perf: Make perf_cgroup_from_task() global
[firefly-linux-kernel-4.4.55.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20  * Kernel-internal data types and definitions:
21  */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29         int                             (*is_in_guest)(void);
30         int                             (*is_user_mode)(void);
31         unsigned long                   (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60         __u64                           nr;
61         __u64                           ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65         u32                             size;
66         void                            *data;
67 };
68
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79         __u64                           nr;
80         struct perf_branch_entry        entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89         u64             config; /* register value */
90         unsigned int    reg;    /* register address or index */
91         int             alloc;  /* extra register already allocated */
92         int             idx;    /* index in shared_regs->regs[] */
93 };
94
95 struct event_constraint;
96
97 /**
98  * struct hw_perf_event - performance event hardware details:
99  */
100 struct hw_perf_event {
101 #ifdef CONFIG_PERF_EVENTS
102         union {
103                 struct { /* hardware */
104                         u64             config;
105                         u64             last_tag;
106                         unsigned long   config_base;
107                         unsigned long   event_base;
108                         int             event_base_rdpmc;
109                         int             idx;
110                         int             last_cpu;
111                         int             flags;
112
113                         struct hw_perf_event_extra extra_reg;
114                         struct hw_perf_event_extra branch_reg;
115
116                         struct event_constraint *constraint;
117                 };
118                 struct { /* software */
119                         struct hrtimer  hrtimer;
120                 };
121                 struct { /* tracepoint */
122                         struct task_struct      *tp_target;
123                         /* for tp_event->class */
124                         struct list_head        tp_list;
125                 };
126 #ifdef CONFIG_HAVE_HW_BREAKPOINT
127                 struct { /* breakpoint */
128                         /*
129                          * Crufty hack to avoid the chicken and egg
130                          * problem hw_breakpoint has with context
131                          * creation and event initalization.
132                          */
133                         struct task_struct              *bp_target;
134                         struct arch_hw_breakpoint       info;
135                         struct list_head                bp_list;
136                 };
137 #endif
138         };
139         int                             state;
140         local64_t                       prev_count;
141         u64                             sample_period;
142         u64                             last_period;
143         local64_t                       period_left;
144         u64                             interrupts_seq;
145         u64                             interrupts;
146
147         u64                             freq_time_stamp;
148         u64                             freq_count_stamp;
149 #endif
150 };
151
152 /*
153  * hw_perf_event::state flags
154  */
155 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
156 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
157 #define PERF_HES_ARCH           0x04
158
159 struct perf_event;
160
161 /*
162  * Common implementation detail of pmu::{start,commit,cancel}_txn
163  */
164 #define PERF_EVENT_TXN 0x1
165
166 /**
167  * pmu::capabilities flags
168  */
169 #define PERF_PMU_CAP_NO_INTERRUPT               0x01
170
171 /**
172  * struct pmu - generic performance monitoring unit
173  */
174 struct pmu {
175         struct list_head                entry;
176
177         struct module                   *module;
178         struct device                   *dev;
179         const struct attribute_group    **attr_groups;
180         const char                      *name;
181         int                             type;
182
183         /*
184          * various common per-pmu feature flags
185          */
186         int                             capabilities;
187
188         int * __percpu                  pmu_disable_count;
189         struct perf_cpu_context * __percpu pmu_cpu_context;
190         int                             task_ctx_nr;
191         int                             hrtimer_interval_ms;
192
193         /*
194          * Fully disable/enable this PMU, can be used to protect from the PMI
195          * as well as for lazy/batch writing of the MSRs.
196          */
197         void (*pmu_enable)              (struct pmu *pmu); /* optional */
198         void (*pmu_disable)             (struct pmu *pmu); /* optional */
199
200         /*
201          * Try and initialize the event for this PMU.
202          * Should return -ENOENT when the @event doesn't match this PMU.
203          */
204         int (*event_init)               (struct perf_event *event);
205
206         /*
207          * Notification that the event was mapped or unmapped.  Called
208          * in the context of the mapping task.
