2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t *xfs_buf_zone;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
88 * This prevents build-up of stale buffers on the LRU.
94 ASSERT(xfs_buf_islocked(bp));
96 bp->b_flags |= XBF_STALE;
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
103 bp->b_flags &= ~_XBF_DELWRI_Q;
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
111 ASSERT(atomic_read(&bp->b_hold) >= 1);
112 spin_unlock(&bp->b_lock);
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
123 if (map_count == 1) {
124 bp->b_maps = &bp->__b_map;
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
136 * Frees b_pages if it was allocated.
142 if (bp->b_maps != &bp->__b_map) {
143 kmem_free(bp->b_maps);
150 struct xfs_buftarg *target,
151 struct xfs_buf_map *map,
153 xfs_buf_flags_t flags)
159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
169 atomic_set(&bp->b_hold, 1);
170 atomic_set(&bp->b_lru_ref, 1);
171 init_completion(&bp->b_iowait);
172 INIT_LIST_HEAD(&bp->b_lru);
173 INIT_LIST_HEAD(&bp->b_list);
174 RB_CLEAR_NODE(&bp->b_rbnode);
175 sema_init(&bp->b_sema, 0); /* held, no waiters */
176 spin_lock_init(&bp->b_lock);
178 bp->b_target = target;
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
186 error = xfs_buf_get_maps(bp, nmaps);
188 kmem_zone_free(xfs_buf_zone, bp);
192 bp->b_bn = map[0].bm_bn;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
199 bp->b_io_length = bp->b_length;
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
204 XFS_STATS_INC(xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 page_count, KM_NOFS);
227 if (bp->b_pages == NULL)
230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
236 * Frees b_pages if it was allocated.
242 if (bp->b_pages != bp->b_page_array) {
243 kmem_free(bp->b_pages);
249 * Releases the specified buffer.
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
259 trace_xfs_buf_free(bp, _RET_IP_);
261 ASSERT(list_empty(&bp->b_lru));
263 if (bp->b_flags & _XBF_PAGES) {
266 if (xfs_buf_is_vmapped(bp))
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
277 _xfs_buf_free_pages(bp);
278 xfs_buf_free_maps(bp);
279 kmem_zone_free(xfs_buf_zone, bp);
283 * Allocates all the pages for buffer in question and builds it's page list.
286 xfs_buf_allocate_memory(
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t start, end;
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(size, KM_NOFS);
306 /* low memory - use alloc_page loop instead */
310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= _XBF_KMEM;
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
329 page_count = end - start;
330 error = _xfs_buf_get_pages(bp, page_count);
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
337 for (i = 0; i < bp->b_page_count; i++) {
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
350 * This could deadlock.
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
355 if (!(++retries % 100))
357 "possible memory allocation deadlock in %s (mode:0x%x)",
360 XFS_STATS_INC(xb_page_retries);
361 congestion_wait(BLK_RW_ASYNC, HZ/50);
365 XFS_STATS_INC(xb_page_found);
367 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369 bp->b_pages[i] = page;
375 for (i = 0; i < bp->b_page_count; i++)
376 __free_page(bp->b_pages[i]);
381 * Map buffer into kernel address-space if necessary.
388 ASSERT(bp->b_flags & _XBF_PAGES);
389 if (bp->b_page_count == 1) {
390 /* A single page buffer is always mappable */
391 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
392 } else if (flags & XBF_UNMAPPED) {
399 * vm_map_ram() will allocate auxillary structures (e.g.
400 * pagetables) with GFP_KERNEL, yet we are likely to be under
401 * GFP_NOFS context here. Hence we need to tell memory reclaim
402 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
403 * memory reclaim re-entering the filesystem here and
404 * potentially deadlocking.
406 noio_flag = memalloc_noio_save();
408 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
413 } while (retried++ <= 1);
414 memalloc_noio_restore(noio_flag);
418 bp->b_addr += bp->b_offset;
425 * Finding and Reading Buffers
429 * Look up, and creates if absent, a lockable buffer for
430 * a given range of an inode. The buffer is returned
431 * locked. No I/O is implied by this call.
