1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a coalescing interval map for small objects.
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
34 //===----------------------------------------------------------------------===//
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
41 // typedef KeyT key_type;
42 // typedef ValT mapped_type;
43 // typedef RecyclingAllocator<...> Allocator;
45 // class const_iterator;
47 // explicit IntervalMap(Allocator&);
50 // bool empty() const;
51 // KeyT start() const;
53 // ValT lookup(KeyT x, Value NotFound = Value()) const;
55 // const_iterator begin() const;
56 // const_iterator end() const;
59 // const_iterator find(KeyT x) const;
60 // iterator find(KeyT x);
62 // void insert(KeyT a, KeyT b, ValT y);
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 // public std::iterator<std::bidirectional_iterator_tag, ValT> {
70 // bool operator==(const const_iterator &) const;
71 // bool operator!=(const const_iterator &) const;
72 // bool valid() const;
74 // const KeyT &start() const;
75 // const KeyT &stop() const;
76 // const ValT &value() const;
77 // const ValT &operator*() const;
78 // const ValT *operator->() const;
80 // const_iterator &operator++();
81 // const_iterator &operator++(int);
82 // const_iterator &operator--();
83 // const_iterator &operator--(int);
87 // void advanceTo(KeyT x);
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
93 // void insert(KeyT a, KeyT b, Value y);
97 //===----------------------------------------------------------------------===//
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
102 #include "llvm/ADT/SmallVector.h"
103 #include "llvm/ADT/PointerIntPair.h"
104 #include "llvm/Support/Allocator.h"
105 #include "llvm/Support/RecyclingAllocator.h"
111 //===----------------------------------------------------------------------===//
112 //--- Key traits ---//
113 //===----------------------------------------------------------------------===//
115 // The IntervalMap works with closed or half-open intervals.
116 // Adjacent intervals that map to the same value are coalesced.
118 // The IntervalMapInfo traits class is used to determine if a key is contained
119 // in an interval, and if two intervals are adjacent so they can be coalesced.
120 // The provided implementation works for closed integer intervals, other keys
121 // probably need a specialized version.
123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
126 // allowed. This is so that stopLess(a, b) can be used to determine if two
127 // intervals overlap.
129 //===----------------------------------------------------------------------===//
131 template <typename T>
132 struct IntervalMapInfo {
134 /// startLess - Return true if x is not in [a;b].
135 /// This is x < a both for closed intervals and for [a;b) half-open intervals.
136 static inline bool startLess(const T &x, const T &a) {
140 /// stopLess - Return true if x is not in [a;b].
141 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
142 static inline bool stopLess(const T &b, const T &x) {
146 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
147 /// This is a+1 == b for closed intervals, a == b for half-open intervals.
148 static inline bool adjacent(const T &a, const T &b) {
154 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
155 /// It should be considered private to the implementation.
156 namespace IntervalMapImpl {
158 // Forward declarations.
159 template <typename, typename, unsigned, typename> class LeafNode;
160 template <typename, typename, unsigned, typename> class BranchNode;
162 typedef std::pair<unsigned,unsigned> IdxPair;
165 //===----------------------------------------------------------------------===//
166 //--- IntervalMapImpl::NodeBase ---//
167 //===----------------------------------------------------------------------===//
169 // Both leaf and branch nodes store vectors of pairs.
170 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
172 // Keys and values are stored in separate arrays to avoid padding caused by
173 // different object alignments. This also helps improve locality of reference
174 // when searching the keys.
176 // The nodes don't know how many elements they contain - that information is
177 // stored elsewhere. Omitting the size field prevents padding and allows a node
178 // to fill the allocated cache lines completely.
180 // These are typical key and value sizes, the node branching factor (N), and
181 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
183 // T1 T2 N Waste Used by
184 // 4 4 24 0 Branch<4> (32-bit pointers)
185 // 8 4 16 0 Leaf<4,4>, Branch<4>
186 // 8 8 12 0 Leaf<4,8>, Branch<8>
187 // 16 4 9 12 Leaf<8,4>
188 // 16 8 8 0 Leaf<8,8>
190 //===----------------------------------------------------------------------===//
192 template <typename T1, typename T2, unsigned N>
195 enum { Capacity = N };
200 /// copy - Copy elements from another node.
201 /// @param Other Node elements are copied from.
202 /// @param i Beginning of the source range in other.
203 /// @param j Beginning of the destination range in this.
204 /// @param Count Number of elements to copy.
205 template <unsigned M>
206 void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
207 unsigned j, unsigned Count) {
208 assert(i + Count <= M && "Invalid source range");
209 assert(j + Count <= N && "Invalid dest range");
210 for (unsigned e = i + Count; i != e; ++i, ++j) {
211 first[j] = Other.first[i];
212 second[j] = Other.second[i];
216 /// moveLeft - Move elements to the left.
217 /// @param i Beginning of the source range.
218 /// @param j Beginning of the destination range.
