2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 * (C) SGI 2006, Christoph Lameter
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
20 * Flags to pass to kmem_cache_create().
21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
23 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
44 * obj = lockless_lookup(key);
46 * if (!try_get_ref(obj)) // might fail for free objects
49 * if (obj->key != key) { // not the object we expected
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
69 /* Flag to prevent checks on free */
70 #ifdef CONFIG_DEBUG_OBJECTS
71 # define SLAB_DEBUG_OBJECTS 0x00400000UL
73 # define SLAB_DEBUG_OBJECTS 0x00000000UL
76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
78 /* Don't track use of uninitialized memory */
79 #ifdef CONFIG_KMEMCHECK
80 # define SLAB_NOTRACK 0x01000000UL
82 # define SLAB_NOTRACK 0x00000000UL
84 #ifdef CONFIG_FAILSLAB
85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
87 # define SLAB_FAILSLAB 0x00000000UL
90 /* The following flags affect the page allocator grouping pages by mobility */
91 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
101 #define ZERO_SIZE_PTR ((void *)16)
103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
104 (unsigned long)ZERO_SIZE_PTR)
106 #include <linux/kmemleak.h>
107 #include <linux/kasan.h>
111 * struct kmem_cache related prototypes
113 void __init kmem_cache_init(void);
114 bool slab_is_available(void);
116 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
119 void kmem_cache_destroy(struct kmem_cache *);
120 int kmem_cache_shrink(struct kmem_cache *);
122 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124 void memcg_destroy_kmem_caches(struct mem_cgroup *);
127 * Please use this macro to create slab caches. Simply specify the
128 * name of the structure and maybe some flags that are listed above.
130 * The alignment of the struct determines object alignment. If you
131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132 * then the objects will be properly aligned in SMP configurations.
134 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135 sizeof(struct __struct), __alignof__(struct __struct),\
139 * Common kmalloc functions provided by all allocators
141 void * __must_check __krealloc(const void *, size_t, gfp_t);
142 void * __must_check krealloc(const void *, size_t, gfp_t);
143 void kfree(const void *);
144 void kzfree(const void *);
145 size_t ksize(const void *);
147 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
148 const char *__check_heap_object(const void *ptr, unsigned long n,
151 static inline const char *__check_heap_object(const void *ptr,
160 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
161 * alignment larger than the alignment of a 64-bit integer.
162 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
164 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
165 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
166 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
167 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
169 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
173 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
174 * Intended for arches that get misalignment faults even for 64 bit integer
177 #ifndef ARCH_SLAB_MINALIGN
178 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
182 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
183 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
186 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
187 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
188 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
191 * Kmalloc array related definitions
196 * The largest kmalloc size supported by the SLAB allocators is
197 * 32 megabyte (2^25) or the maximum allocatable page order if that is
200 * WARNING: Its not easy to increase this value since the allocators have
201 * to do various tricks to work around compiler limitations in order to
202 * ensure proper constant folding.
204 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
205 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
206 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
207 #ifndef KMALLOC_SHIFT_LOW
208 #define KMALLOC_SHIFT_LOW 5
214 * SLUB directly allocates requests fitting in to an order-1 page
215 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
217 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
218 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
219 #ifndef KMALLOC_SHIFT_LOW
220 #define KMALLOC_SHIFT_LOW 3
226 * SLOB passes all requests larger than one page to the page allocator.
227 * No kmalloc array is necessary since objects of different sizes can
228 * be allocated from the same page.
230 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
231 #define KMALLOC_SHIFT_MAX 30
232 #ifndef KMALLOC_SHIFT_LOW
233 #define KMALLOC_SHIFT_LOW 3
237 /* Maximum allocatable size */
238 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
239 /* Maximum size for which we actually use a slab cache */
240 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
241 /* Maximum order allocatable via the slab allocagtor */
242 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
247 #ifndef KMALLOC_MIN_SIZE
248 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
252 * This restriction comes from byte sized index implementation.
253 * Page size is normally 2^12 bytes and, in this case, if we want to use
254 * byte sized index which can represent 2^8 entries, the size of the object
255 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
256 * If minimum size of kmalloc is less than 16, we use it as minimum object
257 * size and give up to use byte sized index.
