out:
2038         return ERR_PTR(result);
2039 }
2040
2041 static const struct inode_operations proc_map_files_inode_operations = {
2042         .lookup         = proc_map_files_lookup,
2043         .permission     = proc_fd_permission,
2044         .setattr        = proc_setattr,
2045 };
2046
2047 static int
2048 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2049 {
2050         struct vm_area_struct *vma;
2051         struct task_struct *task;
2052         struct mm_struct *mm;
2053         unsigned long nr_files, pos, i;
2054         struct flex_array *fa = NULL;
2055         struct map_files_info info;
2056         struct map_files_info *p;
2057         int ret;
2058
2059         ret = -ENOENT;
2060         task = get_proc_task(file_inode(file));
2061         if (!task)
2062                 goto out;
2063
2064         ret = -EACCES;
2065         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2066                 goto out_put_task;
2067
2068         ret = 0;
2069         if (!dir_emit_dots(file, ctx))
2070                 goto out_put_task;
2071
2072         mm = get_task_mm(task);
2073         if (!mm)
2074                 goto out_put_task;
2075         down_read(&mm->mmap_sem);
2076
2077         nr_files = 0;
2078
2079         /*
2080          * We need two passes here:
2081          *
2082          *  1) Collect vmas of mapped files with mmap_sem taken
2083          *  2) Release mmap_sem and instantiate entries
2084          *
2085          * otherwise we get lockdep complained, since filldir()
2086          * routine might require mmap_sem taken in might_fault().
2087          */
2088
2089         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2090                 if (vma->vm_file && ++pos > ctx->pos)
2091                         nr_files++;
2092         }
2093
2094         if (nr_files) {
2095                 fa = flex_array_alloc(sizeof(info), nr_files,
2096                                         GFP_KERNEL);
2097                 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2098                                                 GFP_KERNEL)) {
2099                         ret = -ENOMEM;
2100                         if (fa)
2101                                 flex_array_free(fa);
2102                         up_read(&mm->mmap_sem);
2103                         mmput(mm);
2104                         goto out_put_task;
2105                 }
2106                 for (i = 0, vma = mm->mmap, pos = 2; vma;
2107                                 vma = vma->vm_next) {
2108                         if (!vma->vm_file)
2109                                 continue;
2110                         if (++pos <= ctx->pos)
2111                                 continue;
2112
2113                         info.mode = vma->vm_file->f_mode;
2114                         info.len = snprintf(info.name,
2115                                         sizeof(info.name), "%lx-%lx",
2116                                         vma->vm_start, vma->vm_end);
2117                         if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2118                                 BUG();
2119                 }
2120         }
2121         up_read(&mm->mmap_sem);
2122
2123         for (i = 0; i < nr_files; i++) {
2124                 p = flex_array_get(fa, i);
2125                 if (!proc_fill_cache(file, ctx,
2126                                       p->name, p->len,
2127                                       proc_map_files_instantiate,
2128                                       task,
2129                                       (void *)(unsigned long)p->mode))
2130                         break;
2131                 ctx->pos++;
2132         }
2133         if (fa)
2134                 flex_array_free(fa);
2135         mmput(mm);
2136
2137 out_put_task:
2138         put_task_struct(task);
2139 out:
2140         return ret;
2141 }
2142
2143 static const struct file_operations proc_map_files_operations = {
2144         .read           = generic_read_dir,
2145         .iterate        = proc_map_files_readdir,
2146         .llseek         = default_llseek,
2147 };
2148
2149 struct timers_private {
2150         struct pid *pid;
2151         struct task_struct *task;
2152         struct sighand_struct *sighand;
2153         struct pid_namespace *ns;
2154         unsigned long flags;
2155 };
2156
2157 static void *timers_start(struct seq_file *m, loff_t *pos)
2158 {
2159         struct timers_private *tp = m->private;
2160
2161         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2162         if (!tp->task)
2163                 return ERR_PTR(-ESRCH);
2164
2165         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2166         if (!tp->sighand)
2167                 return ERR_PTR(-ESRCH);
2168
2169         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2170 }
2171
2172 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2173 {
2174         struct timers_private *tp = m->private;
2175         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2176 }
2177
2178 static void timers_stop(struct seq_file *m, void *v)
2179 {
2180         struct timers_private *tp = m->private;
2181
2182         if (tp->sighand) {
2183                 unlock_task_sighand(tp->task, &tp->flags);
2184                 tp->sighand = NULL;
2185         }
2186
2187         if (tp->task) {
2188                 put_task_struct(tp->task);
2189                 tp->task = NULL;
2190         }
2191 }
2192
2193 static int show_timer(struct seq_file *m, void *v)
2194 {
2195         struct k_itimer *timer;
2196         struct timers_private *tp = m->private;
2197         int notify;
2198         static const char * const nstr[] = {
2199                 [SIGEV_SIGNAL] = "signal",
2200                 [SIGEV_NONE] = "none",
2201                 [SIGEV_THREAD] = "thread",
2202         };
2203
2204         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2205         notify = timer->it_sigev_notify;
2206
2207         seq_printf(m, "ID: %d\n", timer->it_id);
2208         seq_printf(m, "signal: %d/%p\n",
2209                    timer->sigq->info.si_signo,
2210                    timer->sigq->info.si_value.sival_ptr);
2211         seq_printf(m, "notify: %s/%s.%d\n",