209          */
210         void (*event_mapped)            (struct perf_event *event); /*optional*/
211         void (*event_unmapped)          (struct perf_event *event); /*optional*/
212
213 #define PERF_EF_START   0x01            /* start the counter when adding    */
214 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
215 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
216
217         /*
218          * Adds/Removes a counter to/from the PMU, can be done inside
219          * a transaction, see the ->*_txn() methods.
220          */
221         int  (*add)                     (struct perf_event *event, int flags);
222         void (*del)                     (struct perf_event *event, int flags);
223
224         /*
225          * Starts/Stops a counter present on the PMU. The PMI handler
226          * should stop the counter when perf_event_overflow() returns
227          * !0. ->start() will be used to continue.
228          */
229         void (*start)                   (struct perf_event *event, int flags);
230         void (*stop)                    (struct perf_event *event, int flags);
231
232         /*
233          * Updates the counter value of the event.
234          */
235         void (*read)                    (struct perf_event *event);
236
237         /*
238          * Group events scheduling is treated as a transaction, add
239          * group events as a whole and perform one schedulability test.
240          * If the test fails, roll back the whole group
241          *
242          * Start the transaction, after this ->add() doesn't need to
243          * do schedulability tests.
244          */
245         void (*start_txn)               (struct pmu *pmu); /* optional */
246         /*
247          * If ->start_txn() disabled the ->add() schedulability test
248          * then ->commit_txn() is required to perform one. On success
249          * the transaction is closed. On error the transaction is kept
250          * open until ->cancel_txn() is called.
251          */
252         int  (*commit_txn)              (struct pmu *pmu); /* optional */
253         /*
254          * Will cancel the transaction, assumes ->del() is called
255          * for each successful ->add() during the transaction.
256          */
257         void (*cancel_txn)              (struct pmu *pmu); /* optional */
258
259         /*
260          * Will return the value for perf_event_mmap_page::index for this event,
261          * if no implementation is provided it will default to: event->hw.idx + 1.
262          */
263         int (*event_idx)                (struct perf_event *event); /*optional */
264
265         /*
266          * context-switches callback
267          */
268         void (*sched_task)              (struct perf_event_context *ctx,
269                                         bool sched_in);
270         /*
271          * PMU specific data size
272          */
273         size_t                          task_ctx_size;
274
275 };
276
277 /**
278  * enum perf_event_active_state - the states of a event
279  */
280 enum perf_event_active_state {
281         PERF_EVENT_STATE_EXIT           = -3,
282         PERF_EVENT_STATE_ERROR          = -2,
283         PERF_EVENT_STATE_OFF            = -1,
284         PERF_EVENT_STATE_INACTIVE       =  0,
285         PERF_EVENT_STATE_ACTIVE         =  1,
286 };
287
288 struct file;
289 struct perf_sample_data;
290
291 typedef void (*perf_overflow_handler_t)(struct perf_event *,
292                                         struct perf_sample_data *,
293                                         struct pt_regs *regs);
294
295 enum perf_group_flag {
296         PERF_GROUP_SOFTWARE             = 0x1,
297 };
298
299 #define SWEVENT_HLIST_BITS              8
300 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
301
302 struct swevent_hlist {
303         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
304         struct rcu_head                 rcu_head;
305 };
306
307 #define PERF_ATTACH_CONTEXT     0x01
308 #define PERF_ATTACH_GROUP       0x02
309 #define PERF_ATTACH_TASK        0x04
310 #define PERF_ATTACH_TASK_DATA   0x08
311
312 struct perf_cgroup;
313 struct ring_buffer;
314
315 /**
316  * struct perf_event - performance event kernel representation:
317  */
318 struct perf_event {
319 #ifdef CONFIG_PERF_EVENTS
320         /*
321          * entry onto perf_event_context::event_list;
322          *   modifications require ctx->lock
323          *   RCU safe iterations.
324          */
325         struct list_head                event_entry;
326
327         /*
328          * XXX: group_entry and sibling_list should be mutually exclusive;
329          * either you're a sibling on a group, or you're the group leader.
330          * Rework the code to always use the same list element.
331          *
332          * Locked for modification by both ctx->mutex and ctx->lock; holding
333          * either sufficies for read.
