xfs: drop dmapi hooks
[firefly-linux-kernel-4.4.55.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         INIT_LIST_HEAD(&bp->b_hash_list);
192         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         ASSERT(list_empty(&bp->b_hash_list));
266
267         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268                 uint            i;
269
270                 if (xfs_buf_is_vmapped(bp))
271                         vm_unmap_ram(bp->b_addr - bp->b_offset,
272                                         bp->b_page_count);
273
274                 for (i = 0; i < bp->b_page_count; i++) {
275                         struct page     *page = bp->b_pages[i];
276
277                         if (bp->b_flags & _XBF_PAGE_CACHE)
278                                 ASSERT(!PagePrivate(page));
279                         page_cache_release(page);
280                 }
281         }
282         _xfs_buf_free_pages(bp);
283         xfs_buf_deallocate(bp);
284 }
285
286 /*
287  *      Finds all pages for buffer in question and builds it's page list.
288  */
289 STATIC int
290 _xfs_buf_lookup_pages(
291         xfs_buf_t               *bp,
292         uint                    flags)
293 {
294         struct address_space    *mapping = bp->b_target->bt_mapping;
295         size_t                  blocksize = bp->b_target->bt_bsize;
296         size_t                  size = bp->b_count_desired;
297         size_t                  nbytes, offset;
298         gfp_t                   gfp_mask = xb_to_gfp(flags);
299         unsigned short          page_count, i;
300         pgoff_t                 first;
301         xfs_off_t               end;
302         int                     error;
303
304         end = bp->b_file_offset + bp->b_buffer_length;
305         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307         error = _xfs_buf_get_pages(bp, page_count, flags);
308         if (unlikely(error))
309                 return error;
310         bp->b_flags |= _XBF_PAGE_CACHE;
311
312         offset = bp->b_offset;
313         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315         for (i = 0; i < bp->b_page_count; i++) {
316                 struct page     *page;
317                 uint            retries = 0;
318
319               retry:
320                 page = find_or_create_page(mapping, first + i, gfp_mask);
321                 if (unlikely(page == NULL)) {
322                         if (flags & XBF_READ_AHEAD) {
323                                 bp->b_page_count = i;
324                                 for (i = 0; i < bp->b_page_count; i++)
325                                         unlock_page(bp->b_pages[i]);
326                                 return -ENOMEM;
327                         }
328
329                         /*
330                          * This could deadlock.
331                          *
332                          * But until all the XFS lowlevel code is revamped to
333                          * handle buffer allocation failures we can't do much.
334                          */
335                         if (!(++retries % 100))
336                                 printk(KERN_ERR
337                                         "XFS: possible memory allocation "
338                                         "deadlock in %s (mode:0x%x)\n",
339                                         __func__, gfp_mask);
340
341                         XFS_STATS_INC(xb_page_retries);
342                         xfsbufd_wakeup(NULL, 0, gfp_mask);
343                         congestion_wait(BLK_RW_ASYNC, HZ/50);
344                         goto retry;
345                 }
346
347                 XFS_STATS_INC(xb_page_found);
348
349                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350                 size -= nbytes;
351
352                 ASSERT(!PagePrivate(page));
353                 if (!PageUptodate(page)) {
354                         page_count--;
355                         if (blocksize >= PAGE_CACHE_SIZE) {
356                                 if (flags & XBF_READ)
357                                         bp->b_flags |= _XBF_PAGE_LOCKED;
358                         } else if (!PagePrivate(page)) {
359                                 if (test_page_region(page, offset, nbytes))
360                                         page_count++;
361                         }
362                 }
363
364                 bp->b_pages[i] = page;
365                 offset = 0;
366         }
367
368         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369                 for (i = 0; i < bp->b_page_count; i++)
370                         unlock_page(bp->b_pages[i]);
371         }
372
373         if (page_count == bp->b_page_count)
374                 bp->b_flags |= XBF_DONE;
375
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if nessecary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         /* A single page buffer is always mappable */
388         if (bp->b_page_count == 1) {
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393                                         -1, PAGE_KERNEL);
394                 if (unlikely(bp->b_addr == NULL))
395                         return -ENOMEM;
396                 bp->b_addr += bp->b_offset;
397                 bp->b_flags |= XBF_MAPPED;
398         }
399
400         return 0;
401 }
402
403 /*
404  *      Finding and Reading Buffers
405  */
406
407 /*
408  *      Look up, and creates if absent, a lockable buffer for
409  *      a given range of an inode.  The buffer is returned
410  *      locked.  If other overlapping buffers exist, they are
411  *      released before the new buffer is created and locked,
412  *      which may imply that this call will block until those buffers
413  *      are unlocked.  No I/O is implied by this call.
414  */
415 xfs_buf_t *
416 _xfs_buf_find(
417         xfs_buftarg_t           *btp,   /* block device target          */
418         xfs_off_t               ioff,   /* starting offset of range     */
419         size_t                  isize,  /* length of range              */
420         xfs_buf_flags_t         flags,
421         xfs_buf_t               *new_bp)
422 {
423         xfs_off_t               range_base;
424         size_t                  range_length;
425         xfs_bufhash_t           *hash;
426         xfs_buf_t               *bp, *n;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437         spin_lock(&hash->bh_lock);
438
439         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440                 ASSERT(btp == bp->b_target);
441                 if (bp->b_file_offset == range_base &&
442                     bp->b_buffer_length == range_length) {
443                         /*
444                          * If we look at something, bring it to the
445                          * front of the list for next time.
446                          */
447                         atomic_inc(&bp->b_hold);
448                         list_move(&bp->b_hash_list, &hash->bh_list);
449                         goto found;
450                 }
451         }
452
453         /* No match found */
454         if (new_bp) {
455                 _xfs_buf_initialize(new_bp, btp, range_base,
456                                 range_length, flags);
457                 new_bp->b_hash = hash;
458                 list_add(&new_bp->b_hash_list, &hash->bh_list);
459         } else {
460                 XFS_STATS_INC(xb_miss_locked);
461         }
462
463         spin_unlock(&hash->bh_lock);
464         return new_bp;
465
466 found:
467         spin_unlock(&hash->bh_lock);
468
469         /* Attempt to get the semaphore without sleeping,
470          * if this does not work then we need to drop the
471          * spinlock and do a hard attempt on the semaphore.
472          */
473         if (down_trylock(&bp->b_sema)) {
474                 if (!(flags & XBF_TRYLOCK)) {
475                         /* wait for buffer ownership */
476                         xfs_buf_lock(bp);
477                         XFS_STATS_INC(xb_get_locked_waited);
478                 } else {
479                         /* We asked for a trylock and failed, no need
480                          * to look at file offset and length here, we
481                          * know that this buffer at least overlaps our
482                          * buffer and is locked, therefore our buffer
483                          * either does not exist, or is this buffer.