435 struct xfs_buftarg *btp,
436 struct xfs_buf_map *map,
438 xfs_buf_flags_t flags,
441 struct xfs_perag *pag;
442 struct rb_node **rbp;
443 struct rb_node *parent;
445 xfs_daddr_t blkno = map[0].bm_bn;
450 for (i = 0; i < nmaps; i++)
451 numblks += map[i].bm_len;
453 /* Check for IOs smaller than the sector size / not sector aligned */
454 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
455 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
458 * Corrupted block numbers can get through to here, unfortunately, so we
459 * have to check that the buffer falls within the filesystem bounds.
461 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
462 if (blkno < 0 || blkno >= eofs) {
464 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
465 * but none of the higher level infrastructure supports
466 * returning a specific error on buffer lookup failures.
468 xfs_alert(btp->bt_mount,
469 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
470 __func__, blkno, eofs);
476 pag = xfs_perag_get(btp->bt_mount,
477 xfs_daddr_to_agno(btp->bt_mount, blkno));
480 spin_lock(&pag->pag_buf_lock);
481 rbp = &pag->pag_buf_tree.rb_node;
486 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
488 if (blkno < bp->b_bn)
489 rbp = &(*rbp)->rb_left;
490 else if (blkno > bp->b_bn)
491 rbp = &(*rbp)->rb_right;
494 * found a block number match. If the range doesn't
495 * match, the only way this is allowed is if the buffer
496 * in the cache is stale and the transaction that made
497 * it stale has not yet committed. i.e. we are
498 * reallocating a busy extent. Skip this buffer and
499 * continue searching to the right for an exact match.
501 if (bp->b_length != numblks) {
502 ASSERT(bp->b_flags & XBF_STALE);
503 rbp = &(*rbp)->rb_right;
506 atomic_inc(&bp->b_hold);
513 rb_link_node(&new_bp->b_rbnode, parent, rbp);
514 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
515 /* the buffer keeps the perag reference until it is freed */
517 spin_unlock(&pag->pag_buf_lock);
519 XFS_STATS_INC(xb_miss_locked);
520 spin_unlock(&pag->pag_buf_lock);
526 spin_unlock(&pag->pag_buf_lock);
529 if (!xfs_buf_trylock(bp)) {
530 if (flags & XBF_TRYLOCK) {
532 XFS_STATS_INC(xb_busy_locked);
536 XFS_STATS_INC(xb_get_locked_waited);
540 * if the buffer is stale, clear all the external state associated with
541 * it. We need to keep flags such as how we allocated the buffer memory
544 if (bp->b_flags & XBF_STALE) {
545 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
546 ASSERT(bp->b_iodone == NULL);
547 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
551 trace_xfs_buf_find(bp, flags, _RET_IP_);
552 XFS_STATS_INC(xb_get_locked);
557 * Assembles a buffer covering the specified range. The code is optimised for
558 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
559 * more hits than misses.
563 struct xfs_buftarg *target,
564 struct xfs_buf_map *map,
566 xfs_buf_flags_t flags)
569 struct xfs_buf *new_bp;
572 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
576 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
577 if (unlikely(!new_bp))
580 error = xfs_buf_allocate_memory(new_bp, flags);
582 xfs_buf_free(new_bp);
586 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
588 xfs_buf_free(new_bp);
593 xfs_buf_free(new_bp);
597 error = _xfs_buf_map_pages(bp, flags);
598 if (unlikely(error)) {
599 xfs_warn(target->bt_mount,
600 "%s: failed to map pagesn", __func__);
606 XFS_STATS_INC(xb_get);
607 trace_xfs_buf_get(bp, flags, _RET_IP_);
614 xfs_buf_flags_t flags)
616 ASSERT(!(flags & XBF_WRITE));
617 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
619 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
620 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
622 if (flags & XBF_ASYNC) {
626 return xfs_buf_submit_wait(bp);
631 struct xfs_buftarg *target,
632 struct xfs_buf_map *map,
634 xfs_buf_flags_t flags,
635 const struct xfs_buf_ops *ops)
641 bp = xfs_buf_get_map(target, map, nmaps, flags);
643 trace_xfs_buf_read(bp, flags, _RET_IP_);
645 if (!XFS_BUF_ISDONE(bp)) {
646 XFS_STATS_INC(xb_get_read);
648 _xfs_buf_read(bp, flags);
649 } else if (flags & XBF_ASYNC) {
651 * Read ahead call which is already satisfied,
657 /* We do not want read in the flags */
658 bp->b_flags &= ~XBF_READ;
666 * If we are not low on memory then do the readahead in a deadlock
670 xfs_buf_readahead_map(
671 struct xfs_buftarg *target,
672 struct xfs_buf_map *map,
674 const struct xfs_buf_ops *ops)
676 if (bdi_read_congested(target->bt_bdi))
679 xfs_buf_read_map(target, map, nmaps,
680 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
684 * Read an uncached buffer from disk. Allocates and returns a locked
685 * buffer containing the disk contents or nothing.