334          */
335         struct list_head                group_entry;
336         struct list_head                sibling_list;
337
338         /*
339          * We need storage to track the entries in perf_pmu_migrate_context; we
340          * cannot use the event_entry because of RCU and we want to keep the
341          * group in tact which avoids us using the other two entries.
342          */
343         struct list_head                migrate_entry;
344
345         struct hlist_node               hlist_entry;
346         struct list_head                active_entry;
347         int                             nr_siblings;
348         int                             group_flags;
349         struct perf_event               *group_leader;
350         struct pmu                      *pmu;
351
352         enum perf_event_active_state    state;
353         unsigned int                    attach_state;
354         local64_t                       count;
355         atomic64_t                      child_count;
356
357         /*
358          * These are the total time in nanoseconds that the event
359          * has been enabled (i.e. eligible to run, and the task has
360          * been scheduled in, if this is a per-task event)
361          * and running (scheduled onto the CPU), respectively.
362          *
363          * They are computed from tstamp_enabled, tstamp_running and
364          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
365          */
366         u64                             total_time_enabled;
367         u64                             total_time_running;
368
369         /*
370          * These are timestamps used for computing total_time_enabled
371          * and total_time_running when the event is in INACTIVE or
372          * ACTIVE state, measured in nanoseconds from an arbitrary point
373          * in time.
374          * tstamp_enabled: the notional time when the event was enabled
375          * tstamp_running: the notional time when the event was scheduled on
376          * tstamp_stopped: in INACTIVE state, the notional time when the
377          *      event was scheduled off.
378          */
379         u64                             tstamp_enabled;
380         u64                             tstamp_running;
381         u64                             tstamp_stopped;
382
383         /*
384          * timestamp shadows the actual context timing but it can
385          * be safely used in NMI interrupt context. It reflects the
386          * context time as it was when the event was last scheduled in.
387          *
388          * ctx_time already accounts for ctx->timestamp. Therefore to
389          * compute ctx_time for a sample, simply add perf_clock().
390          */
391         u64                             shadow_ctx_time;
392
393         struct perf_event_attr          attr;
394         u16                             header_size;
395         u16                             id_header_size;
396         u16                             read_size;
397         struct hw_perf_event            hw;
398
399         struct perf_event_context       *ctx;
400         atomic_long_t                   refcount;
401
402         /*
403          * These accumulate total time (in nanoseconds) that children
404          * events have been enabled and running, respectively.
405          */
406         atomic64_t                      child_total_time_enabled;
407         atomic64_t                      child_total_time_running;
408
409         /*
410          * Protect attach/detach and child_list:
411          */
412         struct mutex                    child_mutex;
413         struct list_head                child_list;
414         struct perf_event               *parent;
415
416         int                             oncpu;
417         int                             cpu;
418
419         struct list_head                owner_entry;
420         struct task_struct              *owner;
421
422         /* mmap bits */
423         struct mutex                    mmap_mutex;
424         atomic_t                        mmap_count;
425
426         struct ring_buffer              *rb;
427         struct list_head                rb_entry;
428         unsigned long                   rcu_batches;
429         int                             rcu_pending;
430
431         /* poll related */
432         wait_queue_head_t               waitq;
433         struct fasync_struct            *fasync;
434
435         /* delayed work for NMIs and such */
436         int                             pending_wakeup;
437         int                             pending_kill;
438         int                             pending_disable;
439         struct irq_work                 pending;
440
441         atomic_t                        event_limit;
442
443         void (*destroy)(struct perf_event *);
444         struct rcu_head                 rcu_head;
445
446         struct pid_namespace            *ns;
447         u64                             id;
448
449         perf_overflow_handler_t         overflow_handler;
450         void                            *overflow_handler_context;
451
452 #ifdef CONFIG_EVENT_TRACING
453         struct ftrace_event_call        *tp_event;
454         struct event_filter             *filter;
455 #ifdef CONFIG_FUNCTION_TRACER
456         struct ftrace_ops               ftrace_ops;
457 #endif
458 #endif
459
460 #ifdef CONFIG_CGROUP_PERF
461         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
462         int                             cgrp_defer_enabled;
463 #endif
464
465 #endif /* CONFIG_PERF_EVENTS */
466 };
467
468 /**
469  * struct perf_event_context - event context structure
470  *
471  * Used as a container for task events and CPU events as well:
472  */
473 struct perf_event_context {
474         struct pmu                      *pmu;
475         /*
476          * Protect the states of the events in the list,
477          * nr_active, and the list:
478          */
479         raw_spinlock_t                  lock;
480         /*
481          * Protect the list of events.  Locking either mutex or lock
482          * is sufficient to ensure the list doesn't change; to change
483          * the list you need to lock both the mutex and the spinlock.