484                          */
485                         xfs_buf_rele(bp);
486                         XFS_STATS_INC(xb_busy_locked);
487                         return NULL;
488                 }
489         } else {
490                 /* trylock worked */
491                 XB_SET_OWNER(bp);
492         }
493
494         if (bp->b_flags & XBF_STALE) {
495                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496                 bp->b_flags &= XBF_MAPPED;
497         }
498
499         trace_xfs_buf_find(bp, flags, _RET_IP_);
500         XFS_STATS_INC(xb_get_locked);
501         return bp;
502 }
503
504 /*
505  *      Assembles a buffer covering the specified range.
506  *      Storage in memory for all portions of the buffer will be allocated,
507  *      although backing storage may not be.
508  */
509 xfs_buf_t *
510 xfs_buf_get(
511         xfs_buftarg_t           *target,/* target for buffer            */
512         xfs_off_t               ioff,   /* starting offset of range     */
513         size_t                  isize,  /* length of range              */
514         xfs_buf_flags_t         flags)
515 {
516         xfs_buf_t               *bp, *new_bp;
517         int                     error = 0, i;
518
519         new_bp = xfs_buf_allocate(flags);
520         if (unlikely(!new_bp))
521                 return NULL;
522
523         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524         if (bp == new_bp) {
525                 error = _xfs_buf_lookup_pages(bp, flags);
526                 if (error)
527                         goto no_buffer;
528         } else {
529                 xfs_buf_deallocate(new_bp);
530                 if (unlikely(bp == NULL))
531                         return NULL;
532         }
533
534         for (i = 0; i < bp->b_page_count; i++)
535                 mark_page_accessed(bp->b_pages[i]);
536
537         if (!(bp->b_flags & XBF_MAPPED)) {
538                 error = _xfs_buf_map_pages(bp, flags);
539                 if (unlikely(error)) {
540                         printk(KERN_WARNING "%s: failed to map pages\n",
541                                         __func__);
542                         goto no_buffer;
543                 }
544         }
545
546         XFS_STATS_INC(xb_get);
547
548         /*
549          * Always fill in the block number now, the mapped cases can do
550          * their own overlay of this later.
551          */
552         bp->b_bn = ioff;
553         bp->b_count_desired = bp->b_buffer_length;
554
555         trace_xfs_buf_get(bp, flags, _RET_IP_);
556         return bp;
557
558  no_buffer:
559         if (flags & (XBF_LOCK | XBF_TRYLOCK))
560                 xfs_buf_unlock(bp);
561         xfs_buf_rele(bp);
562         return NULL;
563 }
564
565 STATIC int
566 _xfs_buf_read(
567         xfs_buf_t               *bp,
568         xfs_buf_flags_t         flags)
569 {
570         int                     status;
571
572         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580         status = xfs_buf_iorequest(bp);
581         if (!status && !(flags & XBF_ASYNC))
582                 status = xfs_buf_iowait(bp);
583         return status;
584 }
585
586 xfs_buf_t *
587 xfs_buf_read(
588         xfs_buftarg_t           *target,
589         xfs_off_t               ioff,
590         size_t                  isize,
591         xfs_buf_flags_t         flags)
592 {
593         xfs_buf_t               *bp;
594
595         flags |= XBF_READ;
596
597         bp = xfs_buf_get(target, ioff, isize, flags);
598         if (bp) {
599                 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
601                 if (!XFS_BUF_ISDONE(bp)) {
602                         XFS_STATS_INC(xb_get_read);
603                         _xfs_buf_read(bp, flags);
604                 } else if (flags & XBF_ASYNC) {
605                         /*
606                          * Read ahead call which is already satisfied,
607                          * drop the buffer
608                          */
609                         goto no_buffer;
610                 } else {
611                         /* We do not want read in the flags */
612                         bp->b_flags &= ~XBF_READ;
613                 }
614         }
615
616         return bp;
617
618  no_buffer:
619         if (flags & (XBF_LOCK | XBF_TRYLOCK))
620                 xfs_buf_unlock(bp);
621         xfs_buf_rele(bp);
622         return NULL;
623 }
624
625 /*
626  *      If we are not low on memory then do the readahead in a deadlock
627  *      safe manner.
628  */
629 void
630 xfs_buf_readahead(
631         xfs_buftarg_t           *target,
632         xfs_off_t               ioff,
633         size_t                  isize,
634         xfs_buf_flags_t         flags)
635 {
636         struct backing_dev_info *bdi;
637
638         bdi = target->bt_mapping->backing_dev_info;
639         if (bdi_read_congested(bdi))
640                 return;
641
642         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
643         xfs_buf_read(target, ioff, isize, flags);
644 }
645
646 xfs_buf_t *
647 xfs_buf_get_empty(
648         size_t                  len,
649         xfs_buftarg_t           *target)
650 {
651         xfs_buf_t               *bp;
652
653         bp = xfs_buf_allocate(0);
654         if (bp)
655                 _xfs_buf_initialize(bp, target, 0, len, 0);
656         return bp;
657 }
658
659 static inline struct page *
660 mem_to_page(
661         void                    *addr)
662 {
663         if ((!is_vmalloc_addr(addr))) {
664                 return virt_to_page(addr);
665         } else {
666                 return vmalloc_to_page(addr);
667         }
668 }
669
670 int
671 xfs_buf_associate_memory(
672         xfs_buf_t               *bp,
673         void                    *mem,
674         size_t                  len)
675 {
676         int                     rval;
677         int                     i = 0;
678         unsigned long           pageaddr;
679         unsigned long           offset;
680         size_t                  buflen;
681         int                     page_count;
682
683         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684         offset = (unsigned long)mem - pageaddr;
685         buflen = PAGE_CACHE_ALIGN(len + offset);
686         page_count = buflen >> PAGE_CACHE_SHIFT;
687
688         /* Free any previous set of page pointers */
689         if (bp->b_pages)
690                 _xfs_buf_free_pages(bp);
691
692         bp->b_pages = NULL;
693         bp->b_addr = mem;
694
695         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
696         if (rval)
697                 return rval;
698
699         bp->b_offset = offset;
700
701         for (i = 0; i < bp->b_page_count; i++) {
702                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703                 pageaddr += PAGE_CACHE_SIZE;
704         }
705
706         bp->b_count_desired = len;
707         bp->b_buffer_length = buflen;
708         bp->b_flags |= XBF_MAPPED;
709         bp->b_flags &= ~_XBF_PAGE_LOCKED;
710
711         return 0;
712 }
713
714 xfs_buf_t *
715 xfs_buf_get_noaddr(
716         size_t                  len,
717         xfs_buftarg_t           *target)
718 {
719         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720         int                     error, i;
721         xfs_buf_t               *bp;
722
723         bp = xfs_buf_allocate(0);
724         if (unlikely(bp == NULL))
725                 goto fail;
726         _xfs_buf_initialize(bp, target, 0, len, 0);
727
728         error = _xfs_buf_get_pages(bp, page_count, 0);
729         if (error)
730                 goto fail_free_buf;
731
732         for (i = 0; i < page_count; i++) {
733                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734                 if (!bp->b_pages[i])
735                         goto fail_free_mem;
736         }
737         bp->b_flags |= _XBF_PAGES;
738
739         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740         if (unlikely(error)) {
741                 printk(KERN_WARNING "%s: failed to map pages\n",
742                                 __func__);
743                 goto fail_free_mem;
744         }
745
746         xfs_buf_unlock(bp);
747
748         trace_xfs_buf_get_noaddr(bp, _RET_IP_);
749         return bp;
750
751  fail_free_mem:
752         while (--i >= 0)
753                 __free_page(bp->b_pages[i]);
754         _xfs_buf_free_pages(bp);
755  fail_free_buf:
756         xfs_buf_deallocate(bp);
757  fail:
758         return NULL;
759 }
760
761 /*
762  *      Increment reference count on buffer, to hold the buffer concurrently
763  *      with another thread which may release (free) the buffer asynchronously.
