Drop 'size' argument from bio_endio and bi_end_io
[firefly-linux-kernel-4.4.55.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42         .shrink = xfsbufd_wakeup,
43         .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52         xfs_buf_t       *bp,
53         char            *id,
54         void            *data,
55         void            *ra)
56 {
57         ktrace_enter(xfs_buf_trace_buf,
58                 bp, id,
59                 (void *)(unsigned long)bp->b_flags,
60                 (void *)(unsigned long)bp->b_hold.counter,
61                 (void *)(unsigned long)bp->b_sema.count.counter,
62                 (void *)current,
63                 data, ra,
64                 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65                 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66                 (void *)(unsigned long)bp->b_buffer_length,
67                 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE      4096
71 #define XB_TRACE(bp, id, data)  \
72         xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data)  do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp)       do { } while (0)
83 # define XB_CLEAR_OWNER(bp)     do { } while (0)
84 # define XB_GET_OWNER(bp)       do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97         kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100  *      Page Region interfaces.
101  *
102  *      For pages in filesystems where the blocksize is smaller than the
103  *      pagesize, we use the page->private field (long) to hold a bitmap
104  *      of uptodate regions within the page.
105  *
106  *      Each such region is "bytes per page / bits per long" bytes long.
107  *
108  *      NBPPR == number-of-bytes-per-page-region
109  *      BTOPR == bytes-to-page-region (rounded up)
110  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
111  */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125         size_t          offset,
126         size_t          length)
127 {
128         unsigned long   mask;
129         int             first, final;
130
131         first = BTOPR(offset);
132         final = BTOPRT(offset + length - 1);
133         first = min(first, final);
134
135         mask = ~0UL;
136         mask <<= BITS_PER_LONG - (final - first);
137         mask >>= BITS_PER_LONG - (final);
138
139         ASSERT(offset + length <= PAGE_CACHE_SIZE);
140         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142         return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147         struct page     *page,
148         size_t          offset,
149         size_t          length)
150 {
151         set_page_private(page,
152                 page_private(page) | page_region_mask(offset, length));
153         if (page_private(page) == ~0UL)
154                 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159         struct page     *page,
160         size_t          offset,
161         size_t          length)
162 {
163         unsigned long   mask = page_region_mask(offset, length);
164
165         return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169  *      Mapping of multi-page buffers into contiguous virtual space
170  */
171
172 typedef struct a_list {
173         void            *vm_addr;
174         struct a_list   *next;
175 } a_list_t;
176
177 static a_list_t         *as_free_head;
178 static int              as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182  *      Try to batch vunmaps because they are costly.
183  */
184 STATIC void
185 free_address(
186         void            *addr)
187 {
188         a_list_t        *aentry;
189
190         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
191         if (likely(aentry)) {
192                 spin_lock(&as_lock);
193                 aentry->next = as_free_head;
194                 aentry->vm_addr = addr;
195                 as_free_head = aentry;
196                 as_list_len++;
197                 spin_unlock(&as_lock);
198         } else {
199                 vunmap(addr);
200         }
201 }
202
203 STATIC void
204 purge_addresses(void)
205 {
206         a_list_t        *aentry, *old;
207
208         if (as_free_head == NULL)
209                 return;
210
211         spin_lock(&as_lock);
212         aentry = as_free_head;
213         as_free_head = NULL;
214         as_list_len = 0;
215         spin_unlock(&as_lock);
216
217         while ((old = aentry) != NULL) {
218                 vunmap(aentry->vm_addr);
219                 aentry = aentry->next;
220                 kfree(old);
221         }
222 }
223
224 /*
225  *      Internal xfs_buf_t object manipulation
226  */
227
228 STATIC void
229 _xfs_buf_initialize(
230         xfs_buf_t               *bp,
231         xfs_buftarg_t           *target,
232         xfs_off_t               range_base,
233         size_t                  range_length,
234         xfs_buf_flags_t         flags)
235 {
236         /*
237          * We don't want certain flags to appear in b_flags.
238          */
239         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
240
241         memset(bp, 0, sizeof(xfs_buf_t));
242         atomic_set(&bp->b_hold, 1);
243         init_MUTEX_LOCKED(&bp->b_iodonesema);
244         INIT_LIST_HEAD(&bp->b_list);
245         INIT_LIST_HEAD(&bp->b_hash_list);
246         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
247         XB_SET_OWNER(bp);
248         bp->b_target = target;
249         bp->b_file_offset = range_base;
250         /*
251          * Set buffer_length and count_desired to the same value initially.
252          * I/O routines should use count_desired, which will be the same in
253          * most cases but may be reset (e.g. XFS recovery).
254          */
255         bp->b_buffer_length = bp->b_count_desired = range_length;
256         bp->b_flags = flags;
257         bp->b_bn = XFS_BUF_DADDR_NULL;
258         atomic_set(&bp->b_pin_count, 0);
259         init_waitqueue_head(&bp->b_waiters);
260
261         XFS_STATS_INC(xb_create);
262         XB_TRACE(bp, "initialize", target);
263 }
264
265 /*
266  *      Allocate a page array capable of holding a specified number
267  *      of pages, and point the page buf at it.
268  */
269 STATIC int
270 _xfs_buf_get_pages(
271         xfs_buf_t               *bp,
272         int                     page_count,
273         xfs_buf_flags_t         flags)
274 {
275         /* Make sure that we have a page list */
276         if (bp->b_pages == NULL) {
277                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
278                 bp->b_page_count = page_count;
279                 if (page_count <= XB_PAGES) {
280                         bp->b_pages = bp->b_page_array;
281                 } else {
282                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
283                                         page_count, xb_to_km(flags));
284                         if (bp->b_pages == NULL)
285                                 return -ENOMEM;
286                 }
287                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
288         }
289         return 0;
290 }
291
292 /*
293  *      Frees b_pages if it was allocated.
294  */
295 STATIC void
296 _xfs_buf_free_pages(
297         xfs_buf_t       *bp)
298 {
299         if (bp->b_pages != bp->b_page_array) {
300                 kmem_free(bp->b_pages,
301                           bp->b_page_count * sizeof(struct page *));
302         }
303 }
304
305 /*
306  *      Releases the specified buffer.
307  *
308  *      The modification state of any associated pages is left unchanged.
309  *      The buffer most not be on any hash - use xfs_buf_rele instead for
310  *      hashed and refcounted buffers
311  */
312 void
313 xfs_buf_free(
314         xfs_buf_t               *bp)
315 {
316         XB_TRACE(bp, "free", 0);
317
318         ASSERT(list_empty(&bp->b_hash_list));
319
320         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
321                 uint            i;
322
323                 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
324                         free_address(bp->b_addr - bp->b_offset);
325
326                 for (i = 0; i < bp->b_page_count; i++) {
327                         struct page     *page = bp->b_pages[i];
328
329                         if (bp->b_flags & _XBF_PAGE_CACHE)
330                                 ASSERT(!PagePrivate(page));
331                         page_cache_release(page);
332                 }
333                 _xfs_buf_free_pages(bp);
334         }
335
336         xfs_buf_deallocate(bp);
337 }
338
339 /*
340  *      Finds all pages for buffer in question and builds it's page list.