688 xfs_buf_read_uncached(
689 struct xfs_buftarg *target,
693 struct xfs_buf **bpp,
694 const struct xfs_buf_ops *ops)
700 bp = xfs_buf_get_uncached(target, numblks, flags);
704 /* set up the buffer for a read IO */
705 ASSERT(bp->b_map_count == 1);
706 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
707 bp->b_maps[0].bm_bn = daddr;
708 bp->b_flags |= XBF_READ;
711 xfs_buf_submit_wait(bp);
713 int error = bp->b_error;
723 * Return a buffer allocated as an empty buffer and associated to external
724 * memory via xfs_buf_associate_memory() back to it's empty state.
732 _xfs_buf_free_pages(bp);
735 bp->b_page_count = 0;
737 bp->b_length = numblks;
738 bp->b_io_length = numblks;
740 ASSERT(bp->b_map_count == 1);
741 bp->b_bn = XFS_BUF_DADDR_NULL;
742 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
743 bp->b_maps[0].bm_len = bp->b_length;
746 static inline struct page *
750 if ((!is_vmalloc_addr(addr))) {
751 return virt_to_page(addr);
753 return vmalloc_to_page(addr);
758 xfs_buf_associate_memory(
765 unsigned long pageaddr;
766 unsigned long offset;
770 pageaddr = (unsigned long)mem & PAGE_MASK;
771 offset = (unsigned long)mem - pageaddr;
772 buflen = PAGE_ALIGN(len + offset);
773 page_count = buflen >> PAGE_SHIFT;
775 /* Free any previous set of page pointers */
777 _xfs_buf_free_pages(bp);
782 rval = _xfs_buf_get_pages(bp, page_count);
786 bp->b_offset = offset;
788 for (i = 0; i < bp->b_page_count; i++) {
789 bp->b_pages[i] = mem_to_page((void *)pageaddr);
790 pageaddr += PAGE_SIZE;
793 bp->b_io_length = BTOBB(len);
794 bp->b_length = BTOBB(buflen);
800 xfs_buf_get_uncached(
801 struct xfs_buftarg *target,
805 unsigned long page_count;
808 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
810 bp = _xfs_buf_alloc(target, &map, 1, 0);
811 if (unlikely(bp == NULL))
814 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
815 error = _xfs_buf_get_pages(bp, page_count);
819 for (i = 0; i < page_count; i++) {
820 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
824 bp->b_flags |= _XBF_PAGES;
826 error = _xfs_buf_map_pages(bp, 0);
827 if (unlikely(error)) {
828 xfs_warn(target->bt_mount,
829 "%s: failed to map pages", __func__);
833 trace_xfs_buf_get_uncached(bp, _RET_IP_);
838 __free_page(bp->b_pages[i]);
839 _xfs_buf_free_pages(bp);
841 xfs_buf_free_maps(bp);
842 kmem_zone_free(xfs_buf_zone, bp);
848 * Increment reference count on buffer, to hold the buffer concurrently
849 * with another thread which may release (free) the buffer asynchronously.
850 * Must hold the buffer already to call this function.
856 trace_xfs_buf_hold(bp, _RET_IP_);
857 atomic_inc(&bp->b_hold);
861 * Releases a hold on the specified buffer. If the
862 * the hold count is 1, calls xfs_buf_free.