484          */
485         struct mutex                    mutex;
486
487         struct list_head                active_ctx_list;
488         struct list_head                pinned_groups;
489         struct list_head                flexible_groups;
490         struct list_head                event_list;
491         int                             nr_events;
492         int                             nr_active;
493         int                             is_active;
494         int                             nr_stat;
495         int                             nr_freq;
496         int                             rotate_disable;
497         atomic_t                        refcount;
498         struct task_struct              *task;
499
500         /*
501          * Context clock, runs when context enabled.
502          */
503         u64                             time;
504         u64                             timestamp;
505
506         /*
507          * These fields let us detect when two contexts have both
508          * been cloned (inherited) from a common ancestor.
509          */
510         struct perf_event_context       *parent_ctx;
511         u64                             parent_gen;
512         u64                             generation;
513         int                             pin_count;
514         int                             nr_cgroups;      /* cgroup evts */
515         void                            *task_ctx_data; /* pmu specific data */
516         struct rcu_head                 rcu_head;
517
518         struct delayed_work             orphans_remove;
519         bool                            orphans_remove_sched;
520 };
521
522 /*
523  * Number of contexts where an event can trigger:
524  *      task, softirq, hardirq, nmi.
525  */
526 #define PERF_NR_CONTEXTS        4
527
528 /**
529  * struct perf_event_cpu_context - per cpu event context structure
530  */
531 struct perf_cpu_context {
532         struct perf_event_context       ctx;
533         struct perf_event_context       *task_ctx;
534         int                             active_oncpu;
535         int                             exclusive;
536         struct hrtimer                  hrtimer;
537         ktime_t                         hrtimer_interval;
538         struct pmu                      *unique_pmu;
539         struct perf_cgroup              *cgrp;
540 };
541
542 struct perf_output_handle {
543         struct perf_event               *event;
544         struct ring_buffer              *rb;
545         unsigned long                   wakeup;
546         unsigned long                   size;
547         void                            *addr;
548         int                             page;
549 };
550
551 #ifdef CONFIG_CGROUP_PERF
552
553 /*
554  * perf_cgroup_info keeps track of time_enabled for a cgroup.
555  * This is a per-cpu dynamically allocated data structure.
556  */
557 struct perf_cgroup_info {
558         u64                             time;
559         u64                             timestamp;
560 };
561
562 struct perf_cgroup {
563         struct cgroup_subsys_state      css;
564         struct perf_cgroup_info __percpu *info;
565 };
566
567 /*
568  * Must ensure cgroup is pinned (css_get) before calling
569  * this function. In other words, we cannot call this function
570  * if there is no cgroup event for the current CPU context.