341  */
342 STATIC int
343 _xfs_buf_lookup_pages(
344         xfs_buf_t               *bp,
345         uint                    flags)
346 {
347         struct address_space    *mapping = bp->b_target->bt_mapping;
348         size_t                  blocksize = bp->b_target->bt_bsize;
349         size_t                  size = bp->b_count_desired;
350         size_t                  nbytes, offset;
351         gfp_t                   gfp_mask = xb_to_gfp(flags);
352         unsigned short          page_count, i;
353         pgoff_t                 first;
354         xfs_off_t               end;
355         int                     error;
356
357         end = bp->b_file_offset + bp->b_buffer_length;
358         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
359
360         error = _xfs_buf_get_pages(bp, page_count, flags);
361         if (unlikely(error))
362                 return error;
363         bp->b_flags |= _XBF_PAGE_CACHE;
364
365         offset = bp->b_offset;
366         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
367
368         for (i = 0; i < bp->b_page_count; i++) {
369                 struct page     *page;
370                 uint            retries = 0;
371
372               retry:
373                 page = find_or_create_page(mapping, first + i, gfp_mask);
374                 if (unlikely(page == NULL)) {
375                         if (flags & XBF_READ_AHEAD) {
376                                 bp->b_page_count = i;
377                                 for (i = 0; i < bp->b_page_count; i++)
378                                         unlock_page(bp->b_pages[i]);
379                                 return -ENOMEM;
380                         }
381
382                         /*
383                          * This could deadlock.
384                          *
385                          * But until all the XFS lowlevel code is revamped to
386                          * handle buffer allocation failures we can't do much.
387                          */
388                         if (!(++retries % 100))
389                                 printk(KERN_ERR
390                                         "XFS: possible memory allocation "
391                                         "deadlock in %s (mode:0x%x)\n",
392                                         __FUNCTION__, gfp_mask);
393
394                         XFS_STATS_INC(xb_page_retries);
395                         xfsbufd_wakeup(0, gfp_mask);
396                         congestion_wait(WRITE, HZ/50);
397                         goto retry;
398                 }
399
400                 XFS_STATS_INC(xb_page_found);
401
402                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
403                 size -= nbytes;
404
405                 ASSERT(!PagePrivate(page));
406                 if (!PageUptodate(page)) {
407                         page_count--;
408                         if (blocksize >= PAGE_CACHE_SIZE) {
409                                 if (flags & XBF_READ)
410                                         bp->b_locked = 1;
411                         } else if (!PagePrivate(page)) {
412                                 if (test_page_region(page, offset, nbytes))
413                                         page_count++;
414                         }
415                 }
416
417                 bp->b_pages[i] = page;
418                 offset = 0;
419         }
420
421         if (!bp->b_locked) {
422                 for (i = 0; i < bp->b_page_count; i++)
423                         unlock_page(bp->b_pages[i]);
424         }
425
426         if (page_count == bp->b_page_count)
427                 bp->b_flags |= XBF_DONE;
428
429         XB_TRACE(bp, "lookup_pages", (long)page_count);
430         return error;
431 }
432
433 /*
434  *      Map buffer into kernel address-space if nessecary.
435  */
436 STATIC int
437 _xfs_buf_map_pages(
438         xfs_buf_t               *bp,
439         uint                    flags)
440 {
441         /* A single page buffer is always mappable */
442         if (bp->b_page_count == 1) {
443                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
444                 bp->b_flags |= XBF_MAPPED;
445         } else if (flags & XBF_MAPPED) {
446                 if (as_list_len > 64)
447                         purge_addresses();
448                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
449                                         VM_MAP, PAGE_KERNEL);
450                 if (unlikely(bp->b_addr == NULL))
451                         return -ENOMEM;
452                 bp->b_addr += bp->b_offset;
453                 bp->b_flags |= XBF_MAPPED;
454         }
455
456         return 0;
457 }
458
459 /*
460  *      Finding and Reading Buffers
461  */
462
463 /*
464  *      Look up, and creates if absent, a lockable buffer for
465  *      a given range of an inode.  The buffer is returned
466  *      locked.  If other overlapping buffers exist, they are
467  *      released before the new buffer is created and locked,
468  *      which may imply that this call will block until those buffers
469  *      are unlocked.  No I/O is implied by this call.
470  */
471 xfs_buf_t *
472 _xfs_buf_find(
473         xfs_buftarg_t           *btp,   /* block device target          */
474         xfs_off_t               ioff,   /* starting offset of range     */
475         size_t                  isize,  /* length of range              */
476         xfs_buf_flags_t         flags,
477         xfs_buf_t               *new_bp)
478 {
479         xfs_off_t               range_base;
480         size_t                  range_length;
481         xfs_bufhash_t           *hash;
482         xfs_buf_t               *bp, *n;
483
484         range_base = (ioff << BBSHIFT);
485         range_length = (isize << BBSHIFT);
486
487         /* Check for IOs smaller than the sector size / not sector aligned */
488         ASSERT(!(range_length < (1 << btp->bt_sshift)));
489         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
490
491         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
492
493         spin_lock(&hash->bh_lock);
494
495         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
496                 ASSERT(btp == bp->b_target);
497                 if (bp->b_file_offset == range_base &&
498                     bp->b_buffer_length == range_length) {
499                         /*
500                          * If we look at something, bring it to the
501                          * front of the list for next time.
502                          */
503                         atomic_inc(&bp->b_hold);
504                         list_move(&bp->b_hash_list, &hash->bh_list);
505                         goto found;
506                 }
507         }
508
509         /* No match found */
510         if (new_bp) {
511                 _xfs_buf_initialize(new_bp, btp, range_base,
512                                 range_length, flags);
513                 new_bp->b_hash = hash;
514                 list_add(&new_bp->b_hash_list, &hash->bh_list);
515         } else {
516                 XFS_STATS_INC(xb_miss_locked);
517         }
518
519         spin_unlock(&hash->bh_lock);
520         return new_bp;
521
522 found:
523         spin_unlock(&hash->bh_lock);
524
525         /* Attempt to get the semaphore without sleeping,
526          * if this does not work then we need to drop the
527          * spinlock and do a hard attempt on the semaphore.
528          */
529         if (down_trylock(&bp->b_sema)) {
530                 if (!(flags & XBF_TRYLOCK)) {
531                         /* wait for buffer ownership */
532                         XB_TRACE(bp, "get_lock", 0);
533                         xfs_buf_lock(bp);
534                         XFS_STATS_INC(xb_get_locked_waited);
535                 } else {
536                         /* We asked for a trylock and failed, no need
537                          * to look at file offset and length here, we
538                          * know that this buffer at least overlaps our
539                          * buffer and is locked, therefore our buffer
540                          * either does not exist, or is this buffer.