2212                    nstr[notify & ~SIGEV_THREAD_ID],
2213                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2214                    pid_nr_ns(timer->it_pid, tp->ns));
2215         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2216
2217         return 0;
2218 }
2219
2220 static const struct seq_operations proc_timers_seq_ops = {
2221         .start  = timers_start,
2222         .next   = timers_next,
2223         .stop   = timers_stop,
2224         .show   = show_timer,
2225 };
2226
2227 static int proc_timers_open(struct inode *inode, struct file *file)
2228 {
2229         struct timers_private *tp;
2230
2231         tp = __seq_open_private(file, &proc_timers_seq_ops,
2232                         sizeof(struct timers_private));
2233         if (!tp)
2234                 return -ENOMEM;
2235
2236         tp->pid = proc_pid(inode);
2237         tp->ns = inode->i_sb->s_fs_info;
2238         return 0;
2239 }
2240
2241 static const struct file_operations proc_timers_operations = {
2242         .open           = proc_timers_open,
2243         .read           = seq_read,
2244         .llseek         = seq_lseek,
2245         .release        = seq_release_private,
2246 };
2247
2248 static int proc_pident_instantiate(struct inode *dir,
2249         struct dentry *dentry, struct task_struct *task, const void *ptr)
2250 {
2251         const struct pid_entry *p = ptr;
2252         struct inode *inode;
2253         struct proc_inode *ei;
2254
2255         inode = proc_pid_make_inode(dir->i_sb, task);
2256         if (!inode)
2257                 goto out;
2258
2259         ei = PROC_I(inode);
2260         inode->i_mode = p->mode;
2261         if (S_ISDIR(inode->i_mode))
2262                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2263         if (p->iop)
2264                 inode->i_op = p->iop;
2265         if (p->fop)
2266                 inode->i_fop = p->fop;
2267         ei->op = p->op;
2268         d_set_d_op(dentry, &pid_dentry_operations);
2269         d_add(dentry, inode);
2270         /* Close the race of the process dying before we return the dentry */
2271         if (pid_revalidate(dentry, 0))
2272                 return 0;
2273 out:
2274         return -ENOENT;
2275 }
2276
2277 static struct dentry *proc_pident_lookup(struct inode *dir, 
2278                                          struct dentry *dentry,
2279                                          const struct pid_entry *ents,
2280                                          unsigned int nents)
2281 {
2282         int error;
2283         struct task_struct *task = get_proc_task(dir);
2284         const struct pid_entry *p, *last;
2285
2286         error = -ENOENT;
2287
2288         if (!task)
2289                 goto out_no_task;
2290
2291         /*
2292          * Yes, it does not scale. And it should not. Don't add
2293          * new entries into /proc/<tgid>/ without very good reasons.
2294          */
2295         last = &ents[nents - 1];
2296         for (p = ents; p <= last; p++) {
2297                 if (p->len != dentry->d_name.len)
2298                         continue;
2299                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2300                         break;
2301         }
2302         if (p > last)
2303                 goto out;
2304
2305         error = proc_pident_instantiate(dir, dentry, task, p);
2306 out:
2307         put_task_struct(task);
2308 out_no_task:
2309         return ERR_PTR(error);
2310 }
2311
2312 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2313                 const struct pid_entry *ents, unsigned int nents)
2314 {
2315         struct task_struct *task = get_proc_task(file_inode(file));
2316         const struct pid_entry *p;
2317
2318         if (!task)
2319                 return -ENOENT;
2320
2321         if (!dir_emit_dots(file, ctx))
2322                 goto out;
2323
2324         if (ctx->pos >= nents + 2)
2325                 goto out;
2326
2327         for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2328                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2329                                 proc_pident_instantiate, task, p))
2330                         break;
2331                 ctx->pos++;
2332         }
2333 out:
2334         put_task_struct(task);
2335         return 0;
2336 }
2337
2338 #ifdef CONFIG_SECURITY
2339 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2340                                   size_t count, loff_t *ppos)
2341 {
2342         struct inode * inode = file_inode(file);
2343         char *p = NULL;
2344         ssize_t length;
2345         struct task_struct *task = get_proc_task(inode);
2346
2347         if (!task)
2348                 return -ESRCH;
2349
2350         length = security_getprocattr(task,
2351                                       (char*)file->f_path.dentry->d_name.name,
2352                                       &p);
2353         put_task_struct(task);
2354         if (length > 0)
2355                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2356         kfree(p);
2357         return length;
2358 }
2359
2360 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2361                                    size_t count, loff_t *ppos)
2362 {
2363         struct inode * inode = file_inode(file);
2364         char *page;
2365         ssize_t length;
2366         struct task_struct *task = get_proc_task(inode);
2367
2368         length = -ESRCH;
2369         if (!task)
2370                 goto out_no_task;
2371         if (count > PAGE_SIZE)
2372                 count = PAGE_SIZE;
2373
2374         /* No partial writes. */
2375         length = -EINVAL;
2376         if (*ppos != 0)
2377                 goto out;
2378
2379         length = -ENOMEM;
2380         page = (char*)__get_free_page(GFP_TEMPORARY);
2381         if (!page)
2382                 goto out;
2383
2384         length = -EFAULT;
2385         if (copy_from_user(page, buf, count))
2386                 goto out_free;
2387
2388         /* Guard against adverse ptrace interaction */
2389         length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2390         if (length < 0)
2391                 goto out_free;
2392
2393         length = security_setprocattr(task,
