Merge tag 'lsk-v4.4-17.07-android' of git://git.linaro.org/kernel/linux-linaro-stable.git
[firefly-linux-kernel-4.4.55.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
120 {
121         const char __user *name = vma_get_anon_name(vma);
122         struct mm_struct *mm = vma->vm_mm;
123
124         unsigned long page_start_vaddr;
125         unsigned long page_offset;
126         unsigned long num_pages;
127         unsigned long max_len = NAME_MAX;
128         int i;
129
130         page_start_vaddr = (unsigned long)name & PAGE_MASK;
131         page_offset = (unsigned long)name - page_start_vaddr;
132         num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
133
134         seq_puts(m, "[anon:");
135
136         for (i = 0; i < num_pages; i++) {
137                 int len;
138                 int write_len;
139                 const char *kaddr;
140                 long pages_pinned;
141                 struct page *page;
142
143                 pages_pinned = get_user_pages(current, mm, page_start_vaddr,
144                                 1, 0, 0, &page, NULL);
145                 if (pages_pinned < 1) {
146                         seq_puts(m, "<fault>]");
147                         return;
148                 }
149
150                 kaddr = (const char *)kmap(page);
151                 len = min(max_len, PAGE_SIZE - page_offset);
152                 write_len = strnlen(kaddr + page_offset, len);
153                 seq_write(m, kaddr + page_offset, write_len);
154                 kunmap(page);
155                 put_page(page);
156
157                 /* if strnlen hit a null terminator then we're done */
158                 if (write_len != len)
159                         break;
160
161                 max_len -= len;
162                 page_offset = 0;
163                 page_start_vaddr += PAGE_SIZE;
164         }
165
166         seq_putc(m, ']');
167 }
168
169 static void vma_stop(struct proc_maps_private *priv)
170 {
171         struct mm_struct *mm = priv->mm;
172
173         release_task_mempolicy(priv);
174         up_read(&mm->mmap_sem);
175         mmput(mm);
176 }
177
178 static struct vm_area_struct *
179 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
180 {
181         if (vma == priv->tail_vma)
182                 return NULL;
183         return vma->vm_next ?: priv->tail_vma;
184 }
185
186 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
187 {
188         if (m->count < m->size) /* vma is copied successfully */
189                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
190 }
191
192 static void *m_start(struct seq_file *m, loff_t *ppos)
193 {
194         struct proc_maps_private *priv = m->private;
195         unsigned long last_addr = m->version;
196         struct mm_struct *mm;
197         struct vm_area_struct *vma;
198         unsigned int pos = *ppos;
199
200         /* See m_cache_vma(). Zero at the start or after lseek. */
201         if (last_addr == -1UL)
202                 return NULL;
203
204         priv->task = get_proc_task(priv->inode);
205         if (!priv->task)
206                 return ERR_PTR(-ESRCH);
207
208         mm = priv->mm;
209         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
210                 return NULL;
211
212         down_read(&mm->mmap_sem);
213         hold_task_mempolicy(priv);
214         priv->tail_vma = get_gate_vma(mm);
215
216         if (last_addr) {
217                 vma = find_vma(mm, last_addr);
218                 if (vma && (vma = m_next_vma(priv, vma)))
219                         return vma;
220         }
221
222         m->version = 0;
223         if (pos < mm->map_count) {
224                 for (vma = mm->mmap; pos; pos--) {
225                         m->version = vma->vm_start;
226                         vma = vma->vm_next;
227                 }
228                 return vma;
229         }
230
231         /* we do not bother to update m->version in this case */
232         if (pos == mm->map_count && priv->tail_vma)
233                 return priv->tail_vma;
234
235         vma_stop(priv);
236         return NULL;
237 }
238
239 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
240 {
241         struct proc_maps_private *priv = m->private;
242         struct vm_area_struct *next;
243
244         (*pos)++;
245         next = m_next_vma(priv, v);
246         if (!next)
247                 vma_stop(priv);
248         return next;
249 }
250
251 static void m_stop(struct seq_file *m, void *v)
252 {
253         struct proc_maps_private *priv = m->private;
254
255         if (!IS_ERR_OR_NULL(v))
256                 vma_stop(priv);
257         if (priv->task) {
258                 put_task_struct(priv->task);
259                 priv->task = NULL;
260         }
261 }
262
263 static int proc_maps_open(struct inode *inode, struct file *file,
264                         const struct seq_operations *ops, int psize)
265 {
266         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
267
268         if (!priv)
269                 return -ENOMEM;
270
271         priv->inode = inode;
272         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
273         if (IS_ERR(priv->mm)) {
274                 int err = PTR_ERR(priv->mm);
275
276                 seq_release_private(inode, file);
277                 return err;
278         }
279
280         return 0;
281 }
282
283 static int proc_map_release(struct inode *inode, struct file *file)
284 {
285         struct seq_file *seq = file->private_data;
286         struct proc_maps_private *priv = seq->private;
287
288         if (priv->mm)
289                 mmdrop(priv->mm);
290
291         return seq_release_private(inode, file);
292 }
293
294 static int do_maps_open(struct inode *inode, struct file *file,
295                         const struct seq_operations *ops)
296 {
297         return proc_maps_open(inode, file, ops,
298                                 sizeof(struct proc_maps_private));
299 }
300
301 /*
302  * Indicate if the VMA is a stack for the given task; for
303  * /proc/PID/maps that is the stack of the main task.