541                          */
542                         xfs_buf_rele(bp);
543                         XFS_STATS_INC(xb_busy_locked);
544                         return NULL;
545                 }
546         } else {
547                 /* trylock worked */
548                 XB_SET_OWNER(bp);
549         }
550
551         if (bp->b_flags & XBF_STALE) {
552                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
553                 bp->b_flags &= XBF_MAPPED;
554         }
555         XB_TRACE(bp, "got_lock", 0);
556         XFS_STATS_INC(xb_get_locked);
557         return bp;
558 }
559
560 /*
561  *      Assembles a buffer covering the specified range.
562  *      Storage in memory for all portions of the buffer will be allocated,
563  *      although backing storage may not be.
564  */
565 xfs_buf_t *
566 xfs_buf_get_flags(
567         xfs_buftarg_t           *target,/* target for buffer            */
568         xfs_off_t               ioff,   /* starting offset of range     */
569         size_t                  isize,  /* length of range              */
570         xfs_buf_flags_t         flags)
571 {
572         xfs_buf_t               *bp, *new_bp;
573         int                     error = 0, i;
574
575         new_bp = xfs_buf_allocate(flags);
576         if (unlikely(!new_bp))
577                 return NULL;
578
579         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
580         if (bp == new_bp) {
581                 error = _xfs_buf_lookup_pages(bp, flags);
582                 if (error)
583                         goto no_buffer;
584         } else {
585                 xfs_buf_deallocate(new_bp);
586                 if (unlikely(bp == NULL))
587                         return NULL;
588         }
589
590         for (i = 0; i < bp->b_page_count; i++)
591                 mark_page_accessed(bp->b_pages[i]);
592
593         if (!(bp->b_flags & XBF_MAPPED)) {
594                 error = _xfs_buf_map_pages(bp, flags);
595                 if (unlikely(error)) {
596                         printk(KERN_WARNING "%s: failed to map pages\n",
597                                         __FUNCTION__);
598                         goto no_buffer;
599                 }
600         }
601
602         XFS_STATS_INC(xb_get);
603
604         /*
605          * Always fill in the block number now, the mapped cases can do
606          * their own overlay of this later.
607          */
608         bp->b_bn = ioff;
609         bp->b_count_desired = bp->b_buffer_length;
610
611         XB_TRACE(bp, "get", (unsigned long)flags);
612         return bp;
613
614  no_buffer:
615         if (flags & (XBF_LOCK | XBF_TRYLOCK))
616                 xfs_buf_unlock(bp);
617         xfs_buf_rele(bp);
618         return NULL;
619 }
620
621 xfs_buf_t *
622 xfs_buf_read_flags(
623         xfs_buftarg_t           *target,
624         xfs_off_t               ioff,
625         size_t                  isize,
626         xfs_buf_flags_t         flags)
627 {
628         xfs_buf_t               *bp;
629
630         flags |= XBF_READ;
631
632         bp = xfs_buf_get_flags(target, ioff, isize, flags);
633         if (bp) {
634                 if (!XFS_BUF_ISDONE(bp)) {
635                         XB_TRACE(bp, "read", (unsigned long)flags);
636                         XFS_STATS_INC(xb_get_read);
637                         xfs_buf_iostart(bp, flags);
638                 } else if (flags & XBF_ASYNC) {
639                         XB_TRACE(bp, "read_async", (unsigned long)flags);
640                         /*
641                          * Read ahead call which is already satisfied,
642                          * drop the buffer
643                          */
644                         goto no_buffer;
645                 } else {
646                         XB_TRACE(bp, "read_done", (unsigned long)flags);
647                         /* We do not want read in the flags */
648                         bp->b_flags &= ~XBF_READ;
649                 }
650         }
651
652         return bp;
653
654  no_buffer:
655         if (flags & (XBF_LOCK | XBF_TRYLOCK))
656                 xfs_buf_unlock(bp);
657         xfs_buf_rele(bp);
658         return NULL;
659 }
660
661 /*
662  *      If we are not low on memory then do the readahead in a deadlock
663  *      safe manner.
664  */
665 void
666 xfs_buf_readahead(
667         xfs_buftarg_t           *target,
668         xfs_off_t               ioff,
669         size_t                  isize,
670         xfs_buf_flags_t         flags)
671 {
672         struct backing_dev_info *bdi;
673
674         bdi = target->bt_mapping->backing_dev_info;
675         if (bdi_read_congested(bdi))
676                 return;
677
678         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
679         xfs_buf_read_flags(target, ioff, isize, flags);
680 }
681
682 xfs_buf_t *
683 xfs_buf_get_empty(
684         size_t                  len,
685         xfs_buftarg_t           *target)
686 {
687         xfs_buf_t               *bp;
688
689         bp = xfs_buf_allocate(0);
690         if (bp)
691                 _xfs_buf_initialize(bp, target, 0, len, 0);
692         return bp;
693 }
694
695 static inline struct page *
696 mem_to_page(
697         void                    *addr)
698 {
699         if (((unsigned long)addr < VMALLOC_START) ||
700             ((unsigned long)addr >= VMALLOC_END)) {
701                 return virt_to_page(addr);
702         } else {
703                 return vmalloc_to_page(addr);
704         }
705 }
706
707 int
708 xfs_buf_associate_memory(
709         xfs_buf_t               *bp,
710         void                    *mem,
711         size_t                  len)
712 {
713         int                     rval;
714         int                     i = 0;
715         size_t                  ptr;
716         size_t                  end, end_cur;
717         off_t                   offset;
718         int                     page_count;
719
720         page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
721         offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
722         if (offset && (len > PAGE_CACHE_SIZE))
723                 page_count++;
724
725         /* Free any previous set of page pointers */
726         if (bp->b_pages)
727                 _xfs_buf_free_pages(bp);
728
729         bp->b_pages = NULL;
730         bp->b_addr = mem;
731
732         rval = _xfs_buf_get_pages(bp, page_count, 0);
733         if (rval)
734                 return rval;
735
736         bp->b_offset = offset;
737         ptr = (size_t) mem & PAGE_CACHE_MASK;
738         end = PAGE_CACHE_ALIGN((size_t) mem + len);
739         end_cur = end;
740         /* set up first page */
741         bp->b_pages[0] = mem_to_page(mem);
742
743         ptr += PAGE_CACHE_SIZE;
744         bp->b_page_count = ++i;
745         while (ptr < end) {
746                 bp->b_pages[i] = mem_to_page((void *)ptr);
747                 bp->b_page_count = ++i;
748                 ptr += PAGE_CACHE_SIZE;
749         }
750         bp->b_locked = 0;
751
752         bp->b_count_desired = bp->b_buffer_length = len;
753         bp->b_flags |= XBF_MAPPED;
754
755         return 0;
756 }
757
758 xfs_buf_t *
759 xfs_buf_get_noaddr(
760         size_t                  len,
761         xfs_buftarg_t           *target)
762 {
763         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
764         int                     error, i;
765         xfs_buf_t               *bp;
766
767         bp = xfs_buf_allocate(0);
768         if (unlikely(bp == NULL))
769                 goto fail;
770         _xfs_buf_initialize(bp, target, 0, len, 0);
771
772         error = _xfs_buf_get_pages(bp, page_count, 0);
773         if (error)
774                 goto fail_free_buf;
775
776         for (i = 0; i < page_count; i++) {
777                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
778                 if (!bp->b_pages[i])
779                         goto fail_free_mem;
780         }
781         bp->b_flags |= _XBF_PAGES;
782
783         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
784         if (unlikely(error)) {
785                 printk(KERN_WARNING "%s: failed to map pages\n",
786                                 __FUNCTION__);
787                 goto fail_free_mem;
788         }
789
790         xfs_buf_unlock(bp);
791
792         XB_TRACE(bp, "no_daddr", len);
793         return bp;
794
795  fail_free_mem:
796         while (--i >= 0)
797                 __free_page(bp->b_pages[i]);
798         _xfs_buf_free_pages(bp);
799  fail_free_buf:
800         xfs_buf_deallocate(bp);
801  fail:
802         return NULL;
803 }
804
805 /*
806  *      Increment reference count on buffer, to hold the buffer concurrently
807  *      with another thread which may release (free) the buffer asynchronously.