2394                                       (char*)file->f_path.dentry->d_name.name,
2395                                       (void*)page, count);
2396         mutex_unlock(&task->signal->cred_guard_mutex);
2397 out_free:
2398         free_page((unsigned long) page);
2399 out:
2400         put_task_struct(task);
2401 out_no_task:
2402         return length;
2403 }
2404
2405 static const struct file_operations proc_pid_attr_operations = {
2406         .read           = proc_pid_attr_read,
2407         .write          = proc_pid_attr_write,
2408         .llseek         = generic_file_llseek,
2409 };
2410
2411 static const struct pid_entry attr_dir_stuff[] = {
2412         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2413         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2414         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2415         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2416         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2417         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2418 };
2419
2420 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2421 {
2422         return proc_pident_readdir(file, ctx, 
2423                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2424 }
2425
2426 static const struct file_operations proc_attr_dir_operations = {
2427         .read           = generic_read_dir,
2428         .iterate        = proc_attr_dir_readdir,
2429         .llseek         = default_llseek,
2430 };
2431
2432 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2433                                 struct dentry *dentry, unsigned int flags)
2434 {
2435         return proc_pident_lookup(dir, dentry,
2436                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2437 }
2438
2439 static const struct inode_operations proc_attr_dir_inode_operations = {
2440         .lookup         = proc_attr_dir_lookup,
2441         .getattr        = pid_getattr,
2442         .setattr        = proc_setattr,
2443 };
2444
2445 #endif
2446
2447 #ifdef CONFIG_ELF_CORE
2448 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2449                                          size_t count, loff_t *ppos)
2450 {
2451         struct task_struct *task = get_proc_task(file_inode(file));
2452         struct mm_struct *mm;
2453         char buffer[PROC_NUMBUF];
2454         size_t len;
2455         int ret;
2456
2457         if (!task)
2458                 return -ESRCH;
2459
2460         ret = 0;
2461         mm = get_task_mm(task);
2462         if (mm) {
2463                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2464                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2465                                 MMF_DUMP_FILTER_SHIFT));
2466                 mmput(mm);
2467                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2468         }
2469
2470         put_task_struct(task);
2471
2472         return ret;
2473 }
2474
2475 static ssize_t proc_coredump_filter_write(struct file *file,
2476                                           const char __user *buf,
2477                                           size_t count,
2478                                           loff_t *ppos)
2479 {
2480         struct task_struct *task;
2481         struct mm_struct *mm;
2482         unsigned int val;
2483         int ret;
2484         int i;
2485         unsigned long mask;
2486
2487         ret = kstrtouint_from_user(buf, count, 0, &val);
2488         if (ret < 0)
2489                 return ret;
2490
2491         ret = -ESRCH;
2492         task = get_proc_task(file_inode(file));
2493         if (!task)
2494                 goto out_no_task;
2495
2496         mm = get_task_mm(task);
2497         if (!mm)
2498                 goto out_no_mm;
2499         ret = 0;
2500
2501         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2502                 if (val & mask)
2503                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2504                 else
2505                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2506         }
2507
2508         mmput(mm);
2509  out_no_mm:
2510         put_task_struct(task);
2511  out_no_task:
2512         if (ret < 0)
2513                 return ret;
2514         return count;
2515 }
2516
2517 static const struct file_operations proc_coredump_filter_operations = {
2518         .read           = proc_coredump_filter_read,
2519         .write          = proc_coredump_filter_write,
2520         .llseek         = generic_file_llseek,
2521 };
2522 #endif
2523
2524 #ifdef CONFIG_TASK_IO_ACCOUNTING
2525 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2526 {
2527         struct task_io_accounting acct = task->ioac;
2528         unsigned long flags;
2529         int result;
2530
2531         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2532         if (result)
2533                 return result;
2534
2535         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2536                 result = -EACCES;
2537                 goto out_unlock;
2538         }
2539
2540         if (whole && lock_task_sighand(task, &flags)) {
2541                 struct task_struct *t = task;
2542
2543                 task_io_accounting_add(&acct, &task->signal->ioac);
2544                 while_each_thread(task, t)
2545                         task_io_accounting_add(&acct, &t->ioac);
2546
2547                 unlock_task_sighand(task, &flags);
2548         }
2549         seq_printf(m,
2550                    "rchar: %llu\n"
2551                    "wchar: %llu\n"
2552                    "syscr: %llu\n"
2553                    "syscw: %llu\n"
2554                    "read_bytes: %llu\n"
2555                    "write_bytes: %llu\n"
2556                    "cancelled_write_bytes: %llu\n",
2557                    (unsigned long long)acct.rchar,
2558                    (unsigned long long)acct.wchar,
2559                    (unsigned long long)acct.syscr,
2560                    (unsigned long long)acct.syscw,
2561                    (unsigned long long)acct.read_bytes,
2562                    (unsigned long long)acct.write_bytes,
2563                    (unsigned long long)acct.cancelled_write_bytes);
2564         result = 0;