304  */
305 static int is_stack(struct proc_maps_private *priv,
306                     struct vm_area_struct *vma, int is_pid)
307 {
308         int stack = 0;
309
310         if (is_pid) {
311                 stack = vma->vm_start <= vma->vm_mm->start_stack &&
312                         vma->vm_end >= vma->vm_mm->start_stack;
313         } else {
314                 struct inode *inode = priv->inode;
315                 struct task_struct *task;
316
317                 rcu_read_lock();
318                 task = pid_task(proc_pid(inode), PIDTYPE_PID);
319                 if (task)
320                         stack = vma_is_stack_for_task(vma, task);
321                 rcu_read_unlock();
322         }
323         return stack;
324 }
325
326 static void
327 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
328 {
329         struct mm_struct *mm = vma->vm_mm;
330         struct file *file = vma->vm_file;
331         struct proc_maps_private *priv = m->private;
332         vm_flags_t flags = vma->vm_flags;
333         unsigned long ino = 0;
334         unsigned long long pgoff = 0;
335         unsigned long start, end;
336         dev_t dev = 0;
337         const char *name = NULL;
338
339         if (file) {
340                 struct inode *inode = file_inode(vma->vm_file);
341                 dev = inode->i_sb->s_dev;
342                 ino = inode->i_ino;
343                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
344         }
345
346         /* We don't show the stack guard page in /proc/maps */
347         start = vma->vm_start;
348         end = vma->vm_end;
349
350         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
351         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
352                         start,
353                         end,
354                         flags & VM_READ ? 'r' : '-',
355                         flags & VM_WRITE ? 'w' : '-',
356                         flags & VM_EXEC ? 'x' : '-',
357                         flags & VM_MAYSHARE ? 's' : 'p',
358                         pgoff,
359                         MAJOR(dev), MINOR(dev), ino);
360
361         /*
362          * Print the dentry name for named mappings, and a
363          * special [heap] marker for the heap:
364          */
365         if (file) {
366                 seq_pad(m, ' ');
367                 seq_file_path(m, file, "\n");
368                 goto done;
369         }
370
371         if (vma->vm_ops && vma->vm_ops->name) {
372                 name = vma->vm_ops->name(vma);
373                 if (name)
374                         goto done;
375         }
376
377         name = arch_vma_name(vma);
378         if (!name) {
379                 if (!mm) {
380                         name = "[vdso]";
381                         goto done;
382                 }
383
384                 if (vma->vm_start <= mm->brk &&
385                     vma->vm_end >= mm->start_brk) {
386                         name = "[heap]";
387                         goto done;
388                 }
389
390                 if (is_stack(priv, vma, is_pid)) {
391                         name = "[stack]";
392                         goto done;
393                 }
394                 if (vma_get_anon_name(vma)) {
395                         seq_pad(m, ' ');
396                         seq_print_vma_name(m, vma);
397                 }
398         }
399
400 done:
401         if (name) {
402                 seq_pad(m, ' ');
403                 seq_puts(m, name);
404         }
405         seq_putc(m, '\n');
406 }
407
408 static int show_map(struct seq_file *m, void *v, int is_pid)
409 {
410         show_map_vma(m, v, is_pid);
411         m_cache_vma(m, v);
412         return 0;
413 }
414
415 static int show_pid_map(struct seq_file *m, void *v)
416 {
417         return show_map(m, v, 1);
418 }
419
420 static int show_tid_map(struct seq_file *m, void *v)
421 {
422         return show_map(m, v, 0);
423 }
424
425 static const struct seq_operations proc_pid_maps_op = {
426         .start  = m_start,
427         .next   = m_next,
428         .stop   = m_stop,
429         .show   = show_pid_map
430 };
431
432 static const struct seq_operations proc_tid_maps_op = {
433         .start  = m_start,
434         .next   = m_next,
435         .stop   = m_stop,
436         .show   = show_tid_map
437 };
438
439 static int pid_maps_open(struct inode *inode, struct file *file)
440 {
441         return do_maps_open(inode, file, &proc_pid_maps_op);
442 }
443
444 static int tid_maps_open(struct inode *inode, struct file *file)
445 {
446         return do_maps_open(inode, file, &proc_tid_maps_op);
447 }
448
449 const struct file_operations proc_pid_maps_operations = {
450         .open           = pid_maps_open,
451         .read           = seq_read,
452         .llseek         = seq_lseek,
453         .release        = proc_map_release,
454 };
455
456 const struct file_operations proc_tid_maps_operations = {
457         .open           = tid_maps_open,
458         .read           = seq_read,
459         .llseek         = seq_lseek,
460         .release        = proc_map_release,
461 };
462
463 /*
464  * Proportional Set Size(PSS): my share of RSS.
465  *
466  * PSS of a process is the count of pages it has in memory, where each
467  * page is divided by the number of processes sharing it.  So if a
468  * process has 1000 pages all to itself, and 1000 shared with one other
469  * process, its PSS will be 1500.
470  *
471  * To keep (accumulated) division errors low, we adopt a 64bit
472  * fixed-point pss counter to minimize division errors. So (pss >>
473  * PSS_SHIFT) would be the real byte count.
474  *
475  * A shift of 12 before division means (assuming 4K page size):
476  *      - 1M 3-user-pages add up to 8KB errors;
477  *      - supports mapcount up to 2^24, or 16M;
478  *      - supports PSS up to 2^52 bytes, or 4PB.