808  *      Must hold the buffer already to call this function.
809  */
810 void
811 xfs_buf_hold(
812         xfs_buf_t               *bp)
813 {
814         atomic_inc(&bp->b_hold);
815         XB_TRACE(bp, "hold", 0);
816 }
817
818 /*
819  *      Releases a hold on the specified buffer.  If the
820  *      the hold count is 1, calls xfs_buf_free.
821  */
822 void
823 xfs_buf_rele(
824         xfs_buf_t               *bp)
825 {
826         xfs_bufhash_t           *hash = bp->b_hash;
827
828         XB_TRACE(bp, "rele", bp->b_relse);
829
830         if (unlikely(!hash)) {
831                 ASSERT(!bp->b_relse);
832                 if (atomic_dec_and_test(&bp->b_hold))
833                         xfs_buf_free(bp);
834                 return;
835         }
836
837         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
838                 if (bp->b_relse) {
839                         atomic_inc(&bp->b_hold);
840                         spin_unlock(&hash->bh_lock);
841                         (*(bp->b_relse)) (bp);
842                 } else if (bp->b_flags & XBF_FS_MANAGED) {
843                         spin_unlock(&hash->bh_lock);
844                 } else {
845                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
846                         list_del_init(&bp->b_hash_list);
847                         spin_unlock(&hash->bh_lock);
848                         xfs_buf_free(bp);
849                 }
850         } else {
851                 /*
852                  * Catch reference count leaks
853                  */
854                 ASSERT(atomic_read(&bp->b_hold) >= 0);
855         }
856 }
857
858
859 /*
860  *      Mutual exclusion on buffers.  Locking model:
861  *
862  *      Buffers associated with inodes for which buffer locking
863  *      is not enabled are not protected by semaphores, and are
864  *      assumed to be exclusively owned by the caller.  There is a
865  *      spinlock in the buffer, used by the caller when concurrent
866  *      access is possible.
867  */
868
869 /*
870  *      Locks a buffer object, if it is not already locked.
871  *      Note that this in no way locks the underlying pages, so it is only
872  *      useful for synchronizing concurrent use of buffer objects, not for
873  *      synchronizing independent access to the underlying pages.
874  */
875 int
876 xfs_buf_cond_lock(
877         xfs_buf_t               *bp)
878 {
879         int                     locked;
880
881         locked = down_trylock(&bp->b_sema) == 0;
882         if (locked) {
883                 XB_SET_OWNER(bp);
884         }
885         XB_TRACE(bp, "cond_lock", (long)locked);
886         return locked ? 0 : -EBUSY;
887 }
888
889 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
890 int
891 xfs_buf_lock_value(
892         xfs_buf_t               *bp)
893 {
894         return atomic_read(&bp->b_sema.count);
895 }
896 #endif
897
898 /*
899  *      Locks a buffer object.
900  *      Note that this in no way locks the underlying pages, so it is only
901  *      useful for synchronizing concurrent use of buffer objects, not for
902  *      synchronizing independent access to the underlying pages.
903  */
904 void
905 xfs_buf_lock(
906         xfs_buf_t               *bp)
907 {
908         XB_TRACE(bp, "lock", 0);
909         if (atomic_read(&bp->b_io_remaining))
910                 blk_run_address_space(bp->b_target->bt_mapping);
911         down(&bp->b_sema);
912         XB_SET_OWNER(bp);
913         XB_TRACE(bp, "locked", 0);
914 }
915
916 /*
917  *      Releases the lock on the buffer object.
918  *      If the buffer is marked delwri but is not queued, do so before we
919  *      unlock the buffer as we need to set flags correctly.  We also need to
920  *      take a reference for the delwri queue because the unlocker is going to
921  *      drop their's and they don't know we just queued it.
922  */
923 void
924 xfs_buf_unlock(
925         xfs_buf_t               *bp)
926 {
927         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
928                 atomic_inc(&bp->b_hold);
929                 bp->b_flags |= XBF_ASYNC;
930                 xfs_buf_delwri_queue(bp, 0);
931         }
932
933         XB_CLEAR_OWNER(bp);
934         up(&bp->b_sema);
935         XB_TRACE(bp, "unlock", 0);
936 }
937
938
939 /*
940  *      Pinning Buffer Storage in Memory
941  *      Ensure that no attempt to force a buffer to disk will succeed.