571  */
572 static inline struct perf_cgroup *
573 perf_cgroup_from_task(struct task_struct *task)
574 {
575         return container_of(task_css(task, perf_event_cgrp_id),
576                             struct perf_cgroup, css);
577 }
578 #endif /* CONFIG_CGROUP_PERF */
579
580 #ifdef CONFIG_PERF_EVENTS
581
582 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
583 extern void perf_pmu_unregister(struct pmu *pmu);
584
585 extern int perf_num_counters(void);
586 extern const char *perf_pmu_name(void);
587 extern void __perf_event_task_sched_in(struct task_struct *prev,
588                                        struct task_struct *task);
589 extern void __perf_event_task_sched_out(struct task_struct *prev,
590                                         struct task_struct *next);
591 extern int perf_event_init_task(struct task_struct *child);
592 extern void perf_event_exit_task(struct task_struct *child);
593 extern void perf_event_free_task(struct task_struct *task);
594 extern void perf_event_delayed_put(struct task_struct *task);
595 extern void perf_event_print_debug(void);
596 extern void perf_pmu_disable(struct pmu *pmu);
597 extern void perf_pmu_enable(struct pmu *pmu);
598 extern void perf_sched_cb_dec(struct pmu *pmu);
599 extern void perf_sched_cb_inc(struct pmu *pmu);
600 extern int perf_event_task_disable(void);
601 extern int perf_event_task_enable(void);
602 extern int perf_event_refresh(struct perf_event *event, int refresh);
603 extern void perf_event_update_userpage(struct perf_event *event);
604 extern int perf_event_release_kernel(struct perf_event *event);
605 extern struct perf_event *
606 perf_event_create_kernel_counter(struct perf_event_attr *attr,
607                                 int cpu,
608                                 struct task_struct *task,
609                                 perf_overflow_handler_t callback,
610                                 void *context);
611 extern void perf_pmu_migrate_context(struct pmu *pmu,
612                                 int src_cpu, int dst_cpu);
613 extern u64 perf_event_read_value(struct perf_event *event,
614                                  u64 *enabled, u64 *running);
615
616
617 struct perf_sample_data {
618         /*
619          * Fields set by perf_sample_data_init(), group so as to
620          * minimize the cachelines touched.
621          */
622         u64                             addr;
623         struct perf_raw_record          *raw;
624         struct perf_branch_stack        *br_stack;
625         u64                             period;
626         u64                             weight;
627         u64                             txn;
628         union  perf_mem_data_src        data_src;
629
630         /*
631          * The other fields, optionally {set,used} by
632          * perf_{prepare,output}_sample().
633          */
634         u64                             type;
635         u64                             ip;
636         struct {
637                 u32     pid;
638                 u32     tid;
639         }                               tid_entry;
640         u64                             time;
641         u64                             id;
642         u64                             stream_id;
643         struct {
644                 u32     cpu;
645                 u32     reserved;
646         }                               cpu_entry;
647         struct perf_callchain_entry     *callchain;
648
649         /*
650          * regs_user may point to task_pt_regs or to regs_user_copy, depending
651          * on arch details.
652          */
653         struct perf_regs                regs_user;
654         struct pt_regs                  regs_user_copy;
655
656         struct perf_regs                regs_intr;
657         u64                             stack_user_size;
658 } ____cacheline_aligned;
659
660 /* default value for data source */
661 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
662                     PERF_MEM_S(LVL, NA)   |\
663                     PERF_MEM_S(SNOOP, NA) |\
664                     PERF_MEM_S(LOCK, NA)  |\
665                     PERF_MEM_S(TLB, NA))
666
667 static inline void perf_sample_data_init(struct perf_sample_data *data,
668                                          u64 addr, u64 period)
669 {
670         /* remaining struct members initialized in perf_prepare_sample() */
671         data->addr = addr;
672         data->raw  = NULL;
673         data->br_stack = NULL;
674         data->period = period;
675         data->weight = 0;
676         data->data_src.val = PERF_MEM_NA;
677         data->txn = 0;
678 }
679
680 extern void perf_output_sample(struct perf_output_handle *handle,
681                                struct perf_event_header *header,
682                                struct perf_sample_data *data,
683                                struct perf_event *event);
684 extern void perf_prepare_sample(struct perf_event_header *header,
685                                 struct perf_sample_data *data,
686                                 struct perf_event *event,
687                                 struct pt_regs *regs);
688
689 extern int perf_event_overflow(struct perf_event *event,
690                                  struct perf_sample_data *data,
691                                  struct pt_regs *regs);
692
693 static inline bool is_sampling_event(struct perf_event *event)
694 {
695         return event->attr.sample_period != 0;
696 }
697
698 /*
699  * Return 1 for a software event, 0 for a hardware event
700  */
701 static inline int is_software_event(struct perf_event *event)
702 {
703         return event->pmu->task_ctx_nr == perf_sw_context;
704 }
705
706 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
707
708 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
709 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
710
711 #ifndef perf_arch_fetch_caller_regs
712 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
713 #endif
714
715 /*
716  * Take a snapshot of the regs. Skip ip and frame pointer to
717  * the nth caller. We only need a few of the regs:
718  * - ip for PERF_SAMPLE_IP
719  * - cs for user_mode() tests
720  * - bp for callchains
721  * - eflags, for future purposes, just in case
722  */
723 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
724 {
725         memset(regs, 0, sizeof(*regs));
726
727         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
728 }
729
730 static __always_inline void
731 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
732 {
733         if (static_key_false(&perf_swevent_enabled[event_id]))
734                 __perf_sw_event(event_id, nr, regs, addr);
735 }
736
737 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
738
739 /*
740  * 'Special' version for the scheduler, it hard assumes no recursion,
741  * which is guaranteed by us not actually scheduling inside other swevents
742  * because those disable preemption.