479  */
480 #define PSS_SHIFT 12
481
482 #ifdef CONFIG_PROC_PAGE_MONITOR
483 struct mem_size_stats {
484         unsigned long resident;
485         unsigned long shared_clean;
486         unsigned long shared_dirty;
487         unsigned long private_clean;
488         unsigned long private_dirty;
489         unsigned long referenced;
490         unsigned long anonymous;
491         unsigned long anonymous_thp;
492         unsigned long swap;
493         unsigned long shared_hugetlb;
494         unsigned long private_hugetlb;
495         u64 pss;
496         u64 swap_pss;
497 };
498
499 static void smaps_account(struct mem_size_stats *mss, struct page *page,
500                 unsigned long size, bool young, bool dirty)
501 {
502         int mapcount;
503
504         if (PageAnon(page))
505                 mss->anonymous += size;
506
507         mss->resident += size;
508         /* Accumulate the size in pages that have been accessed. */
509         if (young || page_is_young(page) || PageReferenced(page))
510                 mss->referenced += size;
511         mapcount = page_mapcount(page);
512         if (mapcount >= 2) {
513                 u64 pss_delta;
514
515                 if (dirty || PageDirty(page))
516                         mss->shared_dirty += size;
517                 else
518                         mss->shared_clean += size;
519                 pss_delta = (u64)size << PSS_SHIFT;
520                 do_div(pss_delta, mapcount);
521                 mss->pss += pss_delta;
522         } else {
523                 if (dirty || PageDirty(page))
524                         mss->private_dirty += size;
525                 else
526                         mss->private_clean += size;
527                 mss->pss += (u64)size << PSS_SHIFT;
528         }
529 }
530
531 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
532                 struct mm_walk *walk)
533 {
534         struct mem_size_stats *mss = walk->private;
535         struct vm_area_struct *vma = walk->vma;
536         struct page *page = NULL;
537
538         if (pte_present(*pte)) {
539                 page = vm_normal_page(vma, addr, *pte);
540         } else if (is_swap_pte(*pte)) {
541                 swp_entry_t swpent = pte_to_swp_entry(*pte);
542
543                 if (!non_swap_entry(swpent)) {
544                         int mapcount;
545
546                         mss->swap += PAGE_SIZE;
547                         mapcount = swp_swapcount(swpent);
548                         if (mapcount >= 2) {
549                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
550
551                                 do_div(pss_delta, mapcount);
552                                 mss->swap_pss += pss_delta;
553                         } else {
554                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
555                         }
556                 } else if (is_migration_entry(swpent))
557                         page = migration_entry_to_page(swpent);
558         }
559
560         if (!page)
561                 return;
562         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
563 }
564
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567                 struct mm_walk *walk)
568 {
569         struct mem_size_stats *mss = walk->private;
570         struct vm_area_struct *vma = walk->vma;
571         struct page *page;
572
573         /* FOLL_DUMP will return -EFAULT on huge zero page */
574         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
575         if (IS_ERR_OR_NULL(page))
576                 return;
577         mss->anonymous_thp += HPAGE_PMD_SIZE;
578         smaps_account(mss, page, HPAGE_PMD_SIZE,
579                         pmd_young(*pmd), pmd_dirty(*pmd));
580 }
581 #else
582 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
583                 struct mm_walk *walk)
584 {
585 }
586 #endif
587
588 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
589                            struct mm_walk *walk)
590 {
591         struct vm_area_struct *vma = walk->vma;
592         pte_t *pte;
593         spinlock_t *ptl;
594
595         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
596                 smaps_pmd_entry(pmd, addr, walk);
597                 spin_unlock(ptl);
598                 return 0;
599         }
600
601         if (pmd_trans_unstable(pmd))
602                 return 0;
603         /*
604          * The mmap_sem held all the way back in m_start() is what
605          * keeps khugepaged out of here and from collapsing things
606          * in here.
607          */
608         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
609         for (; addr != end; pte++, addr += PAGE_SIZE)
610                 smaps_pte_entry(pte, addr, walk);
611         pte_unmap_unlock(pte - 1, ptl);
612         cond_resched();
613         return 0;
614 }
615
616 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
617 {
618         /*
619          * Don't forget to update Documentation/ on changes.
620          */
621         static const char mnemonics[BITS_PER_LONG][2] = {
622                 /*
623                  * In case if we meet a flag we don't know about.
624                  */
625                 [0 ... (BITS_PER_LONG-1)] = "??",
626
627                 [ilog2(VM_READ)]        = "rd",
628                 [ilog2(VM_WRITE)]       = "wr",
629                 [ilog2(VM_EXEC)]        = "ex",
630                 [ilog2(VM_SHARED)]      = "sh",
631                 [ilog2(VM_MAYREAD)]     = "mr",
632                 [ilog2(VM_MAYWRITE)]    = "mw",
633                 [ilog2(VM_MAYEXEC)]     = "me",
634                 [ilog2(VM_MAYSHARE)]    = "ms",
635                 [ilog2(VM_GROWSDOWN)]   = "gd",
636                 [ilog2(VM_PFNMAP)]      = "pf",
637                 [ilog2(VM_DENYWRITE)]   = "dw",
638 #ifdef CONFIG_X86_INTEL_MPX
639                 [ilog2(VM_MPX)]         = "mp",
640 #endif
641                 [ilog2(VM_LOCKED)]      = "lo",
642                 [ilog2(VM_IO)]          = "io",
643                 [ilog2(VM_SEQ_READ)]    = "sr",
644                 [ilog2(VM_RAND_READ)]   = "rr",
645                 [ilog2(VM_DONTCOPY)]    = "dc",
646                 [ilog2(VM_DONTEXPAND)]  = "de",
647                 [ilog2(VM_ACCOUNT)]     = "ac",
648                 [ilog2(VM_NORESERVE)]   = "nr",
649                 [ilog2(VM_HUGETLB)]     = "ht",
650                 [ilog2(VM_ARCH_1)]      = "ar",
651                 [ilog2(VM_DONTDUMP)]    = "dd",
652 #ifdef CONFIG_MEM_SOFT_DIRTY
653                 [ilog2(VM_SOFTDIRTY)]   = "sd",
654 #endif
655                 [ilog2(VM_MIXEDMAP)]    = "mm",
656                 [ilog2(VM_HUGEPAGE)]    = "hg",
657                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
658                 [ilog2(VM_MERGEABLE)]   = "mg",
659                 [ilog2(VM_UFFD_MISSING)]= "um",
660                 [ilog2(VM_UFFD_WP)]     = "uw",
661         };
662         size_t i;
663
664         seq_puts(m, "VmFlags: ");
665         for (i = 0; i < BITS_PER_LONG; i++) {
666                 if (vma->vm_flags & (1UL << i)) {
667                         seq_printf(m, "%c%c ",
668                                    mnemonics[i][0], mnemonics[i][1]);
669                 }
670         }
671         seq_putc(m, '\n');
672 }
673
674 #ifdef CONFIG_HUGETLB_PAGE
675 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
676                                  unsigned long addr, unsigned long end,
677                                  struct mm_walk *walk)
678 {
679         struct mem_size_stats *mss = walk->private;
680         struct vm_area_struct *vma = walk->vma;
681         struct page *page = NULL;
682
683         if (pte_present(*pte)) {
684                 page = vm_normal_page(vma, addr, *pte);
685         } else if (is_swap_pte(*pte)) {
686                 swp_entry_t swpent = pte_to_swp_entry(*pte);
687
688                 if (is_migration_entry(swpent))
689                         page = migration_entry_to_page(swpent);
690         }
691         if (page) {
692                 int mapcount = page_mapcount(page);
693
694                 if (mapcount >= 2)
695                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
696                 else
697                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
698         }
699         return 0;
700 }
701 #endif /* HUGETLB_PAGE */
702
703 static int show_smap(struct seq_file *m, void *v, int is_pid)
704 {
705         struct vm_area_struct *vma = v;
706         struct mem_size_stats mss;
707         struct mm_walk smaps_walk = {
708                 .pmd_entry = smaps_pte_range,