942  */
943 void
944 xfs_buf_pin(
945         xfs_buf_t               *bp)
946 {
947         atomic_inc(&bp->b_pin_count);
948         XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
949 }
950
951 void
952 xfs_buf_unpin(
953         xfs_buf_t               *bp)
954 {
955         if (atomic_dec_and_test(&bp->b_pin_count))
956                 wake_up_all(&bp->b_waiters);
957         XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
958 }
959
960 int
961 xfs_buf_ispin(
962         xfs_buf_t               *bp)
963 {
964         return atomic_read(&bp->b_pin_count);
965 }
966
967 STATIC void
968 xfs_buf_wait_unpin(
969         xfs_buf_t               *bp)
970 {
971         DECLARE_WAITQUEUE       (wait, current);
972
973         if (atomic_read(&bp->b_pin_count) == 0)
974                 return;
975
976         add_wait_queue(&bp->b_waiters, &wait);
977         for (;;) {
978                 set_current_state(TASK_UNINTERRUPTIBLE);
979                 if (atomic_read(&bp->b_pin_count) == 0)
980                         break;
981                 if (atomic_read(&bp->b_io_remaining))
982                         blk_run_address_space(bp->b_target->bt_mapping);
983                 schedule();
984         }
985         remove_wait_queue(&bp->b_waiters, &wait);
986         set_current_state(TASK_RUNNING);
987 }
988
989 /*
990  *      Buffer Utility Routines
991  */
992
993 STATIC void
994 xfs_buf_iodone_work(
995         struct work_struct      *work)
996 {
997         xfs_buf_t               *bp =
998                 container_of(work, xfs_buf_t, b_iodone_work);
999
1000         if (bp->b_iodone)
1001                 (*(bp->b_iodone))(bp);
1002         else if (bp->b_flags & XBF_ASYNC)
1003                 xfs_buf_relse(bp);
1004 }
1005
1006 void
1007 xfs_buf_ioend(
1008         xfs_buf_t               *bp,
1009         int                     schedule)
1010 {
1011         bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1012         if (bp->b_error == 0)
1013                 bp->b_flags |= XBF_DONE;
1014
1015         XB_TRACE(bp, "iodone", bp->b_iodone);
1016
1017         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1018                 if (schedule) {
1019                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1020                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1021                 } else {
1022                         xfs_buf_iodone_work(&bp->b_iodone_work);
1023                 }
1024         } else {
1025                 up(&bp->b_iodonesema);
1026         }
1027 }
1028
1029 void
1030 xfs_buf_ioerror(
1031         xfs_buf_t               *bp,
1032         int                     error)
1033 {
1034         ASSERT(error >= 0 && error <= 0xffff);
1035         bp->b_error = (unsigned short)error;
1036         XB_TRACE(bp, "ioerror", (unsigned long)error);
1037 }
1038
1039 /*
1040  *      Initiate I/O on a buffer, based on the flags supplied.
1041  *      The b_iodone routine in the buffer supplied will only be called
1042  *      when all of the subsidiary I/O requests, if any, have been completed.
1043  */
1044 int
1045 xfs_buf_iostart(
1046         xfs_buf_t               *bp,
1047         xfs_buf_flags_t         flags)
1048 {
1049         int                     status = 0;
1050
1051         XB_TRACE(bp, "iostart", (unsigned long)flags);
1052
1053         if (flags & XBF_DELWRI) {
1054                 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1055                 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1056                 xfs_buf_delwri_queue(bp, 1);
1057                 return status;
1058         }
1059
1060         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1061                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1062         bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1063                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1064
1065         BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1066
1067         /* For writes allow an alternate strategy routine to precede
1068          * the actual I/O request (which may not be issued at all in
1069          * a shutdown situation, for example).
1070          */
1071         status = (flags & XBF_WRITE) ?
1072                 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1073
1074         /* Wait for I/O if we are not an async request.
1075          * Note: async I/O request completion will release the buffer,
1076          * and that can already be done by this point.  So using the
1077          * buffer pointer from here on, after async I/O, is invalid.
1078          */
1079         if (!status && !(flags & XBF_ASYNC))
1080                 status = xfs_buf_iowait(bp);
1081
1082         return status;
1083 }
1084
1085 STATIC_INLINE int
1086 _xfs_buf_iolocked(
1087         xfs_buf_t               *bp)
1088 {
1089         ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1090         if (bp->b_flags & XBF_READ)
1091                 return bp->b_locked;
1092         return 0;
1093 }
1094
1095 STATIC_INLINE void
1096 _xfs_buf_ioend(
1097         xfs_buf_t               *bp,
1098         int                     schedule)
1099 {
1100         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1101                 bp->b_locked = 0;
1102                 xfs_buf_ioend(bp, schedule);
1103         }
1104 }
1105
1106 STATIC int
1107 xfs_buf_bio_end_io(
1108         struct bio              *bio,
1109         int                     error)
1110 {
1111         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1112         unsigned int            blocksize = bp->b_target->bt_bsize;
1113         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1114
1115         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1116                 bp->b_error = EIO;
1117
1118         do {
1119                 struct page     *page = bvec->bv_page;
1120
1121                 ASSERT(!PagePrivate(page));
1122                 if (unlikely(bp->b_error)) {
1123                         if (bp->b_flags & XBF_READ)
1124                                 ClearPageUptodate(page);
1125                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1126                         SetPageUptodate(page);
1127                 } else if (!PagePrivate(page) &&
1128                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1129                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1130                 }
1131
1132                 if (--bvec >= bio->bi_io_vec)
1133                         prefetchw(&bvec->bv_page->flags);
1134
1135                 if (_xfs_buf_iolocked(bp)) {
1136                         unlock_page(page);
1137                 }
1138         } while (bvec >= bio->bi_io_vec);
1139
1140         _xfs_buf_ioend(bp, 1);
1141         bio_put(bio);
1142         return 0;
1143 }
1144
1145 STATIC void
1146 _xfs_buf_ioapply(
1147         xfs_buf_t               *bp)
1148 {
1149         int                     i, rw, map_i, total_nr_pages, nr_pages;
1150         struct bio              *bio;
1151         int                     offset = bp->b_offset;
1152         int                     size = bp->b_count_desired;
1153         sector_t                sector = bp->b_bn;
1154         unsigned int            blocksize = bp->b_target->bt_bsize;
1155         int                     locking = _xfs_buf_iolocked(bp);
1156
1157         total_nr_pages = bp->b_page_count;
1158         map_i = 0;
1159
1160         if (bp->b_flags & XBF_ORDERED) {
1161                 ASSERT(!(bp->b_flags & XBF_READ));
1162                 rw = WRITE_BARRIER;
1163         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1164                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1165                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1166                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1167         } else {
1168                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1169                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1170         }
1171
1172         /* Special code path for reading a sub page size buffer in --
1173          * we populate up the whole page, and hence the other metadata
1174          * in the same page.  This optimization is only valid when the
1175          * filesystem block size is not smaller than the page size.