764  *      Must hold the buffer already to call this function.
765  */
766 void
767 xfs_buf_hold(
768         xfs_buf_t               *bp)
769 {
770         trace_xfs_buf_hold(bp, _RET_IP_);
771         atomic_inc(&bp->b_hold);
772 }
773
774 /*
775  *      Releases a hold on the specified buffer.  If the
776  *      the hold count is 1, calls xfs_buf_free.
777  */
778 void
779 xfs_buf_rele(
780         xfs_buf_t               *bp)
781 {
782         xfs_bufhash_t           *hash = bp->b_hash;
783
784         trace_xfs_buf_rele(bp, _RET_IP_);
785
786         if (unlikely(!hash)) {
787                 ASSERT(!bp->b_relse);
788                 if (atomic_dec_and_test(&bp->b_hold))
789                         xfs_buf_free(bp);
790                 return;
791         }
792
793         ASSERT(atomic_read(&bp->b_hold) > 0);
794         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795                 if (bp->b_relse) {
796                         atomic_inc(&bp->b_hold);
797                         spin_unlock(&hash->bh_lock);
798                         (*(bp->b_relse)) (bp);
799                 } else if (bp->b_flags & XBF_FS_MANAGED) {
800                         spin_unlock(&hash->bh_lock);
801                 } else {
802                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803                         list_del_init(&bp->b_hash_list);
804                         spin_unlock(&hash->bh_lock);
805                         xfs_buf_free(bp);
806                 }
807         }
808 }
809
810
811 /*
812  *      Mutual exclusion on buffers.  Locking model:
813  *
814  *      Buffers associated with inodes for which buffer locking
815  *      is not enabled are not protected by semaphores, and are
816  *      assumed to be exclusively owned by the caller.  There is a
817  *      spinlock in the buffer, used by the caller when concurrent
818  *      access is possible.
819  */
820
821 /*
822  *      Locks a buffer object, if it is not already locked.
823  *      Note that this in no way locks the underlying pages, so it is only
824  *      useful for synchronizing concurrent use of buffer objects, not for
825  *      synchronizing independent access to the underlying pages.
826  */
827 int
828 xfs_buf_cond_lock(
829         xfs_buf_t               *bp)
830 {
831         int                     locked;
832
833         locked = down_trylock(&bp->b_sema) == 0;
834         if (locked)
835                 XB_SET_OWNER(bp);
836
837         trace_xfs_buf_cond_lock(bp, _RET_IP_);
838         return locked ? 0 : -EBUSY;
839 }
840
841 int
842 xfs_buf_lock_value(
843         xfs_buf_t               *bp)
844 {
845         return bp->b_sema.count;
846 }
847
848 /*
849  *      Locks a buffer object.
850  *      Note that this in no way locks the underlying pages, so it is only
851  *      useful for synchronizing concurrent use of buffer objects, not for
852  *      synchronizing independent access to the underlying pages.
853  *
854  *      If we come across a stale, pinned, locked buffer, we know that we
855  *      are being asked to lock a buffer that has been reallocated. Because
856  *      it is pinned, we know that the log has not been pushed to disk and
857  *      hence it will still be locked. Rather than sleeping until someone
858  *      else pushes the log, push it ourselves before trying to get the lock.
859  */
860 void
861 xfs_buf_lock(
862         xfs_buf_t               *bp)
863 {
864         trace_xfs_buf_lock(bp, _RET_IP_);
865
866         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
867                 xfs_log_force(bp->b_mount, 0);
868         if (atomic_read(&bp->b_io_remaining))
869                 blk_run_address_space(bp->b_target->bt_mapping);
870         down(&bp->b_sema);
871         XB_SET_OWNER(bp);
872
873         trace_xfs_buf_lock_done(bp, _RET_IP_);
874 }
875
876 /*
877  *      Releases the lock on the buffer object.
878  *      If the buffer is marked delwri but is not queued, do so before we
879  *      unlock the buffer as we need to set flags correctly.  We also need to
880  *      take a reference for the delwri queue because the unlocker is going to
881  *      drop their's and they don't know we just queued it.
882  */
883 void
884 xfs_buf_unlock(
885         xfs_buf_t               *bp)
886 {
887         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
888                 atomic_inc(&bp->b_hold);
889                 bp->b_flags |= XBF_ASYNC;
890                 xfs_buf_delwri_queue(bp, 0);
891         }
892
893         XB_CLEAR_OWNER(bp);
894         up(&bp->b_sema);
895
896         trace_xfs_buf_unlock(bp, _RET_IP_);
897 }
898
899
900 /*
901  *      Pinning Buffer Storage in Memory
902  *      Ensure that no attempt to force a buffer to disk will succeed.