709 #ifdef CONFIG_HUGETLB_PAGE
710                 .hugetlb_entry = smaps_hugetlb_range,
711 #endif
712                 .mm = vma->vm_mm,
713                 .private = &mss,
714         };
715
716         memset(&mss, 0, sizeof mss);
717         /* mmap_sem is held in m_start */
718         walk_page_vma(vma, &smaps_walk);
719
720         show_map_vma(m, vma, is_pid);
721
722         if (vma_get_anon_name(vma)) {
723                 seq_puts(m, "Name:           ");
724                 seq_print_vma_name(m, vma);
725                 seq_putc(m, '\n');
726         }
727
728         seq_printf(m,
729                    "Size:           %8lu kB\n"
730                    "Rss:            %8lu kB\n"
731                    "Pss:            %8lu kB\n"
732                    "Shared_Clean:   %8lu kB\n"
733                    "Shared_Dirty:   %8lu kB\n"
734                    "Private_Clean:  %8lu kB\n"
735                    "Private_Dirty:  %8lu kB\n"
736                    "Referenced:     %8lu kB\n"
737                    "Anonymous:      %8lu kB\n"
738                    "AnonHugePages:  %8lu kB\n"
739                    "Shared_Hugetlb: %8lu kB\n"
740                    "Private_Hugetlb: %7lu kB\n"
741                    "Swap:           %8lu kB\n"
742                    "SwapPss:        %8lu kB\n"
743                    "KernelPageSize: %8lu kB\n"
744                    "MMUPageSize:    %8lu kB\n"
745                    "Locked:         %8lu kB\n",
746                    (vma->vm_end - vma->vm_start) >> 10,
747                    mss.resident >> 10,
748                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
749                    mss.shared_clean  >> 10,
750                    mss.shared_dirty  >> 10,
751                    mss.private_clean >> 10,
752                    mss.private_dirty >> 10,
753                    mss.referenced >> 10,
754                    mss.anonymous >> 10,
755                    mss.anonymous_thp >> 10,
756                    mss.shared_hugetlb >> 10,
757                    mss.private_hugetlb >> 10,
758                    mss.swap >> 10,
759                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
760                    vma_kernel_pagesize(vma) >> 10,
761                    vma_mmu_pagesize(vma) >> 10,
762                    (vma->vm_flags & VM_LOCKED) ?
763                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
764
765         show_smap_vma_flags(m, vma);
766         m_cache_vma(m, vma);
767         return 0;
768 }
769
770 static int show_pid_smap(struct seq_file *m, void *v)
771 {
772         return show_smap(m, v, 1);
773 }
774
775 static int show_tid_smap(struct seq_file *m, void *v)
776 {
777         return show_smap(m, v, 0);
778 }
779
780 static const struct seq_operations proc_pid_smaps_op = {
781         .start  = m_start,
782         .next   = m_next,
783         .stop   = m_stop,
784         .show   = show_pid_smap
785 };
786
787 static const struct seq_operations proc_tid_smaps_op = {
788         .start  = m_start,
789         .next   = m_next,
790         .stop   = m_stop,
791         .show   = show_tid_smap
792 };
793
794 static int pid_smaps_open(struct inode *inode, struct file *file)
795 {
796         return do_maps_open(inode, file, &proc_pid_smaps_op);
797 }
798
799 static int tid_smaps_open(struct inode *inode, struct file *file)
800 {
801         return do_maps_open(inode, file, &proc_tid_smaps_op);
802 }
803
804 const struct file_operations proc_pid_smaps_operations = {
805         .open           = pid_smaps_open,
806         .read           = seq_read,
807         .llseek         = seq_lseek,
808         .release        = proc_map_release,
809 };
810
811 const struct file_operations proc_tid_smaps_operations = {
812         .open           = tid_smaps_open,
813         .read           = seq_read,
814         .llseek         = seq_lseek,
815         .release        = proc_map_release,
816 };
817
818 enum clear_refs_types {
819         CLEAR_REFS_ALL = 1,
820         CLEAR_REFS_ANON,
821         CLEAR_REFS_MAPPED,
822         CLEAR_REFS_SOFT_DIRTY,
823         CLEAR_REFS_MM_HIWATER_RSS,
824         CLEAR_REFS_LAST,
825 };
826
827 struct clear_refs_private {
828         enum clear_refs_types type;
829 };
830
831 #ifdef CONFIG_MEM_SOFT_DIRTY
832 static inline void clear_soft_dirty(struct vm_area_struct *vma,
833                 unsigned long addr, pte_t *pte)
834 {
835         /*
836          * The soft-dirty tracker uses #PF-s to catch writes
837          * to pages, so write-protect the pte as well. See the
838          * Documentation/vm/soft-dirty.txt for full description
839          * of how soft-dirty works.
840          */
841         pte_t ptent = *pte;
842
843         if (pte_present(ptent)) {
844                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
845                 ptent = pte_wrprotect(ptent);
846                 ptent = pte_clear_soft_dirty(ptent);
847                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
848         } else if (is_swap_pte(ptent)) {
849                 ptent = pte_swp_clear_soft_dirty(ptent);
850                 set_pte_at(vma->vm_mm, addr, pte, ptent);
851         }
852 }
853 #else
854 static inline void clear_soft_dirty(struct vm_area_struct *vma,
855                 unsigned long addr, pte_t *pte)
856 {
857 }
858 #endif
859
860 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
861 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
862                 unsigned long addr, pmd_t *pmdp)
863 {
864         pmd_t pmd = *pmdp;
865
866         /* See comment in change_huge_pmd() */
867         pmdp_invalidate(vma, addr, pmdp);
868         if (pmd_dirty(*pmdp))
869                 pmd = pmd_mkdirty(pmd);
870         if (pmd_young(*pmdp))
871                 pmd = pmd_mkyoung(pmd);
872
873         pmd = pmd_wrprotect(pmd);
874         pmd = pmd_clear_soft_dirty(pmd);
875
876         if (vma->vm_flags & VM_SOFTDIRTY)
877                 vma->vm_flags &= ~VM_SOFTDIRTY;
878
879         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
880 }
881 #else
882 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
883                 unsigned long addr, pmd_t *pmdp)
884 {
885 }
886 #endif
887
888 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
889                                 unsigned long end, struct mm_walk *walk)
890 {
891         struct clear_refs_private *cp = walk->private;
892         struct vm_area_struct *vma = walk->vma;
893         pte_t *pte, ptent;
894         spinlock_t *ptl;
895         struct page *page;
896
897         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
898                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
899                         clear_soft_dirty_pmd(vma, addr, pmd);
900                         goto out;
901                 }
902
903                 page = pmd_page(*pmd);
904
905                 /* Clear accessed and referenced bits. */
906                 pmdp_test_and_clear_young(vma, addr, pmd);
907                 test_and_clear_page_young(page);
908                 ClearPageReferenced(page);
909 out:
910                 spin_unlock(ptl);
911                 return 0;
912         }
913
914         if (pmd_trans_unstable(pmd))
915                 return 0;
916
917         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
918         for (; addr != end; pte++, addr += PAGE_SIZE) {
919                 ptent = *pte;
920
921                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
922                         clear_soft_dirty(vma, addr, pte);
923                         continue;
924                 }
925
926                 if (!pte_present(ptent))
927                         continue;
928
929                 page = vm_normal_page(vma, addr, ptent);
930                 if (!page)
931                         continue;
932
933                 /* Clear accessed and referenced bits. */
934                 ptep_test_and_clear_young(vma, addr, pte);
935                 test_and_clear_page_young(page);
936                 ClearPageReferenced(page);
937         }
938         pte_unmap_unlock(pte - 1, ptl);
939         cond_resched();
940         return 0;
941 }
942
943 static int clear_refs_test_walk(unsigned long start, unsigned long end,
944                                 struct mm_walk *walk)
945 {
946         struct clear_refs_private *cp = walk->private;
947         struct vm_area_struct *vma = walk->vma;
948
949         if (vma->vm_flags & VM_PFNMAP)
950                 return 1;
951
952         /*
953          * Writing 1 to /proc/pid/clear_refs affects all pages.