1176          */
1177         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1178             (bp->b_flags & XBF_READ) && locking &&
1179             (blocksize >= PAGE_CACHE_SIZE)) {
1180                 bio = bio_alloc(GFP_NOIO, 1);
1181
1182                 bio->bi_bdev = bp->b_target->bt_bdev;
1183                 bio->bi_sector = sector - (offset >> BBSHIFT);
1184                 bio->bi_end_io = xfs_buf_bio_end_io;
1185                 bio->bi_private = bp;
1186
1187                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1188                 size = 0;
1189
1190                 atomic_inc(&bp->b_io_remaining);
1191
1192                 goto submit_io;
1193         }
1194
1195         /* Lock down the pages which we need to for the request */
1196         if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1197                 for (i = 0; size; i++) {
1198                         int             nbytes = PAGE_CACHE_SIZE - offset;
1199                         struct page     *page = bp->b_pages[i];
1200
1201                         if (nbytes > size)
1202                                 nbytes = size;
1203
1204                         lock_page(page);
1205
1206                         size -= nbytes;
1207                         offset = 0;
1208                 }
1209                 offset = bp->b_offset;
1210                 size = bp->b_count_desired;
1211         }
1212
1213 next_chunk:
1214         atomic_inc(&bp->b_io_remaining);
1215         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216         if (nr_pages > total_nr_pages)
1217                 nr_pages = total_nr_pages;
1218
1219         bio = bio_alloc(GFP_NOIO, nr_pages);
1220         bio->bi_bdev = bp->b_target->bt_bdev;
1221         bio->bi_sector = sector;
1222         bio->bi_end_io = xfs_buf_bio_end_io;
1223         bio->bi_private = bp;
1224
1225         for (; size && nr_pages; nr_pages--, map_i++) {
1226                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1227
1228                 if (nbytes > size)
1229                         nbytes = size;
1230
1231                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1232                 if (rbytes < nbytes)
1233                         break;
1234
1235                 offset = 0;
1236                 sector += nbytes >> BBSHIFT;
1237                 size -= nbytes;
1238                 total_nr_pages--;
1239         }
1240
1241 submit_io:
1242         if (likely(bio->bi_size)) {
1243                 submit_bio(rw, bio);
1244                 if (size)
1245                         goto next_chunk;
1246         } else {
1247                 bio_put(bio);
1248                 xfs_buf_ioerror(bp, EIO);
1249         }
1250 }
1251
1252 int
1253 xfs_buf_iorequest(
1254         xfs_buf_t               *bp)
1255 {
1256         XB_TRACE(bp, "iorequest", 0);
1257
1258         if (bp->b_flags & XBF_DELWRI) {
1259                 xfs_buf_delwri_queue(bp, 1);
1260                 return 0;
1261         }
1262
1263         if (bp->b_flags & XBF_WRITE) {
1264                 xfs_buf_wait_unpin(bp);
1265         }
1266
1267         xfs_buf_hold(bp);
1268
1269         /* Set the count to 1 initially, this will stop an I/O
1270          * completion callout which happens before we have started
1271          * all the I/O from calling xfs_buf_ioend too early.
1272          */
1273         atomic_set(&bp->b_io_remaining, 1);
1274         _xfs_buf_ioapply(bp);
1275         _xfs_buf_ioend(bp, 0);
1276
1277         xfs_buf_rele(bp);
1278         return 0;
1279 }
1280
1281 /*
1282  *      Waits for I/O to complete on the buffer supplied.
1283  *      It returns immediately if no I/O is pending.
1284  *      It returns the I/O error code, if any, or 0 if there was no error.
1285  */
1286 int
1287 xfs_buf_iowait(
1288         xfs_buf_t               *bp)
1289 {
1290         XB_TRACE(bp, "iowait", 0);
1291         if (atomic_read(&bp->b_io_remaining))
1292                 blk_run_address_space(bp->b_target->bt_mapping);
1293         down(&bp->b_iodonesema);
1294         XB_TRACE(bp, "iowaited", (long)bp->b_error);
1295         return bp->b_error;
1296 }
1297
1298 xfs_caddr_t
1299 xfs_buf_offset(
1300         xfs_buf_t               *bp,
1301         size_t                  offset)
1302 {
1303         struct page             *page;
1304
1305         if (bp->b_flags & XBF_MAPPED)
1306                 return XFS_BUF_PTR(bp) + offset;
1307
1308         offset += bp->b_offset;
1309         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1310         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1311 }
1312
1313 /*
1314  *      Move data into or out of a buffer.
1315  */
1316 void
1317 xfs_buf_iomove(
1318         xfs_buf_t               *bp,    /* buffer to process            */
1319         size_t                  boff,   /* starting buffer offset       */
1320         size_t                  bsize,  /* length to copy               */
1321         caddr_t                 data,   /* data address                 */
1322         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1323 {
1324         size_t                  bend, cpoff, csize;
1325         struct page             *page;
1326
1327         bend = boff + bsize;
1328         while (boff < bend) {
1329                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1330                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1331                 csize = min_t(size_t,
1332                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1333
1334                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1335
1336                 switch (mode) {
1337                 case XBRW_ZERO:
1338                         memset(page_address(page) + cpoff, 0, csize);
1339                         break;
1340                 case XBRW_READ:
1341                         memcpy(data, page_address(page) + cpoff, csize);
1342                         break;
1343                 case XBRW_WRITE:
1344                         memcpy(page_address(page) + cpoff, data, csize);
1345                 }
1346
1347                 boff += csize;
1348                 data += csize;
1349         }
1350 }
1351
1352 /*
1353  *      Handling of buffer targets (buftargs).
1354  */
1355
1356 /*
1357  *      Wait for any bufs with callbacks that have been submitted but
1358  *      have not yet returned... walk the hash list for the target.
1359  */
1360 void
1361 xfs_wait_buftarg(
1362         xfs_buftarg_t   *btp)
1363 {
1364         xfs_buf_t       *bp, *n;
1365         xfs_bufhash_t   *hash;
1366         uint            i;
1367
1368         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1369                 hash = &btp->bt_hash[i];
1370 again:
1371                 spin_lock(&hash->bh_lock);
1372                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1373                         ASSERT(btp == bp->b_target);
1374                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1375                                 spin_unlock(&hash->bh_lock);
1376                                 /*
1377                                  * Catch superblock reference count leaks
1378                                  * immediately
1379                                  */
1380                                 BUG_ON(bp->b_bn == 0);
1381                                 delay(100);
1382                                 goto again;
1383                         }
1384                 }
1385                 spin_unlock(&hash->bh_lock);
1386         }
1387 }
1388
1389 /*
1390  *      Allocate buffer hash table for a given target.
1391  *      For devices containing metadata (i.e. not the log/realtime devices)
1392  *      we need to allocate a much larger hash table.