2565
2566 out_unlock:
2567         mutex_unlock(&task->signal->cred_guard_mutex);
2568         return result;
2569 }
2570
2571 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2572                                   struct pid *pid, struct task_struct *task)
2573 {
2574         return do_io_accounting(task, m, 0);
2575 }
2576
2577 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2578                                    struct pid *pid, struct task_struct *task)
2579 {
2580         return do_io_accounting(task, m, 1);
2581 }
2582 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2583
2584 #ifdef CONFIG_USER_NS
2585 static int proc_id_map_open(struct inode *inode, struct file *file,
2586         const struct seq_operations *seq_ops)
2587 {
2588         struct user_namespace *ns = NULL;
2589         struct task_struct *task;
2590         struct seq_file *seq;
2591         int ret = -EINVAL;
2592
2593         task = get_proc_task(inode);
2594         if (task) {
2595                 rcu_read_lock();
2596                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2597                 rcu_read_unlock();
2598                 put_task_struct(task);
2599         }
2600         if (!ns)
2601                 goto err;
2602
2603         ret = seq_open(file, seq_ops);
2604         if (ret)
2605                 goto err_put_ns;
2606
2607         seq = file->private_data;
2608         seq->private = ns;
2609
2610         return 0;
2611 err_put_ns:
2612         put_user_ns(ns);
2613 err:
2614         return ret;
2615 }
2616
2617 static int proc_id_map_release(struct inode *inode, struct file *file)
2618 {
2619         struct seq_file *seq = file->private_data;
2620         struct user_namespace *ns = seq->private;
2621         put_user_ns(ns);
2622         return seq_release(inode, file);
2623 }
2624
2625 static int proc_uid_map_open(struct inode *inode, struct file *file)
2626 {
2627         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2628 }
2629
2630 static int proc_gid_map_open(struct inode *inode, struct file *file)
2631 {
2632         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2633 }
2634
2635 static int proc_projid_map_open(struct inode *inode, struct file *file)
2636 {
2637         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2638 }
2639
2640 static const struct file_operations proc_uid_map_operations = {
2641         .open           = proc_uid_map_open,
2642         .write          = proc_uid_map_write,
2643         .read           = seq_read,
2644         .llseek         = seq_lseek,
2645         .release        = proc_id_map_release,
2646 };
2647
2648 static const struct file_operations proc_gid_map_operations = {
2649         .open           = proc_gid_map_open,
2650         .write          = proc_gid_map_write,
2651         .read           = seq_read,
2652         .llseek         = seq_lseek,
2653         .release        = proc_id_map_release,
2654 };
2655
2656 static const struct file_operations proc_projid_map_operations = {
2657         .open           = proc_projid_map_open,
2658         .write          = proc_projid_map_write,
2659         .read           = seq_read,
2660         .llseek         = seq_lseek,
2661         .release        = proc_id_map_release,
2662 };
2663
2664 static int proc_setgroups_open(struct inode *inode, struct file *file)
2665 {
2666         struct user_namespace *ns = NULL;
2667         struct task_struct *task;
2668         int ret;
2669
2670         ret = -ESRCH;
2671         task = get_proc_task(inode);
2672         if (task) {
2673                 rcu_read_lock();
2674                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2675                 rcu_read_unlock();
2676                 put_task_struct(task);
2677         }
2678         if (!ns)
2679                 goto err;
2680
2681         if (file->f_mode & FMODE_WRITE) {
2682                 ret = -EACCES;
2683                 if (!ns_capable(ns, CAP_SYS_ADMIN))
2684                         goto err_put_ns;
2685         }
2686
2687         ret = single_open(file, &proc_setgroups_show, ns);
2688         if (ret)
2689                 goto err_put_ns;
2690
2691         return 0;
2692 err_put_ns:
2693         put_user_ns(ns);
2694 err:
2695         return ret;
2696 }
2697
2698 static int proc_setgroups_release(struct inode *inode, struct file *file)
2699 {
2700         struct seq_file *seq = file->private_data;
2701         struct user_namespace *ns = seq->private;
2702         int ret = single_release(inode, file);
2703         put_user_ns(ns);
2704         return ret;
2705 }
2706
2707 static const struct file_operations proc_setgroups_operations = {
2708         .open           = proc_setgroups_open,
2709         .write          = proc_setgroups_write,
2710         .read           = seq_read,
2711         .llseek         = seq_lseek,
2712         .release        = proc_setgroups_release,
2713 };
2714 #endif /* CONFIG_USER_NS */
2715
2716 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2717                                 struct pid *pid, struct task_struct *task)
2718 {
2719         int err = lock_trace(task);
2720         if (!err) {
2721                 seq_printf(m, "%08x\n", task->personality);
2722                 unlock_trace(task);
2723         }
2724         return err;
2725 }
2726
2727 /*
2728  * Thread groups
2729  */
2730 static const struct file_operations proc_task_operations;
2731 static const struct inode_operations proc_task_inode_operations;
2732
2733 static const struct pid_entry tgid_base_stuff[] = {
2734         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2735         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2736         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2737         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2738         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2739 #ifdef CONFIG_NET
2740         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2741 #endif
2742         REG("environ",    S_IRUSR, proc_environ_operations),
2743         ONE("auxv",       S_IRUSR, proc_pid_auxv),
2744         ONE("status",     S_IRUGO, proc_pid_status),
2745         ONE("personality", S_IRUSR, proc_pid_personality),