903  */
904 void
905 xfs_buf_pin(
906         xfs_buf_t               *bp)
907 {
908         trace_xfs_buf_pin(bp, _RET_IP_);
909         atomic_inc(&bp->b_pin_count);
910 }
911
912 void
913 xfs_buf_unpin(
914         xfs_buf_t               *bp)
915 {
916         trace_xfs_buf_unpin(bp, _RET_IP_);
917
918         if (atomic_dec_and_test(&bp->b_pin_count))
919                 wake_up_all(&bp->b_waiters);
920 }
921
922 int
923 xfs_buf_ispin(
924         xfs_buf_t               *bp)
925 {
926         return atomic_read(&bp->b_pin_count);
927 }
928
929 STATIC void
930 xfs_buf_wait_unpin(
931         xfs_buf_t               *bp)
932 {
933         DECLARE_WAITQUEUE       (wait, current);
934
935         if (atomic_read(&bp->b_pin_count) == 0)
936                 return;
937
938         add_wait_queue(&bp->b_waiters, &wait);
939         for (;;) {
940                 set_current_state(TASK_UNINTERRUPTIBLE);
941                 if (atomic_read(&bp->b_pin_count) == 0)
942                         break;
943                 if (atomic_read(&bp->b_io_remaining))
944                         blk_run_address_space(bp->b_target->bt_mapping);
945                 schedule();
946         }
947         remove_wait_queue(&bp->b_waiters, &wait);
948         set_current_state(TASK_RUNNING);
949 }
950
951 /*
952  *      Buffer Utility Routines
953  */
954
955 STATIC void
956 xfs_buf_iodone_work(
957         struct work_struct      *work)
958 {
959         xfs_buf_t               *bp =
960                 container_of(work, xfs_buf_t, b_iodone_work);
961
962         /*
963          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
964          * ordered flag and reissue them.  Because we can't tell the higher
965          * layers directly that they should not issue ordered I/O anymore, they
966          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
967          */
968         if ((bp->b_error == EOPNOTSUPP) &&
969             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
970                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
971                 bp->b_flags &= ~XBF_ORDERED;
972                 bp->b_flags |= _XFS_BARRIER_FAILED;
973                 xfs_buf_iorequest(bp);
974         } else if (bp->b_iodone)
975                 (*(bp->b_iodone))(bp);
976         else if (bp->b_flags & XBF_ASYNC)
977                 xfs_buf_relse(bp);
978 }
979
980 void
981 xfs_buf_ioend(
982         xfs_buf_t               *bp,
983         int                     schedule)
984 {
985         trace_xfs_buf_iodone(bp, _RET_IP_);
986
987         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
988         if (bp->b_error == 0)
989                 bp->b_flags |= XBF_DONE;
990
991         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
992                 if (schedule) {
993                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
994                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
995                 } else {
996                         xfs_buf_iodone_work(&bp->b_iodone_work);
997                 }
998         } else {
999                 complete(&bp->b_iowait);
1000         }
1001 }
1002
1003 void
1004 xfs_buf_ioerror(
1005         xfs_buf_t               *bp,
1006         int                     error)
1007 {
1008         ASSERT(error >= 0 && error <= 0xffff);
1009         bp->b_error = (unsigned short)error;
1010         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1011 }
1012
1013 int
1014 xfs_bwrite(
1015         struct xfs_mount        *mp,
1016         struct xfs_buf          *bp)
1017 {
1018         int                     error;
1019
1020         bp->b_strat = xfs_bdstrat_cb;
1021         bp->b_mount = mp;
1022         bp->b_flags |= XBF_WRITE;
1023         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1024
1025         xfs_buf_delwri_dequeue(bp);
1026         xfs_buf_iostrategy(bp);
1027
1028         error = xfs_buf_iowait(bp);
1029         if (error)
1030                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1031         xfs_buf_relse(bp);
1032         return error;
1033 }
1034
1035 void
1036 xfs_bdwrite(
1037         void                    *mp,
1038         struct xfs_buf          *bp)
1039 {
1040         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1041
1042         bp->b_strat = xfs_bdstrat_cb;
1043         bp->b_mount = mp;
1044
1045         bp->b_flags &= ~XBF_READ;
1046         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1047
1048         xfs_buf_delwri_queue(bp, 1);
1049 }
1050
1051 /*
1052  * Called when we want to stop a buffer from getting written or read.
1053  * We attach the EIO error, muck with its flags, and call biodone
1054  * so that the proper iodone callbacks get called.
1055  */
1056 STATIC int
1057 xfs_bioerror(
1058         xfs_buf_t *bp)
1059 {
1060 #ifdef XFSERRORDEBUG
1061         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1062 #endif
1063
1064         /*
1065          * No need to wait until the buffer is unpinned, we aren't flushing it.
1066          */
1067         XFS_BUF_ERROR(bp, EIO);
1068
1069         /*
1070          * We're calling biodone, so delete XBF_DONE flag.
1071          */
1072         XFS_BUF_UNREAD(bp);
1073         XFS_BUF_UNDELAYWRITE(bp);
1074         XFS_BUF_UNDONE(bp);
1075         XFS_BUF_STALE(bp);
1076
1077         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1078         xfs_biodone(bp);
1079
1080         return EIO;
1081 }
1082
1083 /*
1084  * Same as xfs_bioerror, except that we are releasing the buffer
1085  * here ourselves, and avoiding the biodone call.
1086  * This is meant for userdata errors; metadata bufs come with
1087  * iodone functions attached, so that we can track down errors.
1088  */
1089 STATIC int
1090 xfs_bioerror_relse(
1091         struct xfs_buf  *bp)
1092 {
1093         int64_t         fl = XFS_BUF_BFLAGS(bp);
1094         /*
1095          * No need to wait until the buffer is unpinned.
1096          * We aren't flushing it.
1097          *
1098          * chunkhold expects B_DONE to be set, whether
1099          * we actually finish the I/O or not. We don't want to
1100          * change that interface.
1101          */
1102         XFS_BUF_UNREAD(bp);
1103         XFS_BUF_UNDELAYWRITE(bp);
1104         XFS_BUF_DONE(bp);
1105         XFS_BUF_STALE(bp);
1106         XFS_BUF_CLR_IODONE_FUNC(bp);
1107         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1108         if (!(fl & XBF_ASYNC)) {
1109                 /*
1110                  * Mark b_error and B_ERROR _both_.
1111                  * Lot's of chunkcache code assumes that.
1112                  * There's no reason to mark error for
1113                  * ASYNC buffers.
1114                  */
1115                 XFS_BUF_ERROR(bp, EIO);
1116                 XFS_BUF_FINISH_IOWAIT(bp);
1117         } else {
1118                 xfs_buf_relse(bp);
1119         }
1120
1121         return EIO;
1122 }
1123
1124
1125 /*
1126  * All xfs metadata buffers except log state machine buffers
1127  * get this attached as their b_bdstrat callback function.
1128  * This is so that we can catch a buffer
1129  * after prematurely unpinning it to forcibly shutdown the filesystem.