1393  */
1394 STATIC void
1395 xfs_alloc_bufhash(
1396         xfs_buftarg_t           *btp,
1397         int                     external)
1398 {
1399         unsigned int            i;
1400
1401         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1402         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1403         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1404                                         sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1405         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1406                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1407                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1408         }
1409 }
1410
1411 STATIC void
1412 xfs_free_bufhash(
1413         xfs_buftarg_t           *btp)
1414 {
1415         kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1416         btp->bt_hash = NULL;
1417 }
1418
1419 /*
1420  *      buftarg list for delwrite queue processing
1421  */
1422 static LIST_HEAD(xfs_buftarg_list);
1423 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1424
1425 STATIC void
1426 xfs_register_buftarg(
1427         xfs_buftarg_t           *btp)
1428 {
1429         spin_lock(&xfs_buftarg_lock);
1430         list_add(&btp->bt_list, &xfs_buftarg_list);
1431         spin_unlock(&xfs_buftarg_lock);
1432 }
1433
1434 STATIC void
1435 xfs_unregister_buftarg(
1436         xfs_buftarg_t           *btp)
1437 {
1438         spin_lock(&xfs_buftarg_lock);
1439         list_del(&btp->bt_list);
1440         spin_unlock(&xfs_buftarg_lock);
1441 }
1442
1443 void
1444 xfs_free_buftarg(
1445         xfs_buftarg_t           *btp,
1446         int                     external)
1447 {
1448         xfs_flush_buftarg(btp, 1);
1449         xfs_blkdev_issue_flush(btp);
1450         if (external)
1451                 xfs_blkdev_put(btp->bt_bdev);
1452         xfs_free_bufhash(btp);
1453         iput(btp->bt_mapping->host);
1454
1455         /* Unregister the buftarg first so that we don't get a
1456          * wakeup finding a non-existent task
1457          */
1458         xfs_unregister_buftarg(btp);
1459         kthread_stop(btp->bt_task);
1460
1461         kmem_free(btp, sizeof(*btp));
1462 }
1463
1464 STATIC int
1465 xfs_setsize_buftarg_flags(
1466         xfs_buftarg_t           *btp,
1467         unsigned int            blocksize,
1468         unsigned int            sectorsize,
1469         int                     verbose)
1470 {
1471         btp->bt_bsize = blocksize;
1472         btp->bt_sshift = ffs(sectorsize) - 1;
1473         btp->bt_smask = sectorsize - 1;
1474
1475         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1476                 printk(KERN_WARNING
1477                         "XFS: Cannot set_blocksize to %u on device %s\n",
1478                         sectorsize, XFS_BUFTARG_NAME(btp));
1479                 return EINVAL;
1480         }
1481
1482         if (verbose &&
1483             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1484                 printk(KERN_WARNING
1485                         "XFS: %u byte sectors in use on device %s.  "
1486                         "This is suboptimal; %u or greater is ideal.\n",
1487                         sectorsize, XFS_BUFTARG_NAME(btp),
1488                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1489         }
1490
1491         return 0;
1492 }
1493
1494 /*
1495  *      When allocating the initial buffer target we have not yet
1496  *      read in the superblock, so don't know what sized sectors
1497  *      are being used is at this early stage.  Play safe.
1498  */
1499 STATIC int
1500 xfs_setsize_buftarg_early(
1501         xfs_buftarg_t           *btp,
1502         struct block_device     *bdev)
1503 {
1504         return xfs_setsize_buftarg_flags(btp,
1505                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1506 }
1507
1508 int
1509 xfs_setsize_buftarg(
1510         xfs_buftarg_t           *btp,
1511         unsigned int            blocksize,
1512         unsigned int            sectorsize)
1513 {
1514         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1515 }
1516
1517 STATIC int
1518 xfs_mapping_buftarg(
1519         xfs_buftarg_t           *btp,
1520         struct block_device     *bdev)
1521 {
1522         struct backing_dev_info *bdi;
1523         struct inode            *inode;
1524         struct address_space    *mapping;
1525         static const struct address_space_operations mapping_aops = {
1526                 .sync_page = block_sync_page,
1527                 .migratepage = fail_migrate_page,
1528         };
1529
1530         inode = new_inode(bdev->bd_inode->i_sb);
1531         if (!inode) {
1532                 printk(KERN_WARNING
1533                         "XFS: Cannot allocate mapping inode for device %s\n",
1534                         XFS_BUFTARG_NAME(btp));
1535                 return ENOMEM;
1536         }
1537         inode->i_mode = S_IFBLK;
1538         inode->i_bdev = bdev;
1539         inode->i_rdev = bdev->bd_dev;
1540         bdi = blk_get_backing_dev_info(bdev);
1541         if (!bdi)
1542                 bdi = &default_backing_dev_info;
1543         mapping = &inode->i_data;
1544         mapping->a_ops = &mapping_aops;
1545         mapping->backing_dev_info = bdi;
1546         mapping_set_gfp_mask(mapping, GFP_NOFS);
1547         btp->bt_mapping = mapping;
1548         return 0;
1549 }
1550
1551 STATIC int
1552 xfs_alloc_delwrite_queue(
1553         xfs_buftarg_t           *btp)
1554 {
1555         int     error = 0;
1556
1557         INIT_LIST_HEAD(&btp->bt_list);
1558         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1559         spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1560         btp->bt_flags = 0;
1561         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1562         if (IS_ERR(btp->bt_task)) {
1563                 error = PTR_ERR(btp->bt_task);
1564                 goto out_error;
1565         }
1566         xfs_register_buftarg(btp);
1567 out_error:
1568         return error;
1569 }
1570
1571 xfs_buftarg_t *
1572 xfs_alloc_buftarg(
1573         struct block_device     *bdev,
1574         int                     external)
1575 {
1576         xfs_buftarg_t           *btp;
1577
1578         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1579
1580         btp->bt_dev =  bdev->bd_dev;
1581         btp->bt_bdev = bdev;
1582         if (xfs_setsize_buftarg_early(btp, bdev))
1583                 goto error;
1584         if (xfs_mapping_buftarg(btp, bdev))
1585                 goto error;
1586         if (xfs_alloc_delwrite_queue(btp))
1587                 goto error;
1588         xfs_alloc_bufhash(btp, external);
1589         return btp;
1590
1591 error:
1592         kmem_free(btp, sizeof(*btp));
1593         return NULL;
1594 }
1595
1596
1597 /*
1598  *      Delayed write buffer handling
1599  */
1600 STATIC void
1601 xfs_buf_delwri_queue(
1602         xfs_buf_t               *bp,
1603         int                     unlock)
1604 {
1605         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1606         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1607
1608         XB_TRACE(bp, "delwri_q", (long)unlock);
1609         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1610
1611         spin_lock(dwlk);
1612         /* If already in the queue, dequeue and place at tail */
1613         if (!list_empty(&bp->b_list)) {
1614                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1615                 if (unlock)
1616                         atomic_dec(&bp->b_hold);
1617                 list_del(&bp->b_list);
1618         }
1619
1620         bp->b_flags |= _XBF_DELWRI_Q;
1621         list_add_tail(&bp->b_list, dwq);
1622         bp->b_queuetime = jiffies;
1623         spin_unlock(dwlk);
1624
1625         if (unlock)
1626                 xfs_buf_unlock(bp);
1627 }
1628
1629 void
1630 xfs_buf_delwri_dequeue(
1631         xfs_buf_t               *bp)
1632 {
1633         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1634         int                     dequeued = 0;
1635
1636         spin_lock(dwlk);
1637         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1638                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1639                 list_del_init(&bp->b_list);
1640                 dequeued = 1;
1641         }
1642         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1643         spin_unlock(dwlk);
1644
1645         if (dequeued)
1646                 xfs_buf_rele(bp);
1647
1648         XB_TRACE(bp, "delwri_dq", (long)dequeued);
1649 }
1650
1651 STATIC void
1652 xfs_buf_runall_queues(
1653         struct workqueue_struct *queue)
1654 {
1655         flush_workqueue(queue);
1656 }
1657
1658 STATIC int
1659 xfsbufd_wakeup(
1660         int                     priority,
1661         gfp_t                   mask)
1662 {
1663         xfs_buftarg_t           *btp;
1664
1665         spin_lock(&xfs_buftarg_lock);
1666         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1667                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1668                         continue;
1669                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1670                 wake_up_process(btp->bt_task);
1671         }
1672         spin_unlock(&xfs_buftarg_lock);
1673         return 0;
1674 }
1675
1676 /*
1677  * Move as many buffers as specified to the supplied list
1678  * idicating if we skipped any buffers to prevent deadlocks.