2746         ONE("limits",     S_IRUGO, proc_pid_limits),
2747 #ifdef CONFIG_SCHED_DEBUG
2748         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2749 #endif
2750 #ifdef CONFIG_SCHED_AUTOGROUP
2751         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2752 #endif
2753         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2754 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2755         ONE("syscall",    S_IRUSR, proc_pid_syscall),
2756 #endif
2757         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2758         ONE("stat",       S_IRUGO, proc_tgid_stat),
2759         ONE("statm",      S_IRUGO, proc_pid_statm),
2760         REG("maps",       S_IRUGO, proc_pid_maps_operations),
2761 #ifdef CONFIG_NUMA
2762         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2763 #endif
2764         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2765         LNK("cwd",        proc_cwd_link),
2766         LNK("root",       proc_root_link),
2767         LNK("exe",        proc_exe_link),
2768         REG("mounts",     S_IRUGO, proc_mounts_operations),
2769         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2770         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2771 #ifdef CONFIG_PROC_PAGE_MONITOR
2772         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2773         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2774         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2775 #endif
2776 #ifdef CONFIG_SECURITY
2777         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2778 #endif
2779 #ifdef CONFIG_KALLSYMS
2780         ONE("wchan",      S_IRUGO, proc_pid_wchan),
2781 #endif
2782 #ifdef CONFIG_STACKTRACE
2783         ONE("stack",      S_IRUSR, proc_pid_stack),
2784 #endif
2785 #ifdef CONFIG_SCHED_INFO
2786         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2787 #endif
2788 #ifdef CONFIG_LATENCYTOP
2789         REG("latency",  S_IRUGO, proc_lstats_operations),
2790 #endif
2791 #ifdef CONFIG_PROC_PID_CPUSET
2792         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2793 #endif
2794 #ifdef CONFIG_CGROUPS
2795         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2796 #endif
2797         ONE("oom_score",  S_IRUGO, proc_oom_score),
2798         REG("oom_adj",    S_IRUSR, proc_oom_adj_operations),
2799         REG("oom_score_adj", S_IRUSR, proc_oom_score_adj_operations),
2800 #ifdef CONFIG_AUDITSYSCALL
2801         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2802         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2803 #endif
2804 #ifdef CONFIG_FAULT_INJECTION
2805         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2806 #endif
2807 #ifdef CONFIG_ELF_CORE
2808         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2809 #endif
2810 #ifdef CONFIG_TASK_IO_ACCOUNTING
2811         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
2812 #endif
2813 #ifdef CONFIG_HARDWALL
2814         ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2815 #endif
2816 #ifdef CONFIG_USER_NS
2817         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2818         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2819         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2820         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2821 #endif
2822 #ifdef CONFIG_CHECKPOINT_RESTORE
2823         REG("timers",     S_IRUGO, proc_timers_operations),
2824 #endif
2825 };
2826
2827 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2828 {
2829         return proc_pident_readdir(file, ctx,
2830                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2831 }
2832
2833 static const struct file_operations proc_tgid_base_operations = {
2834         .read           = generic_read_dir,
2835         .iterate        = proc_tgid_base_readdir,
2836         .llseek         = default_llseek,
2837 };
2838
2839 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2840 {
2841         return proc_pident_lookup(dir, dentry,
2842                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2843 }
2844
2845 static const struct inode_operations proc_tgid_base_inode_operations = {
2846         .lookup         = proc_tgid_base_lookup,
2847         .getattr        = pid_getattr,
2848         .setattr        = proc_setattr,
2849         .permission     = proc_pid_permission,
2850 };
2851
2852 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2853 {
2854         struct dentry *dentry, *leader, *dir;
2855         char buf[PROC_NUMBUF];
2856         struct qstr name;
2857
2858         name.name = buf;
2859         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2860         /* no ->d_hash() rejects on procfs */
2861         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2862         if (dentry) {
2863                 d_invalidate(dentry);
2864                 dput(dentry);
2865         }
2866
2867         if (pid == tgid)
2868                 return;
2869
2870         name.name = buf;
2871         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2872         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2873         if (!leader)
2874                 goto out;
2875
2876         name.name = "task";
2877         name.len = strlen(name.name);
2878         dir = d_hash_and_lookup(leader, &name);
2879         if (!dir)
2880                 goto out_put_leader;
2881
2882         name.name = buf;
2883         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2884         dentry = d_hash_and_lookup(dir, &name);
2885         if (dentry) {
2886                 d_invalidate(dentry);
2887                 dput(dentry);
2888         }
2889
2890         dput(dir);
2891 out_put_leader:
2892         dput(leader);
2893 out:
2894         return;
2895 }
2896
2897 /**
2898  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2899  * @task: task that should be flushed.
2900  *
2901  * When flushing dentries from proc, one needs to flush them from global
2902  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2903  * in. This call is supposed to do all of this job.
2904  *
2905  * Looks in the dcache for
2906  * /proc/@pid
2907  * /proc/@tgid/task/@pid
2908  * if either directory is present flushes it and all of it'ts children
2909  * from the dcache.