868 struct xfs_perag *pag = bp->b_pag;
870 trace_xfs_buf_rele(bp, _RET_IP_);
873 ASSERT(list_empty(&bp->b_lru));
874 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
875 if (atomic_dec_and_test(&bp->b_hold))
880 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
882 ASSERT(atomic_read(&bp->b_hold) > 0);
883 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
884 spin_lock(&bp->b_lock);
885 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
887 * If the buffer is added to the LRU take a new
888 * reference to the buffer for the LRU and clear the
889 * (now stale) dispose list state flag
891 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
892 bp->b_state &= ~XFS_BSTATE_DISPOSE;
893 atomic_inc(&bp->b_hold);
895 spin_unlock(&bp->b_lock);
896 spin_unlock(&pag->pag_buf_lock);
899 * most of the time buffers will already be removed from
900 * the LRU, so optimise that case by checking for the
901 * XFS_BSTATE_DISPOSE flag indicating the last list the
902 * buffer was on was the disposal list
904 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
905 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
907 ASSERT(list_empty(&bp->b_lru));
909 spin_unlock(&bp->b_lock);
911 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
912 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
913 spin_unlock(&pag->pag_buf_lock);
922 * Lock a buffer object, if it is not already locked.
924 * If we come across a stale, pinned, locked buffer, we know that we are
925 * being asked to lock a buffer that has been reallocated. Because it is
926 * pinned, we know that the log has not been pushed to disk and hence it
927 * will still be locked. Rather than continuing to have trylock attempts
928 * fail until someone else pushes the log, push it ourselves before
929 * returning. This means that the xfsaild will not get stuck trying
930 * to push on stale inode buffers.
938 locked = down_trylock(&bp->b_sema) == 0;
942 trace_xfs_buf_trylock(bp, _RET_IP_);
947 * Lock a buffer object.
949 * If we come across a stale, pinned, locked buffer, we know that we
950 * are being asked to lock a buffer that has been reallocated. Because
951 * it is pinned, we know that the log has not been pushed to disk and
952 * hence it will still be locked. Rather than sleeping until someone
953 * else pushes the log, push it ourselves before trying to get the lock.
959 trace_xfs_buf_lock(bp, _RET_IP_);
961 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
962 xfs_log_force(bp->b_target->bt_mount, 0);
966 trace_xfs_buf_lock_done(bp, _RET_IP_);
976 trace_xfs_buf_unlock(bp, _RET_IP_);
983 DECLARE_WAITQUEUE (wait, current);
985 if (atomic_read(&bp->b_pin_count) == 0)
988 add_wait_queue(&bp->b_waiters, &wait);
990 set_current_state(TASK_UNINTERRUPTIBLE);
991 if (atomic_read(&bp->b_pin_count) == 0)
995 remove_wait_queue(&bp->b_waiters, &wait);
996 set_current_state(TASK_RUNNING);
1000 * Buffer Utility Routines
1007 bool read = bp->b_flags & XBF_READ;
1009 trace_xfs_buf_iodone(bp, _RET_IP_);
1011 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1014 * Pull in IO completion errors now. We are guaranteed to be running
1015 * single threaded, so we don't need the lock to read b_io_error.
1017 if (!bp->b_error && bp->b_io_error)
1018 xfs_buf_ioerror(bp, bp->b_io_error);
1020 /* Only validate buffers that were read without errors */
1021 if (read && !bp->b_error && bp->b_ops) {
1022 ASSERT(!bp->b_iodone);
1023 bp->b_ops->verify_read(bp);
1027 bp->b_flags |= XBF_DONE;
1030 (*(bp->b_iodone))(bp);
1031 else if (bp->b_flags & XBF_ASYNC)
1034 complete(&bp->b_iowait);
1039 struct work_struct *work)
1041 struct xfs_buf *bp =
1042 container_of(work, xfs_buf_t, b_ioend_work);
1048 xfs_buf_ioend_async(
1051 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1052 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1060 ASSERT(error <= 0 && error >= -1000);
1061 bp->b_error = error;
1062 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1066 xfs_buf_ioerror_alert(
1070 xfs_alert(bp->b_target->bt_mount,
1071 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1072 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1081 ASSERT(xfs_buf_islocked(bp));
1083 bp->b_flags |= XBF_WRITE;
1084 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1085 XBF_WRITE_FAIL | XBF_DONE);
1087 error = xfs_buf_submit_wait(bp);
1089 xfs_force_shutdown(bp->b_target->bt_mount,
1090 SHUTDOWN_META_IO_ERROR);
1099 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1102 * don't overwrite existing errors - otherwise we can lose errors on
1103 * buffers that require multiple bios to complete.