1679  */
1680 STATIC int
1681 xfs_buf_delwri_split(
1682         xfs_buftarg_t   *target,
1683         struct list_head *list,
1684         unsigned long   age)
1685 {
1686         xfs_buf_t       *bp, *n;
1687         struct list_head *dwq = &target->bt_delwrite_queue;
1688         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1689         int             skipped = 0;
1690         int             force;
1691
1692         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1693         INIT_LIST_HEAD(list);
1694         spin_lock(dwlk);
1695         list_for_each_entry_safe(bp, n, dwq, b_list) {
1696                 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1697                 ASSERT(bp->b_flags & XBF_DELWRI);
1698
1699                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1700                         if (!force &&
1701                             time_before(jiffies, bp->b_queuetime + age)) {
1702                                 xfs_buf_unlock(bp);
1703                                 break;
1704                         }
1705
1706                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1707                                          _XBF_RUN_QUEUES);
1708                         bp->b_flags |= XBF_WRITE;
1709                         list_move_tail(&bp->b_list, list);
1710                 } else
1711                         skipped++;
1712         }
1713         spin_unlock(dwlk);
1714
1715         return skipped;
1716
1717 }
1718
1719 STATIC int
1720 xfsbufd(
1721         void            *data)
1722 {
1723         struct list_head tmp;
1724         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1725         int             count;
1726         xfs_buf_t       *bp;
1727
1728         current->flags |= PF_MEMALLOC;
1729
1730         do {
1731                 if (unlikely(freezing(current))) {
1732                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1733                         refrigerator();
1734                 } else {
1735                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1736                 }
1737
1738                 schedule_timeout_interruptible(
1739                         xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1740
1741                 xfs_buf_delwri_split(target, &tmp,
1742                                 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1743
1744                 count = 0;
1745                 while (!list_empty(&tmp)) {
1746                         bp = list_entry(tmp.next, xfs_buf_t, b_list);
1747                         ASSERT(target == bp->b_target);
1748
1749                         list_del_init(&bp->b_list);
1750                         xfs_buf_iostrategy(bp);
1751                         count++;
1752                 }
1753
1754                 if (as_list_len > 0)
1755                         purge_addresses();
1756                 if (count)
1757                         blk_run_address_space(target->bt_mapping);
1758
1759         } while (!kthread_should_stop());
1760
1761         return 0;
1762 }
1763
1764 /*
1765  *      Go through all incore buffers, and release buffers if they belong to
1766  *      the given device. This is used in filesystem error handling to
1767  *      preserve the consistency of its metadata.
1768  */
1769 int
1770 xfs_flush_buftarg(
1771         xfs_buftarg_t   *target,
1772         int             wait)
1773 {
1774         struct list_head tmp;
1775         xfs_buf_t       *bp, *n;
1776         int             pincount = 0;
1777
1778         xfs_buf_runall_queues(xfsdatad_workqueue);
1779         xfs_buf_runall_queues(xfslogd_workqueue);
1780
1781         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1782         pincount = xfs_buf_delwri_split(target, &tmp, 0);
1783
1784         /*
1785          * Dropped the delayed write list lock, now walk the temporary list
1786          */
1787         list_for_each_entry_safe(bp, n, &tmp, b_list) {
1788                 ASSERT(target == bp->b_target);
1789                 if (wait)
1790                         bp->b_flags &= ~XBF_ASYNC;
1791                 else
1792                         list_del_init(&bp->b_list);
1793
1794                 xfs_buf_iostrategy(bp);
1795         }
1796
1797         if (wait)
1798                 blk_run_address_space(target->bt_mapping);
1799
1800         /*
1801          * Remaining list items must be flushed before returning
1802          */
1803         while (!list_empty(&tmp)) {
1804                 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1805
1806                 list_del_init(&bp->b_list);
1807                 xfs_iowait(bp);
1808                 xfs_buf_relse(bp);
1809         }
1810
1811         return pincount;
1812 }
1813
1814 int __init
1815 xfs_buf_init(void)
1816 {
1817 #ifdef XFS_BUF_TRACE
1818         xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1819 #endif
1820
1821         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1822                                                 KM_ZONE_HWALIGN, NULL);
1823         if (!xfs_buf_zone)
1824                 goto out_free_trace_buf;
1825
1826         xfslogd_workqueue = create_workqueue("xfslogd");
1827         if (!xfslogd_workqueue)
1828                 goto out_free_buf_zone;
1829
1830         xfsdatad_workqueue = create_workqueue("xfsdatad");
1831         if (!xfsdatad_workqueue)
1832                 goto out_destroy_xfslogd_workqueue;
1833
1834         register_shrinker(&xfs_buf_shake);
1835         return 0;
1836
1837  out_destroy_xfslogd_workqueue:
1838         destroy_workqueue(xfslogd_workqueue);
1839  out_free_buf_zone:
1840         kmem_zone_destroy(xfs_buf_zone);
1841  out_free_trace_buf:
1842 #ifdef XFS_BUF_TRACE
1843         ktrace_free(xfs_buf_trace_buf);
1844 #endif
1845         return -ENOMEM;
1846 }
1847
1848 void
1849 xfs_buf_terminate(void)
1850 {
1851         unregister_shrinker(&xfs_buf_shake);
1852         destroy_workqueue(xfsdatad_workqueue);
1853         destroy_workqueue(xfslogd_workqueue);
1854         kmem_zone_destroy(xfs_buf_zone);
1855 #ifdef XFS_BUF_TRACE
1856         ktrace_free(xfs_buf_trace_buf);
1857 #endif
1858 }
1859
1860 #ifdef CONFIG_KDB_MODULES
1861 struct list_head *
1862 xfs_get_buftarg_list(void)
1863 {
1864         return &xfs_buftarg_list;
1865 }
1866 #endif