1130  */
1131 int
1132 xfs_bdstrat_cb(
1133         struct xfs_buf  *bp)
1134 {
1135         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1136                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1137                 /*
1138                  * Metadata write that didn't get logged but
1139                  * written delayed anyway. These aren't associated
1140                  * with a transaction, and can be ignored.
1141                  */
1142                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1143                         return xfs_bioerror_relse(bp);
1144                 else
1145                         return xfs_bioerror(bp);
1146         }
1147
1148         xfs_buf_iorequest(bp);
1149         return 0;
1150 }
1151
1152 /*
1153  * Wrapper around bdstrat so that we can stop data from going to disk in case
1154  * we are shutting down the filesystem.  Typically user data goes thru this
1155  * path; one of the exceptions is the superblock.
1156  */
1157 void
1158 xfsbdstrat(
1159         struct xfs_mount        *mp,
1160         struct xfs_buf          *bp)
1161 {
1162         if (XFS_FORCED_SHUTDOWN(mp)) {
1163                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1164                 xfs_bioerror_relse(bp);
1165                 return;
1166         }
1167
1168         xfs_buf_iorequest(bp);
1169 }
1170
1171 STATIC void
1172 _xfs_buf_ioend(
1173         xfs_buf_t               *bp,
1174         int                     schedule)
1175 {
1176         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1177                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1178                 xfs_buf_ioend(bp, schedule);
1179         }
1180 }
1181
1182 STATIC void
1183 xfs_buf_bio_end_io(
1184         struct bio              *bio,
1185         int                     error)
1186 {
1187         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1188         unsigned int            blocksize = bp->b_target->bt_bsize;
1189         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1190
1191         xfs_buf_ioerror(bp, -error);
1192
1193         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1194                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1195
1196         do {
1197                 struct page     *page = bvec->bv_page;
1198
1199                 ASSERT(!PagePrivate(page));
1200                 if (unlikely(bp->b_error)) {
1201                         if (bp->b_flags & XBF_READ)
1202                                 ClearPageUptodate(page);
1203                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1204                         SetPageUptodate(page);
1205                 } else if (!PagePrivate(page) &&
1206                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1207                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1208                 }
1209
1210                 if (--bvec >= bio->bi_io_vec)
1211                         prefetchw(&bvec->bv_page->flags);
1212
1213                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1214                         unlock_page(page);
1215         } while (bvec >= bio->bi_io_vec);
1216
1217         _xfs_buf_ioend(bp, 1);
1218         bio_put(bio);
1219 }
1220
1221 STATIC void
1222 _xfs_buf_ioapply(
1223         xfs_buf_t               *bp)
1224 {
1225         int                     rw, map_i, total_nr_pages, nr_pages;
1226         struct bio              *bio;
1227         int                     offset = bp->b_offset;
1228         int                     size = bp->b_count_desired;
1229         sector_t                sector = bp->b_bn;
1230         unsigned int            blocksize = bp->b_target->bt_bsize;
1231
1232         total_nr_pages = bp->b_page_count;
1233         map_i = 0;
1234
1235         if (bp->b_flags & XBF_ORDERED) {
1236                 ASSERT(!(bp->b_flags & XBF_READ));
1237                 rw = WRITE_BARRIER;
1238         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1239                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1240                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1241                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1242         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1243                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1244                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1245                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1246         } else {
1247                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1248                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1249         }
1250
1251         /* Special code path for reading a sub page size buffer in --
1252          * we populate up the whole page, and hence the other metadata
1253          * in the same page.  This optimization is only valid when the
1254          * filesystem block size is not smaller than the page size.
1255          */
1256         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1257             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1258               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1259             (blocksize >= PAGE_CACHE_SIZE)) {
1260                 bio = bio_alloc(GFP_NOIO, 1);
1261
1262                 bio->bi_bdev = bp->b_target->bt_bdev;
1263                 bio->bi_sector = sector - (offset >> BBSHIFT);
1264                 bio->bi_end_io = xfs_buf_bio_end_io;
1265                 bio->bi_private = bp;
1266
1267                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1268                 size = 0;
1269
1270                 atomic_inc(&bp->b_io_remaining);
1271
1272                 goto submit_io;
1273         }
1274
1275 next_chunk:
1276         atomic_inc(&bp->b_io_remaining);
1277         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1278         if (nr_pages > total_nr_pages)
1279                 nr_pages = total_nr_pages;
1280
1281         bio = bio_alloc(GFP_NOIO, nr_pages);
1282         bio->bi_bdev = bp->b_target->bt_bdev;
1283         bio->bi_sector = sector;
1284         bio->bi_end_io = xfs_buf_bio_end_io;
1285         bio->bi_private = bp;
1286
1287         for (; size && nr_pages; nr_pages--, map_i++) {
1288                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1289
1290                 if (nbytes > size)
1291                         nbytes = size;
1292
1293                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1294                 if (rbytes < nbytes)
1295                         break;
1296
1297                 offset = 0;
1298                 sector += nbytes >> BBSHIFT;
1299                 size -= nbytes;
1300                 total_nr_pages--;
1301         }
1302
1303 submit_io:
1304         if (likely(bio->bi_size)) {
1305                 if (xfs_buf_is_vmapped(bp)) {
1306                         flush_kernel_vmap_range(bp->b_addr,
1307                                                 xfs_buf_vmap_len(bp));
1308                 }
1309                 submit_bio(rw, bio);
1310                 if (size)
1311                         goto next_chunk;
1312         } else {
1313                 bio_put(bio);
1314                 xfs_buf_ioerror(bp, EIO);
1315         }
1316 }
1317
1318 int
1319 xfs_buf_iorequest(
1320         xfs_buf_t               *bp)
1321 {
1322         trace_xfs_buf_iorequest(bp, _RET_IP_);
1323
1324         if (bp->b_flags & XBF_DELWRI) {
1325                 xfs_buf_delwri_queue(bp, 1);
1326                 return 0;
1327         }
1328
1329         if (bp->b_flags & XBF_WRITE) {
1330                 xfs_buf_wait_unpin(bp);
1331         }
1332
1333         xfs_buf_hold(bp);
1334
1335         /* Set the count to 1 initially, this will stop an I/O
1336          * completion callout which happens before we have started
1337          * all the I/O from calling xfs_buf_ioend too early.
1338          */
1339         atomic_set(&bp->b_io_remaining, 1);
1340         _xfs_buf_ioapply(bp);
1341         _xfs_buf_ioend(bp, 0);
1342
1343         xfs_buf_rele(bp);
1344         return 0;
1345 }
1346
1347 /*
1348  *      Waits for I/O to complete on the buffer supplied.
1349  *      It returns immediately if no I/O is pending.
1350  *      It returns the I/O error code, if any, or 0 if there was no error.