259 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
260 (KMALLOC_MIN_SIZE) : 16)
263 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
264 #ifdef CONFIG_ZONE_DMA
265 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
269 * Figure out which kmalloc slab an allocation of a certain size
273 * 2 = 129 .. 192 bytes
274 * n = 2^(n-1)+1 .. 2^n
276 static __always_inline int kmalloc_index(size_t size)
281 if (size <= KMALLOC_MIN_SIZE)
282 return KMALLOC_SHIFT_LOW;
284 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
286 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
288 if (size <= 8) return 3;
289 if (size <= 16) return 4;
290 if (size <= 32) return 5;
291 if (size <= 64) return 6;
292 if (size <= 128) return 7;
293 if (size <= 256) return 8;
294 if (size <= 512) return 9;
295 if (size <= 1024) return 10;
296 if (size <= 2 * 1024) return 11;
297 if (size <= 4 * 1024) return 12;
298 if (size <= 8 * 1024) return 13;
299 if (size <= 16 * 1024) return 14;
300 if (size <= 32 * 1024) return 15;
301 if (size <= 64 * 1024) return 16;
302 if (size <= 128 * 1024) return 17;
303 if (size <= 256 * 1024) return 18;
304 if (size <= 512 * 1024) return 19;
305 if (size <= 1024 * 1024) return 20;
306 if (size <= 2 * 1024 * 1024) return 21;
307 if (size <= 4 * 1024 * 1024) return 22;
308 if (size <= 8 * 1024 * 1024) return 23;
309 if (size <= 16 * 1024 * 1024) return 24;
310 if (size <= 32 * 1024 * 1024) return 25;
311 if (size <= 64 * 1024 * 1024) return 26;
314 /* Will never be reached. Needed because the compiler may complain */
317 #endif /* !CONFIG_SLOB */
319 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
320 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
321 void kmem_cache_free(struct kmem_cache *, void *);
324 * Bulk allocation and freeing operations. These are accellerated in an
325 * allocator specific way to avoid taking locks repeatedly or building
326 * metadata structures unnecessarily.
328 * Note that interrupts must be enabled when calling these functions.
330 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
331 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
334 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
335 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
337 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
339 return __kmalloc(size, flags);
342 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
344 return kmem_cache_alloc(s, flags);
348 #ifdef CONFIG_TRACING
349 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
352 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
354 int node, size_t size) __assume_slab_alignment;
356 static __always_inline void *
357 kmem_cache_alloc_node_trace(struct kmem_cache *s,
359 int node, size_t size)
361 return kmem_cache_alloc_trace(s, gfpflags, size);
363 #endif /* CONFIG_NUMA */
365 #else /* CONFIG_TRACING */
366 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
367 gfp_t flags, size_t size)
369 void *ret = kmem_cache_alloc(s, flags);
371 kasan_kmalloc(s, ret, size);
375 static __always_inline void *
376 kmem_cache_alloc_node_trace(struct kmem_cache *s,
378 int node, size_t size)
380 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
382 kasan_kmalloc(s, ret, size);
385 #endif /* CONFIG_TRACING */
387 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
389 #ifdef CONFIG_TRACING
390 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
392 static __always_inline void *
393 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
395 return kmalloc_order(size, flags, order);
399 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
401 unsigned int order = get_order(size);
402 return kmalloc_order_trace(size, flags, order);
406 * kmalloc - allocate memory
407 * @size: how many bytes of memory are required.
408 * @flags: the type of memory to allocate.
410 * kmalloc is the normal method of allocating memory
411 * for objects smaller than page size in the kernel.
413 * The @flags argument may be one of:
415 * %GFP_USER - Allocate memory on behalf of user. May sleep.
417 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
419 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
420 * For example, use this inside interrupt handlers.
422 * %GFP_HIGHUSER - Allocate pages from high memory.
424 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
426 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
428 * %GFP_NOWAIT - Allocation will not sleep.
430 * %__GFP_THISNODE - Allocate node-local memory only.
432 * %GFP_DMA - Allocation suitable for DMA.
433 * Should only be used for kmalloc() caches. Otherwise, use a
434 * slab created with SLAB_DMA.
436 * Also it is possible to set different flags by OR'ing
437 * in one or more of the following additional @flags:
439 * %__GFP_COLD - Request cache-cold pages instead of
440 * trying to return cache-warm pages.
442 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
444 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
445 * (think twice before using).