2910  *
2911  * It is safe and reasonable to cache /proc entries for a task until
2912  * that task exits.  After that they just clog up the dcache with
2913  * useless entries, possibly causing useful dcache entries to be
2914  * flushed instead.  This routine is proved to flush those useless
2915  * dcache entries at process exit time.
2916  *
2917  * NOTE: This routine is just an optimization so it does not guarantee
2918  *       that no dcache entries will exist at process exit time it
2919  *       just makes it very unlikely that any will persist.
2920  */
2921
2922 void proc_flush_task(struct task_struct *task)
2923 {
2924         int i;
2925         struct pid *pid, *tgid;
2926         struct upid *upid;
2927
2928         pid = task_pid(task);
2929         tgid = task_tgid(task);
2930
2931         for (i = 0; i <= pid->level; i++) {
2932                 upid = &pid->numbers[i];
2933                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2934                                         tgid->numbers[i].nr);
2935         }
2936 }
2937
2938 static int proc_pid_instantiate(struct inode *dir,
2939                                    struct dentry * dentry,
2940                                    struct task_struct *task, const void *ptr)
2941 {
2942         struct inode *inode;
2943
2944         inode = proc_pid_make_inode(dir->i_sb, task);
2945         if (!inode)
2946                 goto out;
2947
2948         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2949         inode->i_op = &proc_tgid_base_inode_operations;
2950         inode->i_fop = &proc_tgid_base_operations;
2951         inode->i_flags|=S_IMMUTABLE;
2952
2953         set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2954                                                   ARRAY_SIZE(tgid_base_stuff)));
2955
2956         d_set_d_op(dentry, &pid_dentry_operations);
2957
2958         d_add(dentry, inode);
2959         /* Close the race of the process dying before we return the dentry */
2960         if (pid_revalidate(dentry, 0))
2961                 return 0;
2962 out:
2963         return -ENOENT;
2964 }
2965
2966 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2967 {
2968         int result = -ENOENT;
2969         struct task_struct *task;
2970         unsigned tgid;
2971         struct pid_namespace *ns;
2972
2973         tgid = name_to_int(&dentry->d_name);
2974         if (tgid == ~0U)
2975                 goto out;
2976
2977         ns = dentry->d_sb->s_fs_info;
2978         rcu_read_lock();
2979         task = find_task_by_pid_ns(tgid, ns);
2980         if (task)
2981                 get_task_struct(task);
2982         rcu_read_unlock();
2983         if (!task)
2984                 goto out;
2985
2986         result = proc_pid_instantiate(dir, dentry, task, NULL);
2987         put_task_struct(task);
2988 out:
2989         return ERR_PTR(result);
2990 }
2991
2992 /*
2993  * Find the first task with tgid >= tgid
2994  *
2995  */
2996 struct tgid_iter {
2997         unsigned int tgid;
2998         struct task_struct *task;
2999 };
3000 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3001 {
3002         struct pid *pid;
3003
3004         if (iter.task)
3005                 put_task_struct(iter.task);
3006         rcu_read_lock();
3007 retry:
3008         iter.task = NULL;
3009         pid = find_ge_pid(iter.tgid, ns);
3010         if (pid) {
3011                 iter.tgid = pid_nr_ns(pid, ns);
3012                 iter.task = pid_task(pid, PIDTYPE_PID);
3013                 /* What we to know is if the pid we have find is the
3014                  * pid of a thread_group_leader.  Testing for task
3015                  * being a thread_group_leader is the obvious thing
3016                  * todo but there is a window when it fails, due to
3017                  * the pid transfer logic in de_thread.
3018                  *
3019                  * So we perform the straight forward test of seeing
3020                  * if the pid we have found is the pid of a thread
3021                  * group leader, and don't worry if the task we have
3022                  * found doesn't happen to be a thread group leader.
3023                  * As we don't care in the case of readdir.