954          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
955          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
956          * Writing 4 to /proc/pid/clear_refs affects all pages.
957          */
958         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
959                 return 1;
960         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
961                 return 1;
962         return 0;
963 }
964
965 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
966                                 size_t count, loff_t *ppos)
967 {
968         struct task_struct *task;
969         char buffer[PROC_NUMBUF];
970         struct mm_struct *mm;
971         struct vm_area_struct *vma;
972         enum clear_refs_types type;
973         int itype;
974         int rv;
975
976         memset(buffer, 0, sizeof(buffer));
977         if (count > sizeof(buffer) - 1)
978                 count = sizeof(buffer) - 1;
979         if (copy_from_user(buffer, buf, count))
980                 return -EFAULT;
981         rv = kstrtoint(strstrip(buffer), 10, &itype);
982         if (rv < 0)
983                 return rv;
984         type = (enum clear_refs_types)itype;
985         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
986                 return -EINVAL;
987
988         task = get_proc_task(file_inode(file));
989         if (!task)
990                 return -ESRCH;
991         mm = get_task_mm(task);
992         if (mm) {
993                 struct clear_refs_private cp = {
994                         .type = type,
995                 };
996                 struct mm_walk clear_refs_walk = {
997                         .pmd_entry = clear_refs_pte_range,
998                         .test_walk = clear_refs_test_walk,
999                         .mm = mm,
1000                         .private = &cp,
1001                 };
1002
1003                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1004                         /*
1005                          * Writing 5 to /proc/pid/clear_refs resets the peak
1006                          * resident set size to this mm's current rss value.
1007                          */
1008                         down_write(&mm->mmap_sem);
1009                         reset_mm_hiwater_rss(mm);
1010                         up_write(&mm->mmap_sem);
1011                         goto out_mm;
1012                 }
1013
1014                 down_read(&mm->mmap_sem);
1015                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1016                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1017                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1018                                         continue;
1019                                 up_read(&mm->mmap_sem);
1020                                 down_write(&mm->mmap_sem);
1021                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1022                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1023                                         vma_set_page_prot(vma);
1024                                 }
1025                                 downgrade_write(&mm->mmap_sem);
1026                                 break;
1027                         }
1028                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1029                 }
1030                 walk_page_range(0, ~0UL, &clear_refs_walk);
1031                 if (type == CLEAR_REFS_SOFT_DIRTY)
1032                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1033                 flush_tlb_mm(mm);
1034                 up_read(&mm->mmap_sem);
1035 out_mm:
1036                 mmput(mm);
1037         }
1038         put_task_struct(task);
1039
1040         return count;
1041 }
1042
1043 const struct file_operations proc_clear_refs_operations = {
1044         .write          = clear_refs_write,
1045         .llseek         = noop_llseek,
1046 };
1047
1048 typedef struct {
1049         u64 pme;
1050 } pagemap_entry_t;
1051
1052 struct pagemapread {
1053         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1054         pagemap_entry_t *buffer;
1055         bool show_pfn;
1056 };
1057
1058 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1059 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1060
1061 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1062 #define PM_PFRAME_BITS          55
1063 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1064 #define PM_SOFT_DIRTY           BIT_ULL(55)
1065 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1066 #define PM_FILE                 BIT_ULL(61)
1067 #define PM_SWAP                 BIT_ULL(62)
1068 #define PM_PRESENT              BIT_ULL(63)
1069
1070 #define PM_END_OF_BUFFER    1
1071
1072 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1073 {
1074         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1075 }
1076
1077 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1078                           struct pagemapread *pm)
1079 {
1080         pm->buffer[pm->pos++] = *pme;
1081         if (pm->pos >= pm->len)
1082                 return PM_END_OF_BUFFER;
1083         return 0;
1084 }
1085
1086 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1087                                 struct mm_walk *walk)
1088 {
1089         struct pagemapread *pm = walk->private;
1090         unsigned long addr = start;
1091         int err = 0;
1092
1093         while (addr < end) {
1094                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1095                 pagemap_entry_t pme = make_pme(0, 0);
1096                 /* End of address space hole, which we mark as non-present. */
1097                 unsigned long hole_end;
1098
1099                 if (vma)
1100                         hole_end = min(end, vma->vm_start);
1101                 else
1102                         hole_end = end;
1103
1104                 for (; addr < hole_end; addr += PAGE_SIZE) {
1105                         err = add_to_pagemap(addr, &pme, pm);
1106                         if (err)
1107                                 goto out;
1108                 }
1109
1110                 if (!vma)
1111                         break;
1112
1113                 /* Addresses in the VMA. */
1114                 if (vma->vm_flags & VM_SOFTDIRTY)
1115                         pme = make_pme(0, PM_SOFT_DIRTY);
1116                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1117                         err = add_to_pagemap(addr, &pme, pm);
1118                         if (err)
1119                                 goto out;
1120                 }
1121         }
1122 out:
1123         return err;
1124 }
1125