1105 if (bio->bi_error) {
1106 spin_lock(&bp->b_lock);
1107 if (!bp->b_io_error)
1108 bp->b_io_error = bio->bi_error;
1109 spin_unlock(&bp->b_lock);
1112 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1113 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1115 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1116 xfs_buf_ioend_async(bp);
1121 xfs_buf_ioapply_map(
1129 int total_nr_pages = bp->b_page_count;
1132 sector_t sector = bp->b_maps[map].bm_bn;
1136 total_nr_pages = bp->b_page_count;
1138 /* skip the pages in the buffer before the start offset */
1140 offset = *buf_offset;
1141 while (offset >= PAGE_SIZE) {
1143 offset -= PAGE_SIZE;
1147 * Limit the IO size to the length of the current vector, and update the
1148 * remaining IO count for the next time around.
1150 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1152 *buf_offset += size;
1155 atomic_inc(&bp->b_io_remaining);
1156 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1157 if (nr_pages > total_nr_pages)
1158 nr_pages = total_nr_pages;
1160 bio = bio_alloc(GFP_NOIO, nr_pages);
1161 bio->bi_bdev = bp->b_target->bt_bdev;
1162 bio->bi_iter.bi_sector = sector;
1163 bio->bi_end_io = xfs_buf_bio_end_io;
1164 bio->bi_private = bp;
1167 for (; size && nr_pages; nr_pages--, page_index++) {
1168 int rbytes, nbytes = PAGE_SIZE - offset;
1173 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1175 if (rbytes < nbytes)
1179 sector += BTOBB(nbytes);
1184 if (likely(bio->bi_iter.bi_size)) {
1185 if (xfs_buf_is_vmapped(bp)) {
1186 flush_kernel_vmap_range(bp->b_addr,
1187 xfs_buf_vmap_len(bp));
1189 submit_bio(rw, bio);
1194 * This is guaranteed not to be the last io reference count
1195 * because the caller (xfs_buf_submit) holds a count itself.
1197 atomic_dec(&bp->b_io_remaining);
1198 xfs_buf_ioerror(bp, -EIO);
1208 struct blk_plug plug;
1215 * Make sure we capture only current IO errors rather than stale errors
1216 * left over from previous use of the buffer (e.g. failed readahead).
1221 * Initialize the I/O completion workqueue if we haven't yet or the
1222 * submitter has not opted to specify a custom one.
1224 if (!bp->b_ioend_wq)
1225 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1227 if (bp->b_flags & XBF_WRITE) {
1228 if (bp->b_flags & XBF_SYNCIO)
1232 if (bp->b_flags & XBF_FUA)
1234 if (bp->b_flags & XBF_FLUSH)
1238 * Run the write verifier callback function if it exists. If
1239 * this function fails it will mark the buffer with an error and
1240 * the IO should not be dispatched.
1243 bp->b_ops->verify_write(bp);
1245 xfs_force_shutdown(bp->b_target->bt_mount,
1246 SHUTDOWN_CORRUPT_INCORE);
1249 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1250 struct xfs_mount *mp = bp->b_target->bt_mount;
1253 * non-crc filesystems don't attach verifiers during
1254 * log recovery, so don't warn for such filesystems.