3024                  */
3025                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3026                         iter.tgid += 1;
3027                         goto retry;
3028                 }
3029                 get_task_struct(iter.task);
3030         }
3031         rcu_read_unlock();
3032         return iter;
3033 }
3034
3035 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3036
3037 /* for the /proc/ directory itself, after non-process stuff has been done */
3038 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3039 {
3040         struct tgid_iter iter;
3041         struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3042         loff_t pos = ctx->pos;
3043
3044         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3045                 return 0;
3046
3047         if (pos == TGID_OFFSET - 2) {
3048                 struct inode *inode = d_inode(ns->proc_self);
3049                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3050                         return 0;
3051                 ctx->pos = pos = pos + 1;
3052         }
3053         if (pos == TGID_OFFSET - 1) {
3054                 struct inode *inode = d_inode(ns->proc_thread_self);
3055                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3056                         return 0;
3057                 ctx->pos = pos = pos + 1;
3058         }
3059         iter.tgid = pos - TGID_OFFSET;
3060         iter.task = NULL;
3061         for (iter = next_tgid(ns, iter);
3062              iter.task;
3063              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3064                 char name[PROC_NUMBUF];
3065                 int len;
3066                 if (!has_pid_permissions(ns, iter.task, 2))
3067                         continue;
3068
3069                 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3070                 ctx->pos = iter.tgid + TGID_OFFSET;
3071                 if (!proc_fill_cache(file, ctx, name, len,
3072                                      proc_pid_instantiate, iter.task, NULL)) {
3073                         put_task_struct(iter.task);
3074                         return 0;
3075                 }
3076         }
3077         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3078         return 0;
3079 }
3080
3081 /*
3082  * Tasks
3083  */
3084 static const struct pid_entry tid_base_stuff[] = {
3085         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3086         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3087         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3088 #ifdef CONFIG_NET
3089         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3090 #endif
3091         REG("environ",   S_IRUSR, proc_environ_operations),
3092         ONE("auxv",      S_IRUSR, proc_pid_auxv),
3093         ONE("status",    S_IRUGO, proc_pid_status),
3094         ONE("personality", S_IRUSR, proc_pid_personality),
3095         ONE("limits",    S_IRUGO, proc_pid_limits),
3096 #ifdef CONFIG_SCHED_DEBUG
3097         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3098 #endif
3099         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3100 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3101         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3102 #endif
3103         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3104         ONE("stat",      S_IRUGO, proc_tid_stat),
3105         ONE("statm",     S_IRUGO, proc_pid_statm),
3106         REG("maps",      S_IRUGO, proc_tid_maps_operations),
3107 #ifdef CONFIG_PROC_CHILDREN
3108         REG("children",  S_IRUGO, proc_tid_children_operations),
3109 #endif
3110 #ifdef CONFIG_NUMA
3111         REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3112 #endif
3113         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3114         LNK("cwd",       proc_cwd_link),
3115         LNK("root",      proc_root_link),
3116         LNK("exe",       proc_exe_link),
3117         REG("mounts",    S_IRUGO, proc_mounts_operations),
3118         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3119 #ifdef CONFIG_PROC_PAGE_MONITOR
3120         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3121         REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3122         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3123 #endif
3124 #ifdef CONFIG_SECURITY
3125         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3126 #endif
3127 #ifdef CONFIG_KALLSYMS
3128         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3129 #endif
3130 #ifdef CONFIG_STACKTRACE
3131         ONE("stack",      S_IRUSR, proc_pid_stack),
3132 #endif
3133 #ifdef CONFIG_SCHED_INFO
3134         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3135 #endif
3136 #ifdef CONFIG_LATENCYTOP
3137         REG("latency",  S_IRUGO, proc_lstats_operations),
3138 #endif
3139 #ifdef CONFIG_PROC_PID_CPUSET
3140         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3141 #endif
3142 #ifdef CONFIG_CGROUPS
3143         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3144 #endif
3145         ONE("oom_score", S_IRUGO, proc_oom_score),
3146         REG("oom_adj",   S_IRUSR, proc_oom_adj_operations),
3147         REG("oom_score_adj", S_IRUSR, proc_oom_score_adj_operations),
3148 #ifdef CONFIG_AUDITSYSCALL
3149         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3150         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3151 #endif
3152 #ifdef CONFIG_FAULT_INJECTION
3153         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3154 #endif
3155 #ifdef CONFIG_TASK_IO_ACCOUNTING
3156         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3157 #endif
3158 #ifdef CONFIG_HARDWALL
3159         ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3160 #endif
3161 #ifdef CONFIG_USER_NS
3162         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3163         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3164         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3165         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3166 #endif
3167 };
3168
3169 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3170 {
3171         return proc_pident_readdir(file, ctx,
3172                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3173 }
3174
3175 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3176 {
3177         return proc_pident_lookup(dir, dentry,
3178                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3179 }
3180
3181 static const struct file_operations proc_tid_base_operations = {
3182         .read           = generic_read_dir,
3183         .iterate        = proc_tid_base_readdir,
3184         .llseek         = default_llseek,
3185 };
3186
3187 static const struct inode_operations proc_tid_base_inode_operations = {
3188         .lookup         = proc_tid_base_lookup,
3189         .getattr        = pid_getattr,
3190         .setattr        = proc_setattr,
3191 };
3192
3193 static int proc_task_instantiate(struct inode *dir,
3194         struct dentry *dentry, struct task_struct *task, const void *ptr)
3195 {
3196         struct inode *inode;
3197         inode = proc_pid_make_inode(dir->i_sb, task);
3198
3199         if (!inode)
3200                 goto out;
3201         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3202         inode->i_op = &proc_tid_base_inode_operations;
3203         inode->i_fop = &proc_tid_base_operations;
3204         inode->i_flags|=S_IMMUTABLE;
3205
3206         set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3207                                                   ARRAY_SIZE(tid_base_stuff)));
3208
3209         d_set_d_op(dentry, &pid_dentry_operations);
3210
3211         d_add(dentry, inode);
3212         /* Close the race of the process dying before we return the dentry */
3213         if (pid_revalidate(dentry, 0))
3214                 return 0;
3215 out:
3216         return -ENOENT;
3217 }
3218
3219 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3220 {
3221         int result = -ENOENT;
3222         struct task_struct *task;
3223         struct task_struct *leader = get_proc_task(dir);
3224         unsigned tid;
3225         struct pid_namespace *ns;
3226
3227         if (!leader)
3228                 goto out_no_task;
3229
3230         tid = name_to_int(&dentry->d_name);
3231         if (tid == ~0U)
3232                 goto out;
3233
3234         ns = dentry->d_sb->s_fs_info;
3235         rcu_read_lock();
3236         task = find_task_by_pid_ns(tid, ns);
3237         if (task)
3238                 get_task_struct(task);
3239         rcu_read_unlock();
3240         if (!task)
3241                 goto out;
3242         if (!same_thread_group(leader, task))
3243                 goto out_drop_task;
3244
3245         result = proc_task_instantiate(dir, dentry, task, NULL);
3246 out_drop_task:
3247         put_task_struct(task);
3248 out:
3249         put_task_struct(leader);
3250 out_no_task:
3251         return ERR_PTR(result);
3252 }
3253
3254 /*
3255  * Find the first tid of a thread group to return to user space.