447 * %__GFP_NORETRY - If memory is not immediately available,
448 * then give up at once.
450 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
452 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
454 * There are other flags available as well, but these are not intended
455 * for general use, and so are not documented here. For a full list of
456 * potential flags, always refer to linux/gfp.h.
458 static __always_inline void *kmalloc(size_t size, gfp_t flags)
460 if (__builtin_constant_p(size)) {
461 if (size > KMALLOC_MAX_CACHE_SIZE)
462 return kmalloc_large(size, flags);
464 if (!(flags & GFP_DMA)) {
465 int index = kmalloc_index(size);
468 return ZERO_SIZE_PTR;
470 return kmem_cache_alloc_trace(kmalloc_caches[index],
475 return __kmalloc(size, flags);
479 * Determine size used for the nth kmalloc cache.
480 * return size or 0 if a kmalloc cache for that
481 * size does not exist
483 static __always_inline int kmalloc_size(int n)
489 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
492 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
498 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
501 if (__builtin_constant_p(size) &&
502 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
503 int i = kmalloc_index(size);
506 return ZERO_SIZE_PTR;
508 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
512 return __kmalloc_node(size, flags, node);
515 struct memcg_cache_array {
517 struct kmem_cache *entries[0];
521 * This is the main placeholder for memcg-related information in kmem caches.
522 * Both the root cache and the child caches will have it. For the root cache,
523 * this will hold a dynamically allocated array large enough to hold
524 * information about the currently limited memcgs in the system. To allow the
525 * array to be accessed without taking any locks, on relocation we free the old
526 * version only after a grace period.
528 * Child caches will hold extra metadata needed for its operation. Fields are:
530 * @memcg: pointer to the memcg this cache belongs to
531 * @root_cache: pointer to the global, root cache, this cache was derived from
533 * Both root and child caches of the same kind are linked into a list chained
536 struct memcg_cache_params {
538 struct list_head list;
540 struct memcg_cache_array __rcu *memcg_caches;
542 struct mem_cgroup *memcg;
543 struct kmem_cache *root_cache;
548 int memcg_update_all_caches(int num_memcgs);
551 * kmalloc_array - allocate memory for an array.
552 * @n: number of elements.
553 * @size: element size.
554 * @flags: the type of memory to allocate (see kmalloc).
556 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
558 if (size != 0 && n > SIZE_MAX / size)
560 return __kmalloc(n * size, flags);
564 * kcalloc - allocate memory for an array. The memory is set to zero.
565 * @n: number of elements.
566 * @size: element size.
567 * @flags: the type of memory to allocate (see kmalloc).
569 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
571 return kmalloc_array(n, size, flags | __GFP_ZERO);
575 * kmalloc_track_caller is a special version of kmalloc that records the
576 * calling function of the routine calling it for slab leak tracking instead
577 * of just the calling function (confusing, eh?).
578 * It's useful when the call to kmalloc comes from a widely-used standard
579 * allocator where we care about the real place the memory allocation
580 * request comes from.
582 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
583 #define kmalloc_track_caller(size, flags) \
584 __kmalloc_track_caller(size, flags, _RET_IP_)
587 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
588 #define kmalloc_node_track_caller(size, flags, node) \
589 __kmalloc_node_track_caller(size, flags, node, \
592 #else /* CONFIG_NUMA */
594 #define kmalloc_node_track_caller(size, flags, node) \
595 kmalloc_track_caller(size, flags)
597 #endif /* CONFIG_NUMA */
602 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
604 return kmem_cache_alloc(k, flags | __GFP_ZERO);
608 * kzalloc - allocate memory. The memory is set to zero.
609 * @size: how many bytes of memory are required.
610 * @flags: the type of memory to allocate (see kmalloc).
612 static inline void *kzalloc(size_t size, gfp_t flags)
614 return kmalloc(size, flags | __GFP_ZERO);
618 * kzalloc_node - allocate zeroed memory from a particular memory node.
619 * @size: how many bytes of memory are required.
620 * @flags: the type of memory to allocate (see kmalloc).
621 * @node: memory node from which to allocate
623 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
625 return kmalloc_node(size, flags | __GFP_ZERO, node);
628 unsigned int kmem_cache_size(struct kmem_cache *s);
629 void __init kmem_cache_init_late(void);
631 #endif /* _LINUX_SLAB_H */