1256 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1258 "%s: no ops on block 0x%llx/0x%x",
1259 __func__, bp->b_bn, bp->b_length);
1260 xfs_hex_dump(bp->b_addr, 64);
1264 } else if (bp->b_flags & XBF_READ_AHEAD) {
1270 /* we only use the buffer cache for meta-data */
1274 * Walk all the vectors issuing IO on them. Set up the initial offset
1275 * into the buffer and the desired IO size before we start -
1276 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1279 offset = bp->b_offset;
1280 size = BBTOB(bp->b_io_length);
1281 blk_start_plug(&plug);
1282 for (i = 0; i < bp->b_map_count; i++) {
1283 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1287 break; /* all done */
1289 blk_finish_plug(&plug);
1293 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1294 * the current reference to the IO. It is not safe to reference the buffer after
1295 * a call to this function unless the caller holds an additional reference
1302 trace_xfs_buf_submit(bp, _RET_IP_);
1304 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1305 ASSERT(bp->b_flags & XBF_ASYNC);
1307 /* on shutdown we stale and complete the buffer immediately */
1308 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1309 xfs_buf_ioerror(bp, -EIO);
1310 bp->b_flags &= ~XBF_DONE;
1316 if (bp->b_flags & XBF_WRITE)
1317 xfs_buf_wait_unpin(bp);
1319 /* clear the internal error state to avoid spurious errors */
1323 * The caller's reference is released during I/O completion.
1324 * This occurs some time after the last b_io_remaining reference is
1325 * released, so after we drop our Io reference we have to have some
1326 * other reference to ensure the buffer doesn't go away from underneath
1327 * us. Take a direct reference to ensure we have safe access to the
1328 * buffer until we are finished with it.
1333 * Set the count to 1 initially, this will stop an I/O completion
1334 * callout which happens before we have started all the I/O from calling
1335 * xfs_buf_ioend too early.
1337 atomic_set(&bp->b_io_remaining, 1);
1338 _xfs_buf_ioapply(bp);
1341 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1342 * reference we took above. If we drop it to zero, run completion so
1343 * that we don't return to the caller with completion still pending.
1345 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1349 xfs_buf_ioend_async(bp);
1353 /* Note: it is not safe to reference bp now we've dropped our ref */
1357 * Synchronous buffer IO submission path, read or write.
1360 xfs_buf_submit_wait(
1365 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1367 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1369 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1370 xfs_buf_ioerror(bp, -EIO);
1372 bp->b_flags &= ~XBF_DONE;
1376 if (bp->b_flags & XBF_WRITE)
1377 xfs_buf_wait_unpin(bp);
1379 /* clear the internal error state to avoid spurious errors */
1383 * For synchronous IO, the IO does not inherit the submitters reference
1384 * count, nor the buffer lock. Hence we cannot release the reference we
1385 * are about to take until we've waited for all IO completion to occur,
1386 * including any xfs_buf_ioend_async() work that may be pending.
1391 * Set the count to 1 initially, this will stop an I/O completion
1392 * callout which happens before we have started all the I/O from calling
1393 * xfs_buf_ioend too early.
1395 atomic_set(&bp->b_io_remaining, 1);
1396 _xfs_buf_ioapply(bp);
1399 * make sure we run completion synchronously if it raced with us and is
1402 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1405 /* wait for completion before gathering the error from the buffer */
1406 trace_xfs_buf_iowait(bp, _RET_IP_);
1407 wait_for_completion(&bp->b_iowait);
1408 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1409 error = bp->b_error;
1412 * all done now, we can release the hold that keeps the buffer
1413 * referenced for the entire IO.
1427 return bp->b_addr + offset;
1429 offset += bp->b_offset;
1430 page = bp->b_pages[offset >> PAGE_SHIFT];
1431 return page_address(page) + (offset & (PAGE_SIZE-1));
1435 * Move data into or out of a buffer.
1439 xfs_buf_t *bp, /* buffer to process */
1440 size_t boff, /* starting buffer offset */
1441 size_t bsize, /* length to copy */
1442 void *data, /* data address */
1443 xfs_buf_rw_t mode) /* read/write/zero flag */
1447 bend = boff + bsize;
1448 while (boff < bend) {
1450 int page_index, page_offset, csize;
1452 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1453 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1454 page = bp->b_pages[page_index];
1455 csize = min_t(size_t, PAGE_SIZE - page_offset,
1456 BBTOB(bp->b_io_length) - boff);
1458 ASSERT((csize + page_offset) <= PAGE_SIZE);
1462 memset(page_address(page) + page_offset, 0, csize);
1465 memcpy(data, page_address(page) + page_offset, csize);
1468 memcpy(page_address(page) + page_offset, data, csize);
1477 * Handling of buffer targets (buftargs).
1481 * Wait for any bufs with callbacks that have been submitted but have not yet
1482 * returned. These buffers will have an elevated hold count, so wait on those
1483 * while freeing all the buffers only held by the LRU.