1126 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1127                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1128 {
1129         u64 frame = 0, flags = 0;
1130         struct page *page = NULL;
1131
1132         if (pte_present(pte)) {
1133                 if (pm->show_pfn)
1134                         frame = pte_pfn(pte);
1135                 flags |= PM_PRESENT;
1136                 page = vm_normal_page(vma, addr, pte);
1137                 if (pte_soft_dirty(pte))
1138                         flags |= PM_SOFT_DIRTY;
1139         } else if (is_swap_pte(pte)) {
1140                 swp_entry_t entry;
1141                 if (pte_swp_soft_dirty(pte))
1142                         flags |= PM_SOFT_DIRTY;
1143                 entry = pte_to_swp_entry(pte);
1144                 frame = swp_type(entry) |
1145                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1146                 flags |= PM_SWAP;
1147                 if (is_migration_entry(entry))
1148                         page = migration_entry_to_page(entry);
1149         }
1150
1151         if (page && !PageAnon(page))
1152                 flags |= PM_FILE;
1153         if (page && page_mapcount(page) == 1)
1154                 flags |= PM_MMAP_EXCLUSIVE;
1155         if (vma->vm_flags & VM_SOFTDIRTY)
1156                 flags |= PM_SOFT_DIRTY;
1157
1158         return make_pme(frame, flags);
1159 }
1160
1161 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1162                              struct mm_walk *walk)
1163 {
1164         struct vm_area_struct *vma = walk->vma;
1165         struct pagemapread *pm = walk->private;
1166         spinlock_t *ptl;
1167         pte_t *pte, *orig_pte;
1168         int err = 0;
1169
1170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1171         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1172                 u64 flags = 0, frame = 0;
1173                 pmd_t pmd = *pmdp;
1174
1175                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1176                         flags |= PM_SOFT_DIRTY;
1177
1178                 /*
1179                  * Currently pmd for thp is always present because thp
1180                  * can not be swapped-out, migrated, or HWPOISONed
1181                  * (split in such cases instead.)
1182                  * This if-check is just to prepare for future implementation.
1183                  */
1184                 if (pmd_present(pmd)) {
1185                         struct page *page = pmd_page(pmd);
1186
1187                         if (page_mapcount(page) == 1)
1188                                 flags |= PM_MMAP_EXCLUSIVE;
1189
1190                         flags |= PM_PRESENT;
1191                         if (pm->show_pfn)
1192                                 frame = pmd_pfn(pmd) +
1193                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1194                 }
1195
1196                 for (; addr != end; addr += PAGE_SIZE) {
1197                         pagemap_entry_t pme = make_pme(frame, flags);
1198
1199                         err = add_to_pagemap(addr, &pme, pm);
1200                         if (err)
1201                                 break;
1202                         if (pm->show_pfn && (flags & PM_PRESENT))
1203                                 frame++;
1204                 }
1205                 spin_unlock(ptl);
1206                 return err;
1207         }
1208
1209         if (pmd_trans_unstable(pmdp))
1210                 return 0;
1211 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1212
1213         /*
1214          * We can assume that @vma always points to a valid one and @end never
1215          * goes beyond vma->vm_end.
1216          */
1217         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1218         for (; addr < end; pte++, addr += PAGE_SIZE) {
1219                 pagemap_entry_t pme;
1220
1221                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1222                 err = add_to_pagemap(addr, &pme, pm);
1223                 if (err)
1224                         break;
1225         }
1226         pte_unmap_unlock(orig_pte, ptl);
1227
1228         cond_resched();
1229
1230         return err;
1231 }
1232
1233 #ifdef CONFIG_HUGETLB_PAGE
1234 /* This function walks within one hugetlb entry in the single call */
1235 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1236                                  unsigned long addr, unsigned long end,
1237                                  struct mm_walk *walk)
1238 {
1239         struct pagemapread *pm = walk->private;
1240         struct vm_area_struct *vma = walk->vma;
1241         u64 flags = 0, frame = 0;
1242         int err = 0;
1243         pte_t pte;
1244
1245         if (vma->vm_flags & VM_SOFTDIRTY)
1246                 flags |= PM_SOFT_DIRTY;
1247
1248         pte = huge_ptep_get(ptep);
1249         if (pte_present(pte)) {
1250                 struct page *page = pte_page(pte);
1251
1252                 if (!PageAnon(page))
1253                         flags |= PM_FILE;
1254
1255                 if (page_mapcount(page) == 1)
1256                         flags |= PM_MMAP_EXCLUSIVE;
1257
1258                 flags |= PM_PRESENT;
1259                 if (pm->show_pfn)
1260                         frame = pte_pfn(pte) +
1261                                 ((addr & ~hmask) >> PAGE_SHIFT);
1262         }
1263
1264         for (; addr != end; addr += PAGE_SIZE) {
1265                 pagemap_entry_t pme = make_pme(frame, flags);
1266
1267                 err = add_to_pagemap(addr, &pme, pm);
1268                 if (err)
1269                         return err;
1270                 if (pm->show_pfn && (flags & PM_PRESENT))
1271                         frame++;
1272         }
1273
1274         cond_resched();
1275
1276         return err;
1277 }
1278 #endif /* HUGETLB_PAGE */
1279
1280 /*
1281  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1282  *
1283  * For each page in the address space, this file contains one 64-bit entry
1284  * consisting of the following:
1285  *
1286  * Bits 0-54  page frame number (PFN) if present
1287  * Bits 0-4   swap type if swapped
1288  * Bits 5-54  swap offset if swapped
1289  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1290  * Bit  56    page exclusively mapped
1291  * Bits 57-60 zero
1292  * Bit  61    page is file-page or shared-anon
1293  * Bit  62    page swapped
1294  * Bit  63    page present
1295  *
1296  * If the page is not present but in swap, then the PFN contains an
1297  * encoding of the swap file number and the page's offset into the
1298  * swap. Unmapped pages return a null PFN. This allows determining
1299  * precisely which pages are mapped (or in swap) and comparing mapped
1300  * pages between processes.