1351  */
1352 int
1353 xfs_buf_iowait(
1354         xfs_buf_t               *bp)
1355 {
1356         trace_xfs_buf_iowait(bp, _RET_IP_);
1357
1358         if (atomic_read(&bp->b_io_remaining))
1359                 blk_run_address_space(bp->b_target->bt_mapping);
1360         wait_for_completion(&bp->b_iowait);
1361
1362         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1363         return bp->b_error;
1364 }
1365
1366 xfs_caddr_t
1367 xfs_buf_offset(
1368         xfs_buf_t               *bp,
1369         size_t                  offset)
1370 {
1371         struct page             *page;
1372
1373         if (bp->b_flags & XBF_MAPPED)
1374                 return XFS_BUF_PTR(bp) + offset;
1375
1376         offset += bp->b_offset;
1377         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1378         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1379 }
1380
1381 /*
1382  *      Move data into or out of a buffer.
1383  */
1384 void
1385 xfs_buf_iomove(
1386         xfs_buf_t               *bp,    /* buffer to process            */
1387         size_t                  boff,   /* starting buffer offset       */
1388         size_t                  bsize,  /* length to copy               */
1389         void                    *data,  /* data address                 */
1390         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1391 {
1392         size_t                  bend, cpoff, csize;
1393         struct page             *page;
1394
1395         bend = boff + bsize;
1396         while (boff < bend) {
1397                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1398                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1399                 csize = min_t(size_t,
1400                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1401
1402                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1403
1404                 switch (mode) {
1405                 case XBRW_ZERO:
1406                         memset(page_address(page) + cpoff, 0, csize);
1407                         break;
1408                 case XBRW_READ:
1409                         memcpy(data, page_address(page) + cpoff, csize);
1410                         break;
1411                 case XBRW_WRITE:
1412                         memcpy(page_address(page) + cpoff, data, csize);
1413                 }
1414
1415                 boff += csize;
1416                 data += csize;
1417         }
1418 }
1419
1420 /*
1421  *      Handling of buffer targets (buftargs).
1422  */
1423
1424 /*
1425  *      Wait for any bufs with callbacks that have been submitted but
1426  *      have not yet returned... walk the hash list for the target.
1427  */
1428 void
1429 xfs_wait_buftarg(
1430         xfs_buftarg_t   *btp)
1431 {
1432         xfs_buf_t       *bp, *n;
1433         xfs_bufhash_t   *hash;
1434         uint            i;
1435
1436         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1437                 hash = &btp->bt_hash[i];
1438 again:
1439                 spin_lock(&hash->bh_lock);
1440                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1441                         ASSERT(btp == bp->b_target);
1442                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1443                                 spin_unlock(&hash->bh_lock);
1444                                 /*
1445                                  * Catch superblock reference count leaks
1446                                  * immediately
1447                                  */
1448                                 BUG_ON(bp->b_bn == 0);
1449                                 delay(100);
1450                                 goto again;
1451                         }
1452                 }
1453                 spin_unlock(&hash->bh_lock);
1454         }
1455 }
1456
1457 /*
1458  *      Allocate buffer hash table for a given target.
1459  *      For devices containing metadata (i.e. not the log/realtime devices)
1460  *      we need to allocate a much larger hash table.
1461  */
1462 STATIC void
1463 xfs_alloc_bufhash(
1464         xfs_buftarg_t           *btp,
1465         int                     external)
1466 {
1467         unsigned int            i;
1468
1469         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1470         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1471         btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1472                                          sizeof(xfs_bufhash_t));
1473         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1474                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1475                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1476         }
1477 }
1478
1479 STATIC void
1480 xfs_free_bufhash(
1481         xfs_buftarg_t           *btp)
1482 {
1483         kmem_free_large(btp->bt_hash);
1484         btp->bt_hash = NULL;
1485 }
1486
1487 /*
1488  *      buftarg list for delwrite queue processing
1489  */
1490 static LIST_HEAD(xfs_buftarg_list);
1491 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1492
1493 STATIC void
1494 xfs_register_buftarg(
1495         xfs_buftarg_t           *btp)
1496 {
1497         spin_lock(&xfs_buftarg_lock);
1498         list_add(&btp->bt_list, &xfs_buftarg_list);
1499         spin_unlock(&xfs_buftarg_lock);
1500 }
1501
1502 STATIC void
1503 xfs_unregister_buftarg(
1504         xfs_buftarg_t           *btp)
1505 {
1506         spin_lock(&xfs_buftarg_lock);
1507         list_del(&btp->bt_list);
1508         spin_unlock(&xfs_buftarg_lock);
1509 }
1510
1511 void
1512 xfs_free_buftarg(
1513         struct xfs_mount        *mp,
1514         struct xfs_buftarg      *btp)
1515 {
1516         xfs_flush_buftarg(btp, 1);
1517         if (mp->m_flags & XFS_MOUNT_BARRIER)
1518                 xfs_blkdev_issue_flush(btp);
1519         xfs_free_bufhash(btp);
1520         iput(btp->bt_mapping->host);
1521
1522         /* Unregister the buftarg first so that we don't get a
1523          * wakeup finding a non-existent task
1524          */
1525         xfs_unregister_buftarg(btp);
1526         kthread_stop(btp->bt_task);
1527
1528         kmem_free(btp);
1529 }
1530
1531 STATIC int
1532 xfs_setsize_buftarg_flags(
1533         xfs_buftarg_t           *btp,
1534         unsigned int            blocksize,
1535         unsigned int            sectorsize,
1536         int                     verbose)
1537 {
1538         btp->bt_bsize = blocksize;
1539         btp->bt_sshift = ffs(sectorsize) - 1;
1540         btp->bt_smask = sectorsize - 1;
1541
1542         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1543                 printk(KERN_WARNING
1544                         "XFS: Cannot set_blocksize to %u on device %s\n",
1545                         sectorsize, XFS_BUFTARG_NAME(btp));
1546                 return EINVAL;
1547         }
1548
1549         if (verbose &&
1550             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1551                 printk(KERN_WARNING
1552                         "XFS: %u byte sectors in use on device %s.  "
1553                         "This is suboptimal; %u or greater is ideal.\n",
1554                         sectorsize, XFS_BUFTARG_NAME(btp),
1555                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1556         }
1557
1558         return 0;
1559 }
1560
1561 /*
1562  *      When allocating the initial buffer target we have not yet
1563  *      read in the superblock, so don't know what sized sectors
1564  *      are being used is at this early stage.  Play safe.