1485 static enum lru_status
1486 xfs_buftarg_wait_rele(
1487 struct list_head *item,
1488 struct list_lru_one *lru,
1489 spinlock_t *lru_lock,
1493 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1494 struct list_head *dispose = arg;
1496 if (atomic_read(&bp->b_hold) > 1) {
1497 /* need to wait, so skip it this pass */
1498 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1501 if (!spin_trylock(&bp->b_lock))
1505 * clear the LRU reference count so the buffer doesn't get
1506 * ignored in xfs_buf_rele().
1508 atomic_set(&bp->b_lru_ref, 0);
1509 bp->b_state |= XFS_BSTATE_DISPOSE;
1510 list_lru_isolate_move(lru, item, dispose);
1511 spin_unlock(&bp->b_lock);
1517 struct xfs_buftarg *btp)
1522 /* loop until there is nothing left on the lru list. */
1523 while (list_lru_count(&btp->bt_lru)) {
1524 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1525 &dispose, LONG_MAX);
1527 while (!list_empty(&dispose)) {
1529 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1530 list_del_init(&bp->b_lru);
1531 if (bp->b_flags & XBF_WRITE_FAIL) {
1532 xfs_alert(btp->bt_mount,
1533 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1534 (long long)bp->b_bn);
1535 xfs_alert(btp->bt_mount,
1536 "Please run xfs_repair to determine the extent of the problem.");
1545 static enum lru_status
1546 xfs_buftarg_isolate(
1547 struct list_head *item,
1548 struct list_lru_one *lru,
1549 spinlock_t *lru_lock,
1552 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1553 struct list_head *dispose = arg;
1556 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1557 * If we fail to get the lock, just skip it.
1559 if (!spin_trylock(&bp->b_lock))
1562 * Decrement the b_lru_ref count unless the value is already
1563 * zero. If the value is already zero, we need to reclaim the
1564 * buffer, otherwise it gets another trip through the LRU.
1566 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1567 spin_unlock(&bp->b_lock);
1571 bp->b_state |= XFS_BSTATE_DISPOSE;
1572 list_lru_isolate_move(lru, item, dispose);
1573 spin_unlock(&bp->b_lock);
1577 static unsigned long
1578 xfs_buftarg_shrink_scan(
1579 struct shrinker *shrink,
1580 struct shrink_control *sc)
1582 struct xfs_buftarg *btp = container_of(shrink,
1583 struct xfs_buftarg, bt_shrinker);
1585 unsigned long freed;
1587 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1588 xfs_buftarg_isolate, &dispose);
1590 while (!list_empty(&dispose)) {
1592 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1593 list_del_init(&bp->b_lru);
1600 static unsigned long
1601 xfs_buftarg_shrink_count(
1602 struct shrinker *shrink,
1603 struct shrink_control *sc)
1605 struct xfs_buftarg *btp = container_of(shrink,
1606 struct xfs_buftarg, bt_shrinker);
1607 return list_lru_shrink_count(&btp->bt_lru, sc);
1612 struct xfs_mount *mp,
1613 struct xfs_buftarg *btp)
1615 unregister_shrinker(&btp->bt_shrinker);
1616 list_lru_destroy(&btp->bt_lru);
1618 if (mp->m_flags & XFS_MOUNT_BARRIER)
1619 xfs_blkdev_issue_flush(btp);
1625 xfs_setsize_buftarg(
1627 unsigned int sectorsize)
1629 /* Set up metadata sector size info */
1630 btp->bt_meta_sectorsize = sectorsize;
1631 btp->bt_meta_sectormask = sectorsize - 1;
1633 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1634 char name[BDEVNAME_SIZE];
1636 bdevname(btp->bt_bdev, name);
1638 xfs_warn(btp->bt_mount,
1639 "Cannot set_blocksize to %u on device %s",
1644 /* Set up device logical sector size mask */
1645 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1646 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1652 * When allocating the initial buffer target we have not yet
1653 * read in the superblock, so don't know what sized sectors
1654 * are being used at this early stage. Play safe.