743  */
744 static __always_inline void
745 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
746 {
747         if (static_key_false(&perf_swevent_enabled[event_id])) {
748                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
749
750                 perf_fetch_caller_regs(regs);
751                 ___perf_sw_event(event_id, nr, regs, addr);
752         }
753 }
754
755 extern struct static_key_deferred perf_sched_events;
756
757 static inline void perf_event_task_sched_in(struct task_struct *prev,
758                                             struct task_struct *task)
759 {
760         if (static_key_false(&perf_sched_events.key))
761                 __perf_event_task_sched_in(prev, task);
762 }
763
764 static inline void perf_event_task_sched_out(struct task_struct *prev,
765                                              struct task_struct *next)
766 {
767         perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
768
769         if (static_key_false(&perf_sched_events.key))
770                 __perf_event_task_sched_out(prev, next);
771 }
772
773 extern void perf_event_mmap(struct vm_area_struct *vma);
774 extern struct perf_guest_info_callbacks *perf_guest_cbs;
775 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
776 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
777
778 extern void perf_event_exec(void);
779 extern void perf_event_comm(struct task_struct *tsk, bool exec);
780 extern void perf_event_fork(struct task_struct *tsk);
781
782 /* Callchains */
783 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
784
785 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
786 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
787
788 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
789 {
790         if (entry->nr < PERF_MAX_STACK_DEPTH)
791                 entry->ip[entry->nr++] = ip;
792 }
793
794 extern int sysctl_perf_event_paranoid;
795 extern int sysctl_perf_event_mlock;
796 extern int sysctl_perf_event_sample_rate;
797 extern int sysctl_perf_cpu_time_max_percent;
798
799 extern void perf_sample_event_took(u64 sample_len_ns);
800
801 extern int perf_proc_update_handler(struct ctl_table *table, int write,
802                 void __user *buffer, size_t *lenp,
803                 loff_t *ppos);
804 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
805                 void __user *buffer, size_t *lenp,
806                 loff_t *ppos);
807
808
809 static inline bool perf_paranoid_tracepoint_raw(void)
810 {
811         return sysctl_perf_event_paranoid > -1;
812 }
813
814 static inline bool perf_paranoid_cpu(void)
815 {
816         return sysctl_perf_event_paranoid > 0;
817 }
818
819 static inline bool perf_paranoid_kernel(void)
820 {
821         return sysctl_perf_event_paranoid > 1;
822 }
823
824 extern void perf_event_init(void);
825 extern void perf_tp_event(u64 addr, u64 count, void *record,
826                           int entry_size, struct pt_regs *regs,
827                           struct hlist_head *head, int rctx,
828                           struct task_struct *task);
829 extern void perf_bp_event(struct perf_event *event, void *data);
830
831 #ifndef perf_misc_flags
832 # define perf_misc_flags(regs) \
833                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
834 # define perf_instruction_pointer(regs) instruction_pointer(regs)
835 #endif
836
837 static inline bool has_branch_stack(struct perf_event *event)
838 {
839         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
840 }
841
842 static inline bool needs_branch_stack(struct perf_event *event)
843 {
844         return event->attr.branch_sample_type != 0;
845 }
846
847 extern int perf_output_begin(struct perf_output_handle *handle,
848                              struct perf_event *event, unsigned int size);
849 extern void perf_output_end(struct perf_output_handle *handle);
850 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
851                              const void *buf, unsigned int len);
852 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
853                                      unsigned int len);
854 extern int perf_swevent_get_recursion_context(void);
855 extern void perf_swevent_put_recursion_context(int rctx);
856 extern u64 perf_swevent_set_period(struct perf_event *event);
857 extern void perf_event_enable(struct perf_event *event);
858 extern void perf_event_disable(struct perf_event *event);
859 extern int __perf_event_disable(void *info);
860 extern void perf_event_task_tick(void);
861 #else /* !CONFIG_PERF_EVENTS: */
862 static inline void
863 perf_event_task_sched_in(struct task_struct *prev,
864                          struct task_struct *task)                      { }
865 static inline void
866 perf_event_task_sched_out(struct task_struct *prev,
867                           struct task_struct *next)                     { }
868 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
869 static inline void perf_event_exit_task(struct task_struct *child)      { }
870 static inline void perf_event_free_task(struct task_struct *task)       { }
871 static inline void perf_event_delayed_put(struct task_struct *task)     { }
872 static inline void perf_event_print_debug(void)                         { }
873 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
874 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