1565  */
1566 STATIC int
1567 xfs_setsize_buftarg_early(
1568         xfs_buftarg_t           *btp,
1569         struct block_device     *bdev)
1570 {
1571         return xfs_setsize_buftarg_flags(btp,
1572                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1573 }
1574
1575 int
1576 xfs_setsize_buftarg(
1577         xfs_buftarg_t           *btp,
1578         unsigned int            blocksize,
1579         unsigned int            sectorsize)
1580 {
1581         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1582 }
1583
1584 STATIC int
1585 xfs_mapping_buftarg(
1586         xfs_buftarg_t           *btp,
1587         struct block_device     *bdev)
1588 {
1589         struct backing_dev_info *bdi;
1590         struct inode            *inode;
1591         struct address_space    *mapping;
1592         static const struct address_space_operations mapping_aops = {
1593                 .sync_page = block_sync_page,
1594                 .migratepage = fail_migrate_page,
1595         };
1596
1597         inode = new_inode(bdev->bd_inode->i_sb);
1598         if (!inode) {
1599                 printk(KERN_WARNING
1600                         "XFS: Cannot allocate mapping inode for device %s\n",
1601                         XFS_BUFTARG_NAME(btp));
1602                 return ENOMEM;
1603         }
1604         inode->i_mode = S_IFBLK;
1605         inode->i_bdev = bdev;
1606         inode->i_rdev = bdev->bd_dev;
1607         bdi = blk_get_backing_dev_info(bdev);
1608         if (!bdi)
1609                 bdi = &default_backing_dev_info;
1610         mapping = &inode->i_data;
1611         mapping->a_ops = &mapping_aops;
1612         mapping->backing_dev_info = bdi;
1613         mapping_set_gfp_mask(mapping, GFP_NOFS);
1614         btp->bt_mapping = mapping;
1615         return 0;
1616 }
1617
1618 STATIC int
1619 xfs_alloc_delwrite_queue(
1620         xfs_buftarg_t           *btp,
1621         const char              *fsname)
1622 {
1623         int     error = 0;
1624
1625         INIT_LIST_HEAD(&btp->bt_list);
1626         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1627         spin_lock_init(&btp->bt_delwrite_lock);
1628         btp->bt_flags = 0;
1629         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1630         if (IS_ERR(btp->bt_task)) {
1631                 error = PTR_ERR(btp->bt_task);
1632                 goto out_error;
1633         }
1634         xfs_register_buftarg(btp);
1635 out_error:
1636         return error;
1637 }
1638
1639 xfs_buftarg_t *
1640 xfs_alloc_buftarg(
1641         struct block_device     *bdev,
1642         int                     external,
1643         const char              *fsname)
1644 {
1645         xfs_buftarg_t           *btp;
1646
1647         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1648
1649         btp->bt_dev =  bdev->bd_dev;
1650         btp->bt_bdev = bdev;
1651         if (xfs_setsize_buftarg_early(btp, bdev))
1652                 goto error;
1653         if (xfs_mapping_buftarg(btp, bdev))
1654                 goto error;
1655         if (xfs_alloc_delwrite_queue(btp, fsname))
1656                 goto error;
1657         xfs_alloc_bufhash(btp, external);
1658         return btp;
1659
1660 error:
1661         kmem_free(btp);
1662         return NULL;
1663 }
1664
1665
1666 /*
1667  *      Delayed write buffer handling
1668  */
1669 STATIC void
1670 xfs_buf_delwri_queue(
1671         xfs_buf_t               *bp,
1672         int                     unlock)
1673 {
1674         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1675         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1676
1677         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1678
1679         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1680
1681         spin_lock(dwlk);
1682         /* If already in the queue, dequeue and place at tail */
1683         if (!list_empty(&bp->b_list)) {
1684                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1685                 if (unlock)
1686                         atomic_dec(&bp->b_hold);
1687                 list_del(&bp->b_list);
1688         }
1689
1690         if (list_empty(dwq)) {
1691                 /* start xfsbufd as it is about to have something to do */
1692                 wake_up_process(bp->b_target->bt_task);
1693         }
1694
1695         bp->b_flags |= _XBF_DELWRI_Q;
1696         list_add_tail(&bp->b_list, dwq);
1697         bp->b_queuetime = jiffies;
1698         spin_unlock(dwlk);
1699
1700         if (unlock)
1701                 xfs_buf_unlock(bp);
1702 }
1703
1704 void
1705 xfs_buf_delwri_dequeue(
1706         xfs_buf_t               *bp)
1707 {
1708         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1709         int                     dequeued = 0;
1710
1711         spin_lock(dwlk);
1712         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1713                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1714                 list_del_init(&bp->b_list);
1715                 dequeued = 1;
1716         }
1717         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1718         spin_unlock(dwlk);
1719
1720         if (dequeued)
1721                 xfs_buf_rele(bp);
1722
1723         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1724 }
1725
1726 /*
1727  * If a delwri buffer needs to be pushed before it has aged out, then promote
1728  * it to the head of the delwri queue so that it will be flushed on the next
1729  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1730  * than the age currently needed to flush the buffer. Hence the next time the
1731  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1732  */
1733 void
1734 xfs_buf_delwri_promote(
1735         struct xfs_buf  *bp)
1736 {
1737         struct xfs_buftarg *btp = bp->b_target;
1738         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1739
1740         ASSERT(bp->b_flags & XBF_DELWRI);
1741         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1742
1743         /*
1744          * Check the buffer age before locking the delayed write queue as we
1745          * don't need to promote buffers that are already past the flush age.
1746          */
1747         if (bp->b_queuetime < jiffies - age)
1748                 return;
1749         bp->b_queuetime = jiffies - age;
1750         spin_lock(&btp->bt_delwrite_lock);
1751         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1752         spin_unlock(&btp->bt_delwrite_lock);
1753 }
1754
1755 STATIC void
1756 xfs_buf_runall_queues(
1757         struct workqueue_struct *queue)
1758 {
1759         flush_workqueue(queue);
1760 }
1761
1762 STATIC int
1763 xfsbufd_wakeup(
1764         struct shrinker         *shrink,
1765         int                     priority,
1766         gfp_t                   mask)
1767 {
1768         xfs_buftarg_t           *btp;
1769
1770         spin_lock(&xfs_buftarg_lock);
1771         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1772                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1773                         continue;
1774                 if (list_empty(&btp->bt_delwrite_queue))
1775                         continue;
1776                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1777                 wake_up_process(btp->bt_task);
1778         }
1779         spin_unlock(&xfs_buftarg_lock);
1780         return 0;
1781 }
1782
1783 /*
1784  * Move as many buffers as specified to the supplied list
1785  * idicating if we skipped any buffers to prevent deadlocks.