1301  *
1302  * Efficient users of this interface will use /proc/pid/maps to
1303  * determine which areas of memory are actually mapped and llseek to
1304  * skip over unmapped regions.
1305  */
1306 static ssize_t pagemap_read(struct file *file, char __user *buf,
1307                             size_t count, loff_t *ppos)
1308 {
1309         struct mm_struct *mm = file->private_data;
1310         struct pagemapread pm;
1311         struct mm_walk pagemap_walk = {};
1312         unsigned long src;
1313         unsigned long svpfn;
1314         unsigned long start_vaddr;
1315         unsigned long end_vaddr;
1316         int ret = 0, copied = 0;
1317
1318         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1319                 goto out;
1320
1321         ret = -EINVAL;
1322         /* file position must be aligned */
1323         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1324                 goto out_mm;
1325
1326         ret = 0;
1327         if (!count)
1328                 goto out_mm;
1329
1330         /* do not disclose physical addresses: attack vector */
1331         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1332
1333         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1334         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1335         ret = -ENOMEM;
1336         if (!pm.buffer)
1337                 goto out_mm;
1338
1339         pagemap_walk.pmd_entry = pagemap_pmd_range;
1340         pagemap_walk.pte_hole = pagemap_pte_hole;
1341 #ifdef CONFIG_HUGETLB_PAGE
1342         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1343 #endif
1344         pagemap_walk.mm = mm;
1345         pagemap_walk.private = &pm;
1346
1347         src = *ppos;
1348         svpfn = src / PM_ENTRY_BYTES;
1349         start_vaddr = svpfn << PAGE_SHIFT;
1350         end_vaddr = mm->task_size;
1351
1352         /* watch out for wraparound */
1353         if (svpfn > mm->task_size >> PAGE_SHIFT)
1354                 start_vaddr = end_vaddr;
1355
1356         /*
1357          * The odds are that this will stop walking way
1358          * before end_vaddr, because the length of the
1359          * user buffer is tracked in "pm", and the walk
1360          * will stop when we hit the end of the buffer.
1361          */
1362         ret = 0;
1363         while (count && (start_vaddr < end_vaddr)) {
1364                 int len;
1365                 unsigned long end;
1366
1367                 pm.pos = 0;
1368                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1369                 /* overflow ? */
1370                 if (end < start_vaddr || end > end_vaddr)
1371                         end = end_vaddr;
1372                 down_read(&mm->mmap_sem);
1373                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1374                 up_read(&mm->mmap_sem);
1375                 start_vaddr = end;
1376
1377                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1378                 if (copy_to_user(buf, pm.buffer, len)) {
1379                         ret = -EFAULT;
1380                         goto out_free;
1381                 }
1382                 copied += len;
1383                 buf += len;
1384                 count -= len;
1385         }
1386         *ppos += copied;
1387         if (!ret || ret == PM_END_OF_BUFFER)
1388                 ret = copied;
1389
1390 out_free:
1391         kfree(pm.buffer);
1392 out_mm:
1393         mmput(mm);
1394 out:
1395         return ret;
1396 }
1397
1398 static int pagemap_open(struct inode *inode, struct file *file)
1399 {
1400         struct mm_struct *mm;
1401
1402 #if defined(CONFIG_ARCH_ROCKCHIP) && defined(CONFIG_ANDROID)
1403         /*
1404          * For pass CTS
1405          * FileSystemPermissionTest: Assert /proc/self/pagemap not readable
1406          */
1407         /* do not disclose physical addresses: attack vector */
1408         if (!capable(CAP_SYS_ADMIN))
1409                 return -EPERM;
1410 #endif
1411
1412         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1413         if (IS_ERR(mm))
1414                 return PTR_ERR(mm);
1415         file->private_data = mm;
1416         return 0;
1417 }
1418
1419 static int pagemap_release(struct inode *inode, struct file *file)
1420 {
1421         struct mm_struct *mm = file->private_data;
1422
1423         if (mm)
1424                 mmdrop(mm);
1425         return 0;
1426 }
1427
1428 const struct file_operations proc_pagemap_operations = {
1429         .llseek         = mem_lseek, /* borrow this */
1430         .read           = pagemap_read,
1431         .open           = pagemap_open,
1432         .release        = pagemap_release,
1433 };
1434 #endif /* CONFIG_PROC_PAGE_MONITOR */
1435
1436 #ifdef CONFIG_NUMA
1437
1438 struct numa_maps {
1439         unsigned long pages;
1440         unsigned long anon;
1441         unsigned long active;
1442         unsigned long writeback;
1443         unsigned long mapcount_max;
1444         unsigned long dirty;
1445         unsigned long swapcache;
1446         unsigned long node[MAX_NUMNODES];
1447 };
1448
1449 struct numa_maps_private {
1450         struct proc_maps_private proc_maps;
1451         struct numa_maps md;
1452 };
1453
1454 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1455                         unsigned long nr_pages)
1456 {
1457         int count = page_mapcount(page);
1458
1459         md->pages += nr_pages;
1460         if (pte_dirty || PageDirty(page))
1461                 md->dirty += nr_pages;
1462
1463         if (PageSwapCache(page))
1464                 md->swapcache += nr_pages;
1465
1466         if (PageActive(page) || PageUnevictable(page))
1467                 md->active += nr_pages;
1468
1469         if (PageWriteback(page))
1470                 md->writeback += nr_pages;
1471
1472         if (PageAnon(page))
1473                 md->anon += nr_pages;
1474
1475         if (count > md->mapcount_max)
1476                 md->mapcount_max = count;
1477
1478         md->node[page_to_nid(page)] += nr_pages;
1479 }
1480
1481 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1482                 unsigned long addr)
1483 {
1484         struct page *page;
1485         int nid;
1486
1487         if (!pte_present(pte))
1488                 return NULL;
1489
1490         page = vm_normal_page(vma, addr, pte);
1491         if (!page)
1492                 return NULL;
1493
1494         if (PageReserved(page))
1495                 return NULL;
1496
1497         nid = page_to_nid(page);
1498         if (!node_isset(nid, node_states[N_MEMORY]))
1499                 return NULL;
1500
1501         return page;
1502 }
1503
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1506                                               struct vm_area_struct *vma,
1507                                               unsigned long addr)
1508 {
1509         struct page *page;
1510         int nid;
1511
1512         if (!pmd_present(pmd))
1513                 return NULL;
1514
1515         page = vm_normal_page_pmd(vma, addr, pmd);
1516         if (!page)
1517                 return NULL;
1518
1519         if (PageReserved(page))
1520                 return NULL;
1521
1522         nid = page_to_nid(page);
1523         if (!node_isset(nid, node_states[N_MEMORY]))
1524                 return NULL;
1525
1526         return page;
1527 }
1528 #endif
1529
1530 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1531                 unsigned long end, struct mm_walk *walk)
1532 {
1533         struct numa_maps *md = walk->private;
1534         struct vm_area_struct *vma = walk->vma;
1535         spinlock_t *ptl;
1536         pte_t *orig_pte;
1537         pte_t *pte;
1538
1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1540         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541                 struct page *page;
1542
1543                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1544                 if (page)
1545                         gather_stats(page, md, pmd_dirty(*pmd),
1546                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1547                 spin_unlock(ptl);
1548                 return 0;
1549         }
1550
1551         if (pmd_trans_unstable(pmd))
1552                 return 0;
1553 #endif
1554         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1555         do {
1556                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1557                 if (!page)
1558                         continue;
1559                 gather_stats(page, md, pte_dirty(*pte), 1);
1560
1561         } while (pte++, addr += PAGE_SIZE, addr != end);
1562         pte_unmap_unlock(orig_pte, ptl);
1563         return 0;
1564 }
1565 #ifdef CONFIG_HUGETLB_PAGE
1566 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1567                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1568 {
1569         pte_t huge_pte = huge_ptep_get(pte);
1570         struct numa_maps *md;
1571         struct page *page;
1572
1573         if (!pte_present(huge_pte))
1574                 return 0;
1575
1576         page = pte_page(huge_pte);
1577         if (!page)
1578                 return 0;
1579
1580         md = walk->private;
1581         gather_stats(page, md, pte_dirty(huge_pte), 1);
1582         return 0;
1583 }
1584
1585 #else
1586 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1587                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1588 {
1589         return 0;
1590 }
1591 #endif
1592
1593 /*
1594  * Display pages allocated per node and memory policy via /proc.
1595  */
1596 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1597 {
1598         struct numa_maps_private *numa_priv = m->private;
1599         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1600         struct vm_area_struct *vma = v;
1601         struct numa_maps *md = &numa_priv->md;
1602         struct file *file = vma->vm_file;
1603         struct mm_struct *mm = vma->vm_mm;
1604         struct mm_walk walk = {
1605                 .hugetlb_entry = gather_hugetlb_stats,
1606                 .pmd_entry = gather_pte_stats,
1607                 .private = md,
1608                 .mm = mm,
1609         };
1610         struct mempolicy *pol;
1611         char buffer[64];
1612         int nid;
1613
1614         if (!mm)
1615                 return 0;
1616
1617         /* Ensure we start with an empty set of numa_maps statistics. */
1618         memset(md, 0, sizeof(*md));
1619
1620         pol = __get_vma_policy(vma, vma->vm_start);
1621         if (pol) {
1622                 mpol_to_str(buffer, sizeof(buffer), pol);
1623                 mpol_cond_put(pol);
1624         } else {
1625                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1626         }
1627
1628         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1629
1630         if (file) {
1631                 seq_puts(m, " file=");
1632                 seq_file_path(m, file, "\n\t= ");
1633         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1634                 seq_puts(m, " heap");
1635         } else if (is_stack(proc_priv, vma, is_pid)) {
1636                 seq_puts(m, " stack");
1637         }
1638
1639         if (is_vm_hugetlb_page(vma))
1640                 seq_puts(m, " huge");
1641
1642         /* mmap_sem is held by m_start */
1643         walk_page_vma(vma, &walk);
1644
1645         if (!md->pages)
1646                 goto out;
1647
1648         if (md->anon)
1649                 seq_printf(m, " anon=%lu", md->anon);
1650
1651         if (md->dirty)
1652                 seq_printf(m, " dirty=%lu", md->dirty);
1653
1654         if (md->pages != md->anon && md->pages != md->dirty)
1655                 seq_printf(m, " mapped=%lu", md->pages);
1656
1657         if (md->mapcount_max > 1)
1658                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1659
1660         if (md->swapcache)
1661                 seq_printf(m, " swapcache=%lu", md->swapcache);
1662
1663         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1664                 seq_printf(m, " active=%lu", md->active);
1665
1666         if (md->writeback)
1667                 seq_printf(m, " writeback=%lu", md->writeback);
1668
1669         for_each_node_state(nid, N_MEMORY)
1670                 if (md->node[nid])
1671                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1672
1673         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1674 out:
1675         seq_putc(m, '\n');
1676         m_cache_vma(m, vma);
1677         return 0;
1678 }
1679
1680 static int show_pid_numa_map(struct seq_file *m, void *v)
1681 {
1682         return show_numa_map(m, v, 1);
1683 }
1684
1685 static int show_tid_numa_map(struct seq_file *m, void *v)
1686 {
1687         return show_numa_map(m, v, 0);
1688 }
1689
1690 static const struct seq_operations proc_pid_numa_maps_op = {
1691         .start  = m_start,
1692         .next   = m_next,
1693         .stop   = m_stop,
1694         .show   = show_pid_numa_map,
1695 };
1696
1697 static const struct seq_operations proc_tid_numa_maps_op = {
1698         .start  = m_start,
1699         .next   = m_next,
1700         .stop   = m_stop,
1701         .show   = show_tid_numa_map,
1702 };
1703
1704 static int numa_maps_open(struct inode *inode, struct file *file,
1705                           const struct seq_operations *ops)
1706 {
1707         return proc_maps_open(inode, file, ops,
1708                                 sizeof(struct numa_maps_private));
1709 }
1710
1711 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1712 {
1713         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1714 }
1715
1716 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1717 {
1718         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1719 }
1720
1721 const struct file_operations proc_pid_numa_maps_operations = {
1722         .open           = pid_numa_maps_open,
1723         .read           = seq_read,
1724         .llseek         = seq_lseek,
1725         .release        = proc_map_release,
1726 };
1727
1728 const struct file_operations proc_tid_numa_maps_operations = {
1729         .open           = tid_numa_maps_open,
1730         .read           = seq_read,
1731         .llseek         = seq_lseek,
1732         .release        = proc_map_release,
1733 };
1734 #endif /* CONFIG_NUMA */