875 static inline int perf_event_refresh(struct perf_event *event, int refresh)
876 {
877         return -EINVAL;
878 }
879
880 static inline void
881 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
882 static inline void
883 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)                     { }
884 static inline void
885 perf_bp_event(struct perf_event *event, void *data)                     { }
886
887 static inline int perf_register_guest_info_callbacks
888 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
889 static inline int perf_unregister_guest_info_callbacks
890 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
891
892 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
893 static inline void perf_event_exec(void)                                { }
894 static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
895 static inline void perf_event_fork(struct task_struct *tsk)             { }
896 static inline void perf_event_init(void)                                { }
897 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
898 static inline void perf_swevent_put_recursion_context(int rctx)         { }
899 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
900 static inline void perf_event_enable(struct perf_event *event)          { }
901 static inline void perf_event_disable(struct perf_event *event)         { }
902 static inline int __perf_event_disable(void *info)                      { return -1; }
903 static inline void perf_event_task_tick(void)                           { }
904 #endif
905
906 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
907 extern bool perf_event_can_stop_tick(void);
908 #else
909 static inline bool perf_event_can_stop_tick(void)                       { return true; }
910 #endif
911
912 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
913 extern void perf_restore_debug_store(void);
914 #else
915 static inline void perf_restore_debug_store(void)                       { }
916 #endif
917
918 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
919
920 /*
921  * This has to have a higher priority than migration_notifier in sched/core.c.
922  */
923 #define perf_cpu_notifier(fn)                                           \
924 do {                                                                    \
925         static struct notifier_block fn##_nb =                          \
926                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
927         unsigned long cpu = smp_processor_id();                         \
928         unsigned long flags;                                            \
929                                                                         \
930         cpu_notifier_register_begin();                                  \
931         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
932                 (void *)(unsigned long)cpu);                            \
933         local_irq_save(flags);                                          \
934         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
935                 (void *)(unsigned long)cpu);                            \
936         local_irq_restore(flags);                                       \
937         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
938                 (void *)(unsigned long)cpu);                            \
939         __register_cpu_notifier(&fn##_nb);                              \
940         cpu_notifier_register_done();                                   \
941 } while (0)
942
943 /*
944  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
945  * callback for already online CPUs.
946  */
947 #define __perf_cpu_notifier(fn)                                         \
948 do {                                                                    \
949         static struct notifier_block fn##_nb =                          \
950                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
951                                                                         \
952         __register_cpu_notifier(&fn##_nb);                              \
953 } while (0)
954
955 struct perf_pmu_events_attr {
956         struct device_attribute attr;
957         u64 id;
958         const char *event_str;
959 };
960
961 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
962 static struct perf_pmu_events_attr _var = {                             \
963         .attr = __ATTR(_name, 0444, _show, NULL),                       \
964         .id   =  _id,                                                   \
965 };
966
967 #define PMU_FORMAT_ATTR(_name, _format)                                 \
968 static ssize_t                                                          \
969 _name##_show(struct device *dev,                                        \
970                                struct device_attribute *attr,           \
971                                char *page)                              \
972 {                                                                       \
973         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
974         return sprintf(page, _format "\n");                             \
975 }                                                                       \
976                                                                         \
977 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
978
979 #endif /* _LINUX_PERF_EVENT_H */