1786  */
1787 STATIC int
1788 xfs_buf_delwri_split(
1789         xfs_buftarg_t   *target,
1790         struct list_head *list,
1791         unsigned long   age)
1792 {
1793         xfs_buf_t       *bp, *n;
1794         struct list_head *dwq = &target->bt_delwrite_queue;
1795         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1796         int             skipped = 0;
1797         int             force;
1798
1799         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800         INIT_LIST_HEAD(list);
1801         spin_lock(dwlk);
1802         list_for_each_entry_safe(bp, n, dwq, b_list) {
1803                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1804                 ASSERT(bp->b_flags & XBF_DELWRI);
1805
1806                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1807                         if (!force &&
1808                             time_before(jiffies, bp->b_queuetime + age)) {
1809                                 xfs_buf_unlock(bp);
1810                                 break;
1811                         }
1812
1813                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1814                                          _XBF_RUN_QUEUES);
1815                         bp->b_flags |= XBF_WRITE;
1816                         list_move_tail(&bp->b_list, list);
1817                 } else
1818                         skipped++;
1819         }
1820         spin_unlock(dwlk);
1821
1822         return skipped;
1823
1824 }
1825
1826 /*
1827  * Compare function is more complex than it needs to be because
1828  * the return value is only 32 bits and we are doing comparisons
1829  * on 64 bit values
1830  */
1831 static int
1832 xfs_buf_cmp(
1833         void            *priv,
1834         struct list_head *a,
1835         struct list_head *b)
1836 {
1837         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1838         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1839         xfs_daddr_t             diff;
1840
1841         diff = ap->b_bn - bp->b_bn;
1842         if (diff < 0)
1843                 return -1;
1844         if (diff > 0)
1845                 return 1;
1846         return 0;
1847 }
1848
1849 void
1850 xfs_buf_delwri_sort(
1851         xfs_buftarg_t   *target,
1852         struct list_head *list)
1853 {
1854         list_sort(NULL, list, xfs_buf_cmp);
1855 }
1856
1857 STATIC int
1858 xfsbufd(
1859         void            *data)
1860 {
1861         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1862
1863         current->flags |= PF_MEMALLOC;
1864
1865         set_freezable();
1866
1867         do {
1868                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1869                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1870                 int     count = 0;
1871                 struct list_head tmp;
1872
1873                 if (unlikely(freezing(current))) {
1874                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1875                         refrigerator();
1876                 } else {
1877                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1878                 }
1879
1880                 /* sleep for a long time if there is nothing to do. */
1881                 if (list_empty(&target->bt_delwrite_queue))
1882                         tout = MAX_SCHEDULE_TIMEOUT;
1883                 schedule_timeout_interruptible(tout);
1884
1885                 xfs_buf_delwri_split(target, &tmp, age);
1886                 list_sort(NULL, &tmp, xfs_buf_cmp);
1887                 while (!list_empty(&tmp)) {
1888                         struct xfs_buf *bp;
1889                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1890                         list_del_init(&bp->b_list);
1891                         xfs_buf_iostrategy(bp);
1892                         count++;
1893                 }
1894                 if (count)
1895                         blk_run_address_space(target->bt_mapping);
1896
1897         } while (!kthread_should_stop());
1898
1899         return 0;
1900 }
1901
1902 /*
1903  *      Go through all incore buffers, and release buffers if they belong to
1904  *      the given device. This is used in filesystem error handling to
1905  *      preserve the consistency of its metadata.
1906  */
1907 int
1908 xfs_flush_buftarg(
1909         xfs_buftarg_t   *target,
1910         int             wait)
1911 {
1912         xfs_buf_t       *bp;
1913         int             pincount = 0;
1914         LIST_HEAD(tmp_list);
1915         LIST_HEAD(wait_list);
1916
1917         xfs_buf_runall_queues(xfsconvertd_workqueue);
1918         xfs_buf_runall_queues(xfsdatad_workqueue);
1919         xfs_buf_runall_queues(xfslogd_workqueue);
1920
1921         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1922         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1923
1924         /*
1925          * Dropped the delayed write list lock, now walk the temporary list.
1926          * All I/O is issued async and then if we need to wait for completion
1927          * we do that after issuing all the IO.
1928          */
1929         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1930         while (!list_empty(&tmp_list)) {
1931                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1932                 ASSERT(target == bp->b_target);
1933                 list_del_init(&bp->b_list);
1934                 if (wait) {
1935                         bp->b_flags &= ~XBF_ASYNC;
1936                         list_add(&bp->b_list, &wait_list);
1937                 }
1938                 xfs_buf_iostrategy(bp);
1939         }
1940
1941         if (wait) {
1942                 /* Expedite and wait for IO to complete. */
1943                 blk_run_address_space(target->bt_mapping);
1944                 while (!list_empty(&wait_list)) {
1945                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1946
1947                         list_del_init(&bp->b_list);
1948                         xfs_iowait(bp);
1949                         xfs_buf_relse(bp);
1950                 }
1951         }
1952
1953         return pincount;
1954 }
1955
1956 int __init
1957 xfs_buf_init(void)
1958 {
1959         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1960                                                 KM_ZONE_HWALIGN, NULL);
1961         if (!xfs_buf_zone)
1962                 goto out;
1963
1964         xfslogd_workqueue = create_workqueue("xfslogd");
1965         if (!xfslogd_workqueue)
1966                 goto out_free_buf_zone;
1967
1968         xfsdatad_workqueue = create_workqueue("xfsdatad");
1969         if (!xfsdatad_workqueue)
1970                 goto out_destroy_xfslogd_workqueue;
1971
1972         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1973         if (!xfsconvertd_workqueue)
1974                 goto out_destroy_xfsdatad_workqueue;
1975
1976         register_shrinker(&xfs_buf_shake);
1977         return 0;
1978
1979  out_destroy_xfsdatad_workqueue:
1980         destroy_workqueue(xfsdatad_workqueue);
1981  out_destroy_xfslogd_workqueue:
1982         destroy_workqueue(xfslogd_workqueue);
1983  out_free_buf_zone:
1984         kmem_zone_destroy(xfs_buf_zone);
1985  out:
1986         return -ENOMEM;
1987 }
1988
1989 void
1990 xfs_buf_terminate(void)
1991 {
1992         unregister_shrinker(&xfs_buf_shake);
1993         destroy_workqueue(xfsconvertd_workqueue);
1994         destroy_workqueue(xfsdatad_workqueue);
1995         destroy_workqueue(xfslogd_workqueue);
1996         kmem_zone_destroy(xfs_buf_zone);
1997 }
1998
1999 #ifdef CONFIG_KDB_MODULES
2000 struct list_head *
2001 xfs_get_buftarg_list(void)
2002 {
2003         return &xfs_buftarg_list;
2004 }
2005 #endif