3256  *
3257  * Usually this is just the thread group leader, but if the users
3258  * buffer was too small or there was a seek into the middle of the
3259  * directory we have more work todo.
3260  *
3261  * In the case of a short read we start with find_task_by_pid.
3262  *
3263  * In the case of a seek we start with the leader and walk nr
3264  * threads past it.
3265  */
3266 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3267                                         struct pid_namespace *ns)
3268 {
3269         struct task_struct *pos, *task;
3270         unsigned long nr = f_pos;
3271
3272         if (nr != f_pos)        /* 32bit overflow? */
3273                 return NULL;
3274
3275         rcu_read_lock();
3276         task = pid_task(pid, PIDTYPE_PID);
3277         if (!task)
3278                 goto fail;
3279
3280         /* Attempt to start with the tid of a thread */
3281         if (tid && nr) {
3282                 pos = find_task_by_pid_ns(tid, ns);
3283                 if (pos && same_thread_group(pos, task))
3284                         goto found;
3285         }
3286
3287         /* If nr exceeds the number of threads there is nothing todo */
3288         if (nr >= get_nr_threads(task))
3289                 goto fail;
3290
3291         /* If we haven't found our starting place yet start
3292          * with the leader and walk nr threads forward.
3293          */
3294         pos = task = task->group_leader;
3295         do {
3296                 if (!nr--)
3297                         goto found;
3298         } while_each_thread(task, pos);
3299 fail:
3300         pos = NULL;
3301         goto out;
3302 found:
3303         get_task_struct(pos);
3304 out:
3305         rcu_read_unlock();
3306         return pos;
3307 }
3308
3309 /*
3310  * Find the next thread in the thread list.
3311  * Return NULL if there is an error or no next thread.
3312  *
3313  * The reference to the input task_struct is released.
3314  */
3315 static struct task_struct *next_tid(struct task_struct *start)
3316 {
3317         struct task_struct *pos = NULL;
3318         rcu_read_lock();
3319         if (pid_alive(start)) {
3320                 pos = next_thread(start);
3321                 if (thread_group_leader(pos))
3322                         pos = NULL;
3323                 else
3324                         get_task_struct(pos);
3325         }
3326         rcu_read_unlock();
3327         put_task_struct(start);
3328         return pos;
3329 }
3330
3331 /* for the /proc/TGID/task/ directories */
3332 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3333 {
3334         struct inode *inode = file_inode(file);
3335         struct task_struct *task;
3336         struct pid_namespace *ns;
3337         int tid;
3338
3339         if (proc_inode_is_dead(inode))
3340                 return -ENOENT;
3341
3342         if (!dir_emit_dots(file, ctx))
3343                 return 0;
3344
3345         /* f_version caches the tgid value that the last readdir call couldn't
3346          * return. lseek aka telldir automagically resets f_version to 0.
3347          */
3348         ns = inode->i_sb->s_fs_info;
3349         tid = (int)file->f_version;
3350         file->f_version = 0;
3351         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3352              task;
3353              task = next_tid(task), ctx->pos++) {
3354                 char name[PROC_NUMBUF];
3355                 int len;
3356                 tid = task_pid_nr_ns(task, ns);
3357                 len = snprintf(name, sizeof(name), "%d", tid);
3358                 if (!proc_fill_cache(file, ctx, name, len,
3359                                 proc_task_instantiate, task, NULL)) {
3360                         /* returning this tgid failed, save it as the first
3361                          * pid for the next readir call */
3362                         file->f_version = (u64)tid;
3363                         put_task_struct(task);
3364                         break;
3365                 }
3366         }
3367
3368         return 0;
3369 }
3370
3371 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3372 {
3373         struct inode *inode = d_inode(dentry);
3374         struct task_struct *p = get_proc_task(inode);
3375         generic_fillattr(inode, stat);
3376
3377         if (p) {
3378                 stat->nlink += get_nr_threads(p);
3379                 put_task_struct(p);
3380         }
3381
3382         return 0;
3383 }
3384
3385 static const struct inode_operations proc_task_inode_operations = {
3386         .lookup         = proc_task_lookup,
3387         .getattr        = proc_task_getattr,
3388         .setattr        = proc_setattr,
3389         .permission     = proc_pid_permission,
3390 };
3391
3392 static const struct file_operations proc_task_operations = {
3393         .read           = generic_read_dir,
3394         .iterate        = proc_task_readdir,
3395         .llseek         = default_llseek,
3396 };