1657 xfs_setsize_buftarg_early(
1659 struct block_device *bdev)
1661 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1666 struct xfs_mount *mp,
1667 struct block_device *bdev)
1671 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1674 btp->bt_dev = bdev->bd_dev;
1675 btp->bt_bdev = bdev;
1676 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1678 if (xfs_setsize_buftarg_early(btp, bdev))
1681 if (list_lru_init(&btp->bt_lru))
1684 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1685 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1686 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1687 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1688 register_shrinker(&btp->bt_shrinker);
1697 * Add a buffer to the delayed write list.
1699 * This queues a buffer for writeout if it hasn't already been. Note that
1700 * neither this routine nor the buffer list submission functions perform
1701 * any internal synchronization. It is expected that the lists are thread-local
1704 * Returns true if we queued up the buffer, or false if it already had
1705 * been on the buffer list.
1708 xfs_buf_delwri_queue(
1710 struct list_head *list)
1712 ASSERT(xfs_buf_islocked(bp));
1713 ASSERT(!(bp->b_flags & XBF_READ));
1716 * If the buffer is already marked delwri it already is queued up
1717 * by someone else for imediate writeout. Just ignore it in that
1720 if (bp->b_flags & _XBF_DELWRI_Q) {
1721 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1725 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1728 * If a buffer gets written out synchronously or marked stale while it
1729 * is on a delwri list we lazily remove it. To do this, the other party
1730 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1731 * It remains referenced and on the list. In a rare corner case it
1732 * might get readded to a delwri list after the synchronous writeout, in
1733 * which case we need just need to re-add the flag here.
1735 bp->b_flags |= _XBF_DELWRI_Q;
1736 if (list_empty(&bp->b_list)) {
1737 atomic_inc(&bp->b_hold);
1738 list_add_tail(&bp->b_list, list);
1745 * Compare function is more complex than it needs to be because
1746 * the return value is only 32 bits and we are doing comparisons
1752 struct list_head *a,
1753 struct list_head *b)
1755 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1756 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1759 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1768 __xfs_buf_delwri_submit(
1769 struct list_head *buffer_list,
1770 struct list_head *io_list,
1773 struct blk_plug plug;
1774 struct xfs_buf *bp, *n;
1777 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1779 if (xfs_buf_ispinned(bp)) {
1783 if (!xfs_buf_trylock(bp))
1790 * Someone else might have written the buffer synchronously or
1791 * marked it stale in the meantime. In that case only the
1792 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1793 * reference and remove it from the list here.
1795 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1796 list_del_init(&bp->b_list);
1801 list_move_tail(&bp->b_list, io_list);
1802 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1805 list_sort(NULL, io_list, xfs_buf_cmp);
1807 blk_start_plug(&plug);
1808 list_for_each_entry_safe(bp, n, io_list, b_list) {
1809 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1810 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1813 * we do all Io submission async. This means if we need to wait
1814 * for IO completion we need to take an extra reference so the
1815 * buffer is still valid on the other side.
1820 list_del_init(&bp->b_list);
1824 blk_finish_plug(&plug);
1830 * Write out a buffer list asynchronously.
1832 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1833 * out and not wait for I/O completion on any of the buffers. This interface
1834 * is only safely useable for callers that can track I/O completion by higher
1835 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1839 xfs_buf_delwri_submit_nowait(
1840 struct list_head *buffer_list)
1842 LIST_HEAD (io_list);
1843 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1847 * Write out a buffer list synchronously.
1849 * This will take the @buffer_list, write all buffers out and wait for I/O
1850 * completion on all of the buffers. @buffer_list is consumed by the function,
1851 * so callers must have some other way of tracking buffers if they require such
1855 xfs_buf_delwri_submit(
1856 struct list_head *buffer_list)
1858 LIST_HEAD (io_list);
1859 int error = 0, error2;
1862 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1864 /* Wait for IO to complete. */
1865 while (!list_empty(&io_list)) {
1866 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1868 list_del_init(&bp->b_list);
1870 /* locking the buffer will wait for async IO completion. */
1872 error2 = bp->b_error;
1884 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1885 KM_ZONE_HWALIGN, NULL);
1896 xfs_buf_terminate(void)
1898 kmem_zone_destroy(xfs_buf_zone);