219 /// @param Count Number of elements to copy.
220 void moveLeft(unsigned i, unsigned j, unsigned Count) {
221 assert(j <= i && "Use moveRight shift elements right");
222 copy(*this, i, j, Count);
225 /// moveRight - Move elements to the right.
226 /// @param i Beginning of the source range.
227 /// @param j Beginning of the destination range.
228 /// @param Count Number of elements to copy.
229 void moveRight(unsigned i, unsigned j, unsigned Count) {
230 assert(i <= j && "Use moveLeft shift elements left");
231 assert(j + Count <= N && "Invalid range");
233 first[j + Count] = first[i + Count];
234 second[j + Count] = second[i + Count];
238 /// erase - Erase elements [i;j).
239 /// @param i Beginning of the range to erase.
240 /// @param j End of the range. (Exclusive).
241 /// @param Size Number of elements in node.
242 void erase(unsigned i, unsigned j, unsigned Size) {
243 moveLeft(j, i, Size - j);
246 /// erase - Erase element at i.
247 /// @param i Index of element to erase.
248 /// @param Size Number of elements in node.
249 void erase(unsigned i, unsigned Size) {
253 /// shift - Shift elements [i;size) 1 position to the right.
254 /// @param i Beginning of the range to move.
255 /// @param Size Number of elements in node.
256 void shift(unsigned i, unsigned Size) {
257 moveRight(i, i + 1, Size - i);
260 /// transferToLeftSib - Transfer elements to a left sibling node.
261 /// @param Size Number of elements in this.
262 /// @param Sib Left sibling node.
263 /// @param SSize Number of elements in sib.
264 /// @param Count Number of elements to transfer.
265 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
267 Sib.copy(*this, 0, SSize, Count);
268 erase(0, Count, Size);
271 /// transferToRightSib - Transfer elements to a right sibling node.
272 /// @param Size Number of elements in this.
273 /// @param Sib Right sibling node.
274 /// @param SSize Number of elements in sib.
275 /// @param Count Number of elements to transfer.
276 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
278 Sib.moveRight(0, Count, SSize);
279 Sib.copy(*this, Size-Count, 0, Count);
282 /// adjustFromLeftSib - Adjust the number if elements in this node by moving
283 /// elements to or from a left sibling node.
284 /// @param Size Number of elements in this.
285 /// @param Sib Right sibling node.
286 /// @param SSize Number of elements in sib.
287 /// @param Add The number of elements to add to this node, possibly < 0.
288 /// @return Number of elements added to this node, possibly negative.
289 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
291 // We want to grow, copy from sib.
292 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
293 Sib.transferToRightSib(SSize, *this, Size, Count);
296 // We want to shrink, copy to sib.
297 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
298 transferToLeftSib(Size, Sib, SSize, Count);
304 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
305 /// @param Node Array of pointers to sibling nodes.
306 /// @param Nodes Number of nodes.
307 /// @param CurSize Array of current node sizes, will be overwritten.
308 /// @param NewSize Array of desired node sizes.
309 template <typename NodeT>
310 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
311 unsigned CurSize[], const unsigned NewSize[]) {
312 // Move elements right.
313 for (int n = Nodes - 1; n; --n) {
314 if (CurSize[n] == NewSize[n])
316 for (int m = n - 1; m != -1; --m) {
317 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
318 NewSize[n] - CurSize[n]);
321 // Keep going if the current node was exhausted.
322 if (CurSize[n] >= NewSize[n])
330 // Move elements left.
331 for (unsigned n = 0; n != Nodes - 1; ++n) {
332 if (CurSize[n] == NewSize[n])
334 for (unsigned m = n + 1; m != Nodes; ++m) {
335 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
336 CurSize[n] - NewSize[n]);
339 // Keep going if the current node was exhausted.
340 if (CurSize[n] >= NewSize[n])
346 for (unsigned n = 0; n != Nodes; n++)
347 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
351 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
352 /// after an overflow or underflow. Reserve space for a new element at Position,
353 /// and compute the node that will hold Position after redistributing node
356 /// It is required that
358 /// Elements == sum(CurSize), and
359 /// Elements + Grow <= Nodes * Capacity.
361 /// NewSize[] will be filled in such that:
363 /// sum(NewSize) == Elements, and
364 /// NewSize[i] <= Capacity.
366 /// The returned index is the node where Position will go, so:
368 /// sum(NewSize[0..idx-1]) <= Position
369 /// sum(NewSize[0..idx]) >= Position
371 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
372 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
373 /// before the one holding the Position'th element where there is room for an
376 /// @param Nodes The number of nodes.
377 /// @param Elements Total elements in all nodes.
378 /// @param Capacity The capacity of each node.
379 /// @param CurSize Array[Nodes] of current node sizes, or NULL.
380 /// @param NewSize Array[Nodes] to receive the new node sizes.
381 /// @param Position Insert position.
382 /// @param Grow Reserve space for a new element at Position.
383 /// @return (node, offset) for Position.
384 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
385 const unsigned *CurSize, unsigned NewSize[],
386 unsigned Position, bool Grow);
389 //===----------------------------------------------------------------------===//
390 //--- IntervalMapImpl::NodeSizer ---//
391 //===----------------------------------------------------------------------===//
393 // Compute node sizes from key and value types.
395 // The branching factors are chosen to make nodes fit in three cache lines.
396 // This may not be possible if keys or values are very large. Such large objects
397 // are handled correctly, but a std::map would probably give better performance.
399 //===----------------------------------------------------------------------===//
402 // Cache line size. Most architectures have 32 or 64 byte cache lines.
403 // We use 64 bytes here because it provides good branching factors.
405 CacheLineBytes = 1 << Log2CacheLine,
406 DesiredNodeBytes = 3 * CacheLineBytes
409 template <typename KeyT, typename ValT>
412 // Compute the leaf node branching factor that makes a node fit in three
413 // cache lines. The branching factor must be at least 3, or some B+-tree
414 // balancing algorithms won't work.
415 // LeafSize can't be larger than CacheLineBytes. This is required by the
416 // PointerIntPair used by NodeRef.
417 DesiredLeafSize = DesiredNodeBytes /
418 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
420 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
423 typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
426 // Now that we have the leaf branching factor, compute the actual allocation
427 // unit size by rounding up to a whole number of cache lines.
428 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
430 // Determine the branching factor for branch nodes.
431 BranchSize = AllocBytes /
432 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
435 /// Allocator - The recycling allocator used for both branch and leaf nodes.
436 /// This typedef is very likely to be identical for all IntervalMaps with
437 /// reasonably sized entries, so the same allocator can be shared among
438 /// different kinds of maps.
439 typedef RecyclingAllocator<BumpPtrAllocator, char,
440 AllocBytes, CacheLineBytes> Allocator;
445 //===----------------------------------------------------------------------===//
446 //--- IntervalMapImpl::NodeRef ---//
447 //===----------------------------------------------------------------------===//
449 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
450 // pointer that can point to both kinds.
452 // All nodes are cache line aligned and the low 6 bits of a node pointer are
453 // always 0. These bits are used to store the number of elements in the
454 // referenced node. Besides saving space, placing node sizes in the parents
455 // allow tree balancing algorithms to run without faulting cache lines for nodes
456 // that may not need to be modified.
458 // A NodeRef doesn't know whether it references a leaf node or a branch node.
459 // It is the responsibility of the caller to use the correct types.
461 // Nodes are never supposed to be empty, and it is invalid to store a node size
462 // of 0 in a NodeRef. The valid range of sizes is 1-64.
464 //===----------------------------------------------------------------------===//
467 struct CacheAlignedPointerTraits {
468 static inline void *getAsVoidPointer(void *P) { return P; }
469 static inline void *getFromVoidPointer(void *P) { return P; }
470 enum { NumLowBitsAvailable = Log2CacheLine };
472 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
475 /// NodeRef - Create a null ref.
478 /// operator bool - Detect a null ref.
479 operator bool() const { return pip.getOpaqueValue(); }
481 /// NodeRef - Create a reference to the node p with n elements.
482 template <typename NodeT>
483 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
484 assert(n <= NodeT::Capacity && "Size too big for node");
487 /// size - Return the number of elements in the referenced node.
488 unsigned size() const { return pip.getInt() + 1; }
490 /// setSize - Update the node size.
491 void setSize(unsigned n) { pip.setInt(n - 1); }
493 /// subtree - Access the i'th subtree reference in a branch node.
494 /// This depends on branch nodes storing the NodeRef array as their first
496 NodeRef &subtree(unsigned i) const {
497 return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
500 /// get - Dereference as a NodeT reference.
501 template <typename NodeT>
503 return *reinterpret_cast<NodeT*>(pip.getPointer());
506 bool operator==(const NodeRef &RHS) const {
509 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
513 bool operator!=(const NodeRef &RHS) const {
514 return !operator==(RHS);
518 //===----------------------------------------------------------------------===//
519 //--- IntervalMapImpl::LeafNode ---//
520 //===----------------------------------------------------------------------===//
522 // Leaf nodes store up to N disjoint intervals with corresponding values.
524 // The intervals are kept sorted and fully coalesced so there are no adjacent
525 // intervals mapping to the same value.
527 // These constraints are always satisfied:
529 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
531 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
533 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
534 // - Fully coalesced.
536 //===----------------------------------------------------------------------===//
538 template <typename KeyT, typename ValT, unsigned N, typename Traits>
539 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
541 const KeyT &start(unsigned i) const { return this->first[i].first; }
542 const KeyT &stop(unsigned i) const { return this->first[i].second; }
543 const ValT &value(unsigned i) const { return this->second[i]; }
545 KeyT &start(unsigned i) { return this->first[i].first; }
546 KeyT &stop(unsigned i) { return this->first[i].second; }
547 ValT &value(unsigned i) { return this->second[i]; }
549 /// findFrom - Find the first interval after i that may contain x.
550 /// @param i Starting index for the search.
551 /// @param Size Number of elements in node.
552 /// @param x Key to search for.
553 /// @return First index with !stopLess(key[i].stop, x), or size.
554 /// This is the first interval that can possibly contain x.
555 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
556 assert(i <= Size && Size <= N && "Bad indices");
557 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
558 "Index is past the needed point");
559 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
563 /// safeFind - Find an interval that is known to exist. This is the same as
564 /// findFrom except is it assumed that x is at least within range of the last
566 /// @param i Starting index for the search.
567 /// @param x Key to search for.
568 /// @return First index with !stopLess(key[i].stop, x), never size.
569 /// This is the first interval that can possibly contain x.
570 unsigned safeFind(unsigned i, KeyT x) const {
571 assert(i < N && "Bad index");
572 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
573 "Index is past the needed point");
574 while (Traits::stopLess(stop(i), x)) ++i;
575 assert(i < N && "Unsafe intervals");
579 /// safeLookup - Lookup mapped value for a safe key.
580 /// It is assumed that x is within range of the last entry.
581 /// @param x Key to search for.
582 /// @param NotFound Value to return if x is not in any interval.
583 /// @return The mapped value at x or NotFound.
584 ValT safeLookup(KeyT x, ValT NotFound) const {
585 unsigned i = safeFind(0, x);
586 return Traits::startLess(x, start(i)) ? NotFound : value(i);
589 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
592 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
593 /// possible. This may cause the node to grow by 1, or it may cause the node
594 /// to shrink because of coalescing.
595 /// @param i Starting index = insertFrom(0, size, a)
596 /// @param Size Number of elements in node.
597 /// @param a Interval start.
598 /// @param b Interval stop.
599 /// @param y Value be mapped.
600 /// @return (insert position, new size), or (i, Capacity+1) on overflow.
601 template <typename KeyT, typename ValT, unsigned N, typename Traits>
602 unsigned LeafNode<KeyT, ValT, N, Traits>::
603 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
605 assert(i <= Size && Size <= N && "Invalid index");
606 assert(!Traits::stopLess(b, a) && "Invalid interval");
608 // Verify the findFrom invariant.
609 assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
610 assert((i == Size || !Traits::stopLess(stop(i), a)));
611 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
613 // Coalesce with previous interval.
614 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
616 // Also coalesce with next interval?
617 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
618 stop(i - 1) = stop(i);
619 this->erase(i, Size);
630 // Add new interval at end.
638 // Try to coalesce with following interval.
639 if (value(i) == y && Traits::adjacent(b, start(i))) {
644 // We must insert before i. Detect overflow.
649 this->shift(i, Size);
657 //===----------------------------------------------------------------------===//
658 //--- IntervalMapImpl::BranchNode ---//
659 //===----------------------------------------------------------------------===//
661 // A branch node stores references to 1--N subtrees all of the same height.
663 // The key array in a branch node holds the rightmost stop key of each subtree.
664 // It is redundant to store the last stop key since it can be found in the
665 // parent node, but doing so makes tree balancing a lot simpler.
667 // It is unusual for a branch node to only have one subtree, but it can happen
668 // in the root node if it is smaller than the normal nodes.
670 // When all of the leaf nodes from all the subtrees are concatenated, they must
671 // satisfy the same constraints as a single leaf node. They must be sorted,
672 // sane, and fully coalesced.
674 //===----------------------------------------------------------------------===//
676 template <typename KeyT, typename ValT, unsigned N, typename Traits>
677 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
679 const KeyT &stop(unsigned i) const { return this->second[i]; }
680 const NodeRef &subtree(unsigned i) const { return this->first[i]; }
682 KeyT &stop(unsigned i) { return this->second[i]; }
683 NodeRef &subtree(unsigned i) { return this->first[i]; }
685 /// findFrom - Find the first subtree after i that may contain x.
686 /// @param i Starting index for the search.
687 /// @param Size Number of elements in node.
688 /// @param x Key to search for.
689 /// @return First index with !stopLess(key[i], x), or size.
690 /// This is the first subtree that can possibly contain x.
691 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
692 assert(i <= Size && Size <= N && "Bad indices");
693 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
694 "Index to findFrom is past the needed point");
695 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
699 /// safeFind - Find a subtree that is known to exist. This is the same as
700 /// findFrom except is it assumed that x is in range.
701 /// @param i Starting index for the search.
702 /// @param x Key to search for.
703 /// @return First index with !stopLess(key[i], x), never size.
704 /// This is the first subtree that can possibly contain x.
705 unsigned safeFind(unsigned i, KeyT x) const {
706 assert(i < N && "Bad index");
707 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
708 "Index is past the needed point");
709 while (Traits::stopLess(stop(i), x)) ++i;
710 assert(i < N && "Unsafe intervals");
714 /// safeLookup - Get the subtree containing x, Assuming that x is in range.
715 /// @param x Key to search for.
716 /// @return Subtree containing x
717 NodeRef safeLookup(KeyT x) const {
718 return subtree(safeFind(0, x));
721 /// insert - Insert a new (subtree, stop) pair.
722 /// @param i Insert position, following entries will be shifted.
723 /// @param Size Number of elements in node.
724 /// @param Node Subtree to insert.
725 /// @param Stop Last key in subtree.
726 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
727 assert(Size < N && "branch node overflow");
728 assert(i <= Size && "Bad insert position");
729 this->shift(i, Size);
735 //===----------------------------------------------------------------------===//
736 //--- IntervalMapImpl::Path ---//
737 //===----------------------------------------------------------------------===//
739 // A Path is used by iterators to represent a position in a B+-tree, and the
740 // path to get there from the root.
742 // The Path class also constains the tree navigation code that doesn't have to
745 //===----------------------------------------------------------------------===//
748 /// Entry - Each step in the path is a node pointer and an offset into that
755 Entry(void *Node, unsigned Size, unsigned Offset)
756 : node(Node), size(Size), offset(Offset) {}
758 Entry(NodeRef Node, unsigned Offset)
759 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
761 NodeRef &subtree(unsigned i) const {
762 return reinterpret_cast<NodeRef*>(node)[i];
766 /// path - The path entries, path[0] is the root node, path.back() is a leaf.
767 SmallVector<Entry, 4> path;
771 template <typename NodeT> NodeT &node(unsigned Level) const {
772 return *reinterpret_cast<NodeT*>(path[Level].node);
774 unsigned size(unsigned Level) const { return path[Level].size; }
775 unsigned offset(unsigned Level) const { return path[Level].offset; }
776 unsigned &offset(unsigned Level) { return path[Level].offset; }
779 template <typename NodeT> NodeT &leaf() const {
780 return *reinterpret_cast<NodeT*>(path.back().node);
782 unsigned leafSize() const { return path.back().size; }
783 unsigned leafOffset() const { return path.back().offset; }
784 unsigned &leafOffset() { return path.back().offset; }
786 /// valid - Return true if path is at a valid node, not at end().
788 return !path.empty() && path.front().offset < path.front().size;
791 /// height - Return the height of the tree corresponding to this path.
792 /// This matches map->height in a full path.
793 unsigned height() const { return path.size() - 1; }
795 /// subtree - Get the subtree referenced from Level. When the path is
796 /// consistent, node(Level + 1) == subtree(Level).
797 /// @param Level 0..height-1. The leaves have no subtrees.
798 NodeRef &subtree(unsigned Level) const {
799 return path[Level].subtree(path[Level].offset);
802 /// reset - Reset cached information about node(Level) from subtree(Level -1).
803 /// @param Level 1..height. THe node to update after parent node changed.
804 void reset(unsigned Level) {
805 path[Level] = Entry(subtree(Level - 1), offset(Level));
808 /// push - Add entry to path.
809 /// @param Node Node to add, should be subtree(path.size()-1).
810 /// @param Offset Offset into Node.
811 void push(NodeRef Node, unsigned Offset) {
812 path.push_back(Entry(Node, Offset));
815 /// pop - Remove the last path entry.
820 /// setSize - Set the size of a node both in the path and in the tree.
821 /// @param Level 0..height. Note that setting the root size won't change
823 /// @param Size New node size.
824 void setSize(unsigned Level, unsigned Size) {
825 path[Level].size = Size;
827 subtree(Level - 1).setSize(Size);
830 /// setRoot - Clear the path and set a new root node.
831 /// @param Node New root node.
832 /// @param Size New root size.
833 /// @param Offset Offset into root node.
834 void setRoot(void *Node, unsigned Size, unsigned Offset) {
836 path.push_back(Entry(Node, Size, Offset));
839 /// replaceRoot - Replace the current root node with two new entries after the
840 /// tree height has increased.
841 /// @param Root The new root node.
842 /// @param Size Number of entries in the new root.
843 /// @param Offsets Offsets into the root and first branch nodes.
844 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
846 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
847 /// @param Level Get the sibling to node(Level).
848 /// @return Left sibling, or NodeRef().
849 NodeRef getLeftSibling(unsigned Level) const;
851 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
853 /// @param Level Move node(Level).
854 void moveLeft(unsigned Level);
856 /// fillLeft - Grow path to Height by taking leftmost branches.
857 /// @param Height The target height.
858 void fillLeft(unsigned Height) {
859 while (height() < Height)
860 push(subtree(height()), 0);
863 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
864 /// @param Level Get the sinbling to node(Level).
865 /// @return Left sibling, or NodeRef().
866 NodeRef getRightSibling(unsigned Level) const;
868 /// moveRight - Move path to the left sibling at Level. Leave nodes below
870 /// @param Level Move node(Level).
871 void moveRight(unsigned Level);
873 /// atBegin - Return true if path is at begin().
874 bool atBegin() const {
875 for (unsigned i = 0, e = path.size(); i != e; ++i)
876 if (path[i].offset != 0)
881 /// atLastEntry - Return true if the path is at the last entry of the node at
883 /// @param Level Node to examine.
884 bool atLastEntry(unsigned Level) const {
885 return path[Level].offset == path[Level].size - 1;
888 /// legalizeForInsert - Prepare the path for an insertion at Level. When the
889 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
890 /// ensures that node(Level) is real by moving back to the last node at Level,
891 /// and setting offset(Level) to size(Level) if required.
892 /// @param Level The level where an insertion is about to take place.
893 void legalizeForInsert(unsigned Level) {
897 ++path[Level].offset;
901 } // namespace IntervalMapImpl
904 //===----------------------------------------------------------------------===//
905 //--- IntervalMap ----//
906 //===----------------------------------------------------------------------===//
908 template <typename KeyT, typename ValT,
909 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
910 typename Traits = IntervalMapInfo<KeyT> >
912 typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
913 typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
914 typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
916 typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
917 typedef IntervalMapImpl::IdxPair IdxPair;
919 // The RootLeaf capacity is given as a template parameter. We must compute the
920 // corresponding RootBranch capacity.
922 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
923 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
924 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
927 typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
930 // When branched, we store a global start key as well as the branch node.
931 struct RootBranchData {
937 RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
938 sizeof(RootBranchData) : sizeof(RootLeaf)
942 typedef typename Sizer::Allocator Allocator;
945 // The root data is either a RootLeaf or a RootBranchData instance.
946 // We can't put them in a union since C++03 doesn't allow non-trivial
947 // constructors in unions.
948 // Instead, we use a char array with pointer alignment. The alignment is
949 // ensured by the allocator member in the class, but still verified in the
950 // constructor. We don't support keys or values that are more aligned than a
952 char data[RootDataSize];
955 // 0: Leaves in root.
956 // 1: Root points to leaf.
957 // 2: root->branch->leaf ...
960 // Number of entries in the root node.
963 // Allocator used for creating external nodes.
964 Allocator &allocator;
966 /// dataAs - Represent data as a node type without breaking aliasing rules.
967 template <typename T>
977 const RootLeaf &rootLeaf() const {
978 assert(!branched() && "Cannot acces leaf data in branched root");
979 return dataAs<RootLeaf>();
981 RootLeaf &rootLeaf() {
982 assert(!branched() && "Cannot acces leaf data in branched root");
983 return dataAs<RootLeaf>();
985 RootBranchData &rootBranchData() const {
986 assert(branched() && "Cannot access branch data in non-branched root");
987 return dataAs<RootBranchData>();
989 RootBranchData &rootBranchData() {
990 assert(branched() && "Cannot access branch data in non-branched root");
991 return dataAs<RootBranchData>();
993 const RootBranch &rootBranch() const { return rootBranchData().node; }
994 RootBranch &rootBranch() { return rootBranchData().node; }
995 KeyT rootBranchStart() const { return rootBranchData().start; }
996 KeyT &rootBranchStart() { return rootBranchData().start; }
998 template <typename NodeT> NodeT *newNode() {
999 return new(allocator.template Allocate<NodeT>()) NodeT();
1002 template <typename NodeT> void deleteNode(NodeT *P) {
1004 allocator.Deallocate(P);
1007 IdxPair branchRoot(unsigned Position);
1008 IdxPair splitRoot(unsigned Position);
1010 void switchRootToBranch() {
1011 rootLeaf().~RootLeaf();
1013 new (&rootBranchData()) RootBranchData();
1016 void switchRootToLeaf() {
1017 rootBranchData().~RootBranchData();
1019 new(&rootLeaf()) RootLeaf();
1022 bool branched() const { return height > 0; }
1024 ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1025 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1027 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1030 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1031 assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1032 "Insufficient alignment");
1033 new(&rootLeaf()) RootLeaf();
1038 rootLeaf().~RootLeaf();
1041 /// empty - Return true when no intervals are mapped.
1042 bool empty() const {
1043 return rootSize == 0;
1046 /// start - Return the smallest mapped key in a non-empty map.
1047 KeyT start() const {
1048 assert(!empty() && "Empty IntervalMap has no start");
1049 return !branched() ? rootLeaf().start(0) : rootBranchStart();
1052 /// stop - Return the largest mapped key in a non-empty map.
1054 assert(!empty() && "Empty IntervalMap has no stop");
1055 return !branched() ? rootLeaf().stop(rootSize - 1) :
1056 rootBranch().stop(rootSize - 1);
1059 /// lookup - Return the mapped value at x or NotFound.
1060 ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1061 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1063 return branched() ? treeSafeLookup(x, NotFound) :
1064 rootLeaf().safeLookup(x, NotFound);
1067 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1068 /// It is assumed that no key in the interval is mapped to another value, but
1069 /// overlapping intervals already mapped to y will be coalesced.
1070 void insert(KeyT a, KeyT b, ValT y) {
1071 if (branched() || rootSize == RootLeaf::Capacity)
1072 return find(a).insert(a, b, y);
1074 // Easy insert into root leaf.
1075 unsigned p = rootLeaf().findFrom(0, rootSize, a);
1076 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1079 /// clear - Remove all entries.
1082 class const_iterator;
1084 friend class const_iterator;
1085 friend class iterator;
1087 const_iterator begin() const {
1088 const_iterator I(*this);
1099 const_iterator end() const {
1100 const_iterator I(*this);
1111 /// find - Return an iterator pointing to the first interval ending at or
1112 /// after x, or end().
1113 const_iterator find(KeyT x) const {
1114 const_iterator I(*this);
1119 iterator find(KeyT x) {
1126 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1128 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1129 ValT IntervalMap<KeyT, ValT, N, Traits>::
1130 treeSafeLookup(KeyT x, ValT NotFound) const {
1131 assert(branched() && "treeLookup assumes a branched root");
1133 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1134 for (unsigned h = height-1; h; --h)
1135 NR = NR.get<Branch>().safeLookup(x);
1136 return NR.get<Leaf>().safeLookup(x, NotFound);
1140 // branchRoot - Switch from a leaf root to a branched root.
1141 // Return the new (root offset, node offset) corresponding to Position.
1142 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1143 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1144 branchRoot(unsigned Position) {
1145 using namespace IntervalMapImpl;
1146 // How many external leaf nodes to hold RootLeaf+1?
1147 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1149 // Compute element distribution among new nodes.
1150 unsigned size[Nodes];
1151 IdxPair NewOffset(0, Position);
1153 // Is is very common for the root node to be smaller than external nodes.
1157 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
1160 // Allocate new nodes.
1162 NodeRef node[Nodes];
1163 for (unsigned n = 0; n != Nodes; ++n) {
1164 Leaf *L = newNode<Leaf>();
1165 L->copy(rootLeaf(), pos, 0, size[n]);
1166 node[n] = NodeRef(L, size[n]);
1170 // Destroy the old leaf node, construct branch node instead.
1171 switchRootToBranch();
1172 for (unsigned n = 0; n != Nodes; ++n) {
1173 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1174 rootBranch().subtree(n) = node[n];
1176 rootBranchStart() = node[0].template get<Leaf>().start(0);
1181 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1182 // Return the new (root offset, node offset) corresponding to Position.
1183 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1184 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1185 splitRoot(unsigned Position) {
1186 using namespace IntervalMapImpl;
1187 // How many external leaf nodes to hold RootBranch+1?
1188 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1190 // Compute element distribution among new nodes.
1191 unsigned Size[Nodes];
1192 IdxPair NewOffset(0, Position);
1194 // Is is very common for the root node to be smaller than external nodes.
1198 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
1201 // Allocate new nodes.
1203 NodeRef Node[Nodes];
1204 for (unsigned n = 0; n != Nodes; ++n) {
1205 Branch *B = newNode<Branch>();
1206 B->copy(rootBranch(), Pos, 0, Size[n]);
1207 Node[n] = NodeRef(B, Size[n]);
1211 for (unsigned n = 0; n != Nodes; ++n) {
1212 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1213 rootBranch().subtree(n) = Node[n];
1220 /// visitNodes - Visit each external node.
1221 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1222 void IntervalMap<KeyT, ValT, N, Traits>::
1223 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1226 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1228 // Collect level 0 nodes from the root.
1229 for (unsigned i = 0; i != rootSize; ++i)
1230 Refs.push_back(rootBranch().subtree(i));
1232 // Visit all branch nodes.
1233 for (unsigned h = height - 1; h; --h) {
1234 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1235 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1236 NextRefs.push_back(Refs[i].subtree(j));
1237 (this->*f)(Refs[i], h);
1240 Refs.swap(NextRefs);
1243 // Visit all leaf nodes.
1244 for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1245 (this->*f)(Refs[i], 0);
1248 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1249 void IntervalMap<KeyT, ValT, N, Traits>::
1250 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1252 deleteNode(&Node.get<Branch>());
1254 deleteNode(&Node.get<Leaf>());
1257 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1258 void IntervalMap<KeyT, ValT, N, Traits>::
1261 visitNodes(&IntervalMap::deleteNode);
1267 //===----------------------------------------------------------------------===//
1268 //--- IntervalMap::const_iterator ----//
1269 //===----------------------------------------------------------------------===//
1271 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1272 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1273 public std::iterator<std::bidirectional_iterator_tag, ValT> {
1275 friend class IntervalMap;
1277 // The map referred to.
1280 // We store a full path from the root to the current position.
1281 // The path may be partially filled, but never between iterator calls.
1282 IntervalMapImpl::Path path;
1284 explicit const_iterator(const IntervalMap &map) :
1285 map(const_cast<IntervalMap*>(&map)) {}
1287 bool branched() const {
1288 assert(map && "Invalid iterator");
1289 return map->branched();
1292 void setRoot(unsigned Offset) {
1294 path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1296 path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1299 void pathFillFind(KeyT x);
1300 void treeFind(KeyT x);
1301 void treeAdvanceTo(KeyT x);
1303 /// unsafeStart - Writable access to start() for iterator.
1304 KeyT &unsafeStart() const {
1305 assert(valid() && "Cannot access invalid iterator");
1306 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1307 path.leaf<RootLeaf>().start(path.leafOffset());
1310 /// unsafeStop - Writable access to stop() for iterator.
1311 KeyT &unsafeStop() const {
1312 assert(valid() && "Cannot access invalid iterator");
1313 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1314 path.leaf<RootLeaf>().stop(path.leafOffset());
1317 /// unsafeValue - Writable access to value() for iterator.
1318 ValT &unsafeValue() const {
1319 assert(valid() && "Cannot access invalid iterator");
1320 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1321 path.leaf<RootLeaf>().value(path.leafOffset());
1325 /// const_iterator - Create an iterator that isn't pointing anywhere.
1326 const_iterator() : map(0) {}
1328 /// valid - Return true if the current position is valid, false for end().
1329 bool valid() const { return path.valid(); }
1331 /// start - Return the beginning of the current interval.
1332 const KeyT &start() const { return unsafeStart(); }
1334 /// stop - Return the end of the current interval.
1335 const KeyT &stop() const { return unsafeStop(); }
1337 /// value - Return the mapped value at the current interval.
1338 const ValT &value() const { return unsafeValue(); }
1340 const ValT &operator*() const { return value(); }
1342 bool operator==(const const_iterator &RHS) const {
1343 assert(map == RHS.map && "Cannot compare iterators from different maps");
1345 return !RHS.valid();
1346 if (path.leafOffset() != RHS.path.leafOffset())
1348 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1351 bool operator!=(const const_iterator &RHS) const {
1352 return !operator==(RHS);
1355 /// goToBegin - Move to the first interval in map.
1359 path.fillLeft(map->height);
1362 /// goToEnd - Move beyond the last interval in map.
1364 setRoot(map->rootSize);
1367 /// preincrement - move to the next interval.
1368 const_iterator &operator++() {
1369 assert(valid() && "Cannot increment end()");
1370 if (++path.leafOffset() == path.leafSize() && branched())
1371 path.moveRight(map->height);
1375 /// postincrement - Dont do that!
1376 const_iterator operator++(int) {
1377 const_iterator tmp = *this;
1382 /// predecrement - move to the previous interval.
1383 const_iterator &operator--() {
1384 if (path.leafOffset() && (valid() || !branched()))
1385 --path.leafOffset();
1387 path.moveLeft(map->height);
1391 /// postdecrement - Dont do that!
1392 const_iterator operator--(int) {
1393 const_iterator tmp = *this;
1398 /// find - Move to the first interval with stop >= x, or end().
1399 /// This is a full search from the root, the current position is ignored.
1404 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1407 /// advanceTo - Move to the first interval with stop >= x, or end().
1408 /// The search is started from the current position, and no earlier positions
1409 /// can be found. This is much faster than find() for small moves.
1410 void advanceTo(KeyT x) {
1415 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1420 /// pathFillFind - Complete path by searching for x.
1421 /// @param x Key to search for.
1422 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1423 void IntervalMap<KeyT, ValT, N, Traits>::
1424 const_iterator::pathFillFind(KeyT x) {
1425 IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1426 for (unsigned i = map->height - path.height() - 1; i; --i) {
1427 unsigned p = NR.get<Branch>().safeFind(0, x);
1431 path.push(NR, NR.get<Leaf>().safeFind(0, x));
1434 /// treeFind - Find in a branched tree.
1435 /// @param x Key to search for.
1436 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1437 void IntervalMap<KeyT, ValT, N, Traits>::
1438 const_iterator::treeFind(KeyT x) {
1439 setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1444 /// treeAdvanceTo - Find position after the current one.
1445 /// @param x Key to search for.
1446 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1447 void IntervalMap<KeyT, ValT, N, Traits>::
1448 const_iterator::treeAdvanceTo(KeyT x) {
1449 // Can we stay on the same leaf node?
1450 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1451 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1455 // Drop the current leaf.
1458 // Search towards the root for a usable subtree.
1459 if (path.height()) {
1460 for (unsigned l = path.height() - 1; l; --l) {
1461 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1462 // The branch node at l+1 is usable
1463 path.offