ARM: dts: rockchip: add power key support on gva sdk board.
[firefly-linux-kernel-4.4.55.git] / fs / squashfs / cache.c
1 /*
2  * Squashfs - a compressed read only filesystem for Linux
3  *
4  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
5  * Phillip Lougher <phillip@squashfs.org.uk>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2,
10  * or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20  *
21  * cache.c
22  */
23
24 /*
25  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
26  * recently accessed data Squashfs uses two small metadata and fragment caches.
27  *
28  * This file implements a generic cache implementation used for both caches,
29  * plus functions layered ontop of the generic cache implementation to
30  * access the metadata and fragment caches.
31  *
32  * To avoid out of memory and fragmentation issues with vmalloc the cache
33  * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
34  *
35  * It should be noted that the cache is not used for file datablocks, these
36  * are decompressed and cached in the page-cache in the normal way.  The
37  * cache is only used to temporarily cache fragment and metadata blocks
38  * which have been read as as a result of a metadata (i.e. inode or
39  * directory) or fragment access.  Because metadata and fragments are packed
40  * together into blocks (to gain greater compression) the read of a particular
41  * piece of metadata or fragment will retrieve other metadata/fragments which
42  * have been packed with it, these because of locality-of-reference may be read
43  * in the near future. Temporarily caching them ensures they are available for
44  * near future access without requiring an additional read and decompress.
45  */
46
47 #include <linux/fs.h>
48 #include <linux/vfs.h>
49 #include <linux/slab.h>
50 #include <linux/vmalloc.h>
51 #include <linux/sched.h>
52 #include <linux/spinlock.h>
53 #include <linux/wait.h>
54 #include <linux/pagemap.h>
55
56 #include "squashfs_fs.h"
57 #include "squashfs_fs_sb.h"
58 #include "squashfs.h"
59 #include "page_actor.h"
60
61 /*
62  * Look-up block in cache, and increment usage count.  If not in cache, read
63  * and decompress it from disk.
64  */
65 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
66         struct squashfs_cache *cache, u64 block, int length)
67 {
68         int i, n;
69         struct squashfs_cache_entry *entry;
70
71         spin_lock(&cache->lock);
72
73         while (1) {
74                 for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
75                         if (cache->entry[i].block == block) {
76                                 cache->curr_blk = i;
77                                 break;
78                         }
79                         i = (i + 1) % cache->entries;
80                 }
81
82                 if (n == cache->entries) {
83                         /*
84                          * Block not in cache, if all cache entries are used
85                          * go to sleep waiting for one to become available.
86                          */
87                         if (cache->unused == 0) {
88                                 cache->num_waiters++;
89                                 spin_unlock(&cache->lock);
90                                 wait_event(cache->wait_queue, cache->unused);
91                                 spin_lock(&cache->lock);
92                                 cache->num_waiters--;
93                                 continue;
94                         }
95
96                         /*
97                          * At least one unused cache entry.  A simple
98                          * round-robin strategy is used to choose the entry to
99                          * be evicted from the cache.
100                          */
101                         i = cache->next_blk;
102                         for (n = 0; n < cache->entries; n++) {
103                                 if (cache->entry[i].refcount == 0)
104                                         break;
105                                 i = (i + 1) % cache->entries;
106                         }
107
108                         cache->next_blk = (i + 1) % cache->entries;
109                         entry = &cache->entry[i];
110
111                         /*
112                          * Initialise chosen cache entry, and fill it in from
113                          * disk.
114                          */
115                         cache->unused--;
116                         entry->block = block;
117                         entry->refcount = 1;
118                         entry->pending = 1;
119                         entry->num_waiters = 0;
120                         entry->error = 0;
121                         spin_unlock(&cache->lock);
122
123                         entry->length = squashfs_read_data(sb, block, length,
124                                 &entry->next_index, entry->actor);
125
126                         spin_lock(&cache->lock);
127
128                         if (entry->length < 0)
129                                 entry->error = entry->length;
130
131                         entry->pending = 0;
132
133                         /*
134                          * While filling this entry one or more other processes
135                          * have looked it up in the cache, and have slept
136                          * waiting for it to become available.
137                          */
138                         if (entry->num_waiters) {
139                                 spin_unlock(&cache->lock);
140                                 wake_up_all(&entry->wait_queue);
141                         } else
142                                 spin_unlock(&cache->lock);
143
144                         goto out;
145                 }
146
147                 /*
148                  * Block already in cache.  Increment refcount so it doesn't
149                  * get reused until we're finished with it, if it was
150                  * previously unused there's one less cache entry available
151                  * for reuse.
152                  */
153                 entry = &cache->entry[i];
154                 if (entry->refcount == 0)
155                         cache->unused--;
156                 entry->refcount++;
157
158                 /*
159                  * If the entry is currently being filled in by another process
160                  * go to sleep waiting for it to become available.
161                  */
162                 if (entry->pending) {
163                         entry->num_waiters++;
164                         spin_unlock(&cache->lock);
165                         wait_event(entry->wait_queue, !entry->pending);
166                 } else
167                         spin_unlock(&cache->lock);
168
169                 goto out;
170         }
171
172 out:
173         TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
174                 cache->name, i, entry->block, entry->refcount, entry->error);
175
176         if (entry->error)
177                 ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
178                                                         block);
179         return entry;
180 }
181
182
183 /*
184  * Release cache entry, once usage count is zero it can be reused.
185  */
186 void squashfs_cache_put(struct squashfs_cache_entry *entry)
187 {
188         struct squashfs_cache *cache = entry->cache;
189
190         spin_lock(&cache->lock);
191         entry->refcount--;
192         if (entry->refcount == 0) {
193                 cache->unused++;
194                 /*
195                  * If there's any processes waiting for a block to become
196                  * available, wake one up.
197                  */
198                 if (cache->num_waiters) {
199                         spin_unlock(&cache->lock);
200                         wake_up(&cache->wait_queue);
201                         return;
202                 }
203         }
204         spin_unlock(&cache->lock);
205 }
206
207 /*
208  * Delete cache reclaiming all kmalloced buffers.
209  */
210 void squashfs_cache_delete(struct squashfs_cache *cache)
211 {
212         int i;
213
214         if (cache == NULL)
215                 return;
216
217         for (i = 0; i < cache->entries; i++) {
218                 if (cache->entry[i].page)
219                         free_page_array(cache->entry[i].page, cache->pages);
220                 kfree(cache->entry[i].actor);
221         }
222
223         kfree(cache->entry);
224         kfree(cache);
225 }
226
227
228 /*
229  * Initialise cache allocating the specified number of entries, each of
230  * size block_size.  To avoid vmalloc fragmentation issues each entry
231  * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
232  */
233 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
234         int block_size)
235 {
236         int i;
237         struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
238
239         if (cache == NULL) {
240                 ERROR("Failed to allocate %s cache\n", name);
241                 return NULL;
242         }
243
244         cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
245         if (cache->entry == NULL) {
246                 ERROR("Failed to allocate %s cache\n", name);
247                 goto cleanup;
248         }
249
250         cache->curr_blk = 0;
251         cache->next_blk = 0;
252         cache->unused = entries;
253         cache->entries = entries;
254         cache->block_size = block_size;
255         cache->pages = block_size >> PAGE_CACHE_SHIFT;
256         cache->pages = cache->pages ? cache->pages : 1;
257         cache->name = name;
258         cache->num_waiters = 0;
259         spin_lock_init(&cache->lock);
260         init_waitqueue_head(&cache->wait_queue);
261
262         for (i = 0; i < entries; i++) {
263                 struct squashfs_cache_entry *entry = &cache->entry[i];
264
265                 init_waitqueue_head(&cache->entry[i].wait_queue);
266                 entry->cache = cache;
267                 entry->block = SQUASHFS_INVALID_BLK;
268                 entry->page = alloc_page_array(cache->pages, GFP_KERNEL);
269                 if (!entry->page) {
270                         ERROR("Failed to allocate %s cache entry\n", name);
271                         goto cleanup;
272                 }
273                 entry->actor = squashfs_page_actor_init(entry->page,
274                         cache->pages, 0, NULL);
275                 if (entry->actor == NULL) {
276                         ERROR("Failed to allocate %s cache entry\n", name);
277                         goto cleanup;
278                 }
279         }
280
281         return cache;
282
283 cleanup:
284         squashfs_cache_delete(cache);
285         return NULL;
286 }
287
288
289 /*
290  * Copy up to length bytes from cache entry to buffer starting at offset bytes
291  * into the cache entry.  If there's not length bytes then copy the number of
292  * bytes available.  In all cases return the number of bytes copied.
293  */
294 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
295                 int offset, int length)
296 {
297         int remaining = length;
298
299         if (length == 0)
300                 return 0;
301         else if (buffer == NULL)
302                 return min(length, entry->length - offset);
303
304         while (offset < entry->length) {
305                 void *buff = kmap_atomic(entry->page[offset / PAGE_CACHE_SIZE])
306                              + (offset % PAGE_CACHE_SIZE);
307                 int bytes = min_t(int, entry->length - offset,
308                                 PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
309
310                 if (bytes >= remaining) {
311                         memcpy(buffer, buff, remaining);
312                         kunmap_atomic(buff);
313                         remaining = 0;
314                         break;
315                 }
316
317                 memcpy(buffer, buff, bytes);
318                 kunmap_atomic(buff);
319                 buffer += bytes;
320                 remaining -= bytes;
321                 offset += bytes;
322         }
323
324         return length - remaining;
325 }
326
327
328 /*
329  * Read length bytes from metadata position <block, offset> (block is the
330  * start of the compressed block on disk, and offset is the offset into
331  * the block once decompressed).  Data is packed into consecutive blocks,
332  * and length bytes may require reading more than one block.
333  */
334 int squashfs_read_metadata(struct super_block *sb, void *buffer,
335                 u64 *block, int *offset, int length)
336 {
337         struct squashfs_sb_info *msblk = sb->s_fs_info;
338         int bytes, res = length;
339         struct squashfs_cache_entry *entry;
340
341         TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
342
343         while (length) {
344                 entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
345                 if (entry->error) {
346                         res = entry->error;
347                         goto error;
348                 } else if (*offset >= entry->length) {
349                         res = -EIO;
350                         goto error;
351                 }
352
353                 bytes = squashfs_copy_data(buffer, entry, *offset, length);
354                 if (buffer)
355                         buffer += bytes;
356                 length -= bytes;
357                 *offset += bytes;
358
359                 if (*offset == entry->length) {
360                         *block = entry->next_index;
361                         *offset = 0;
362                 }
363
364                 squashfs_cache_put(entry);
365         }
366
367         return res;
368
369 error:
370         squashfs_cache_put(entry);
371         return res;
372 }
373
374
375 /*
376  * Look-up in the fragmment cache the fragment located at <start_block> in the
377  * filesystem.  If necessary read and decompress it from disk.
378  */
379 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
380                                 u64 start_block, int length)
381 {
382         struct squashfs_sb_info *msblk = sb->s_fs_info;
383
384         return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
385                 length);
386 }
387
388
389 /*
390  * Read and decompress the datablock located at <start_block> in the
391  * filesystem.  The cache is used here to avoid duplicating locking and
392  * read/decompress code.
393  */
394 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
395                                 u64 start_block, int length)
396 {
397         struct squashfs_sb_info *msblk = sb->s_fs_info;
398
399         return squashfs_cache_get(sb, msblk->read_page, start_block, length);
400 }
401
402
403 /*
404  * Read a filesystem table (uncompressed sequence of bytes) from disk
405  */
406 void *squashfs_read_table(struct super_block *sb, u64 block, int length)
407 {
408         int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
409         struct page **page;
410         void *buff;
411         int res;
412         struct squashfs_page_actor *actor;
413
414         page = alloc_page_array(pages, GFP_KERNEL);
415         if (!page)
416                 return ERR_PTR(-ENOMEM);
417
418         actor = squashfs_page_actor_init(page, pages, length, NULL);
419         if (actor == NULL) {
420                 res = -ENOMEM;
421                 goto failed;
422         }
423
424         res = squashfs_read_data(sb, block, length |
425                 SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
426
427         if (res < 0)
428                 goto failed2;
429
430         buff = kmalloc(length, GFP_KERNEL);
431         if (!buff)
432                 goto failed2;
433         squashfs_actor_to_buf(actor, buff, length);
434         squashfs_page_actor_free(actor, 0);
435         free_page_array(page, pages);
436         return buff;
437
438 failed2:
439         squashfs_page_actor_free(actor, 0);
440 failed:
441         free_page_array(page, pages);
442         return ERR_PTR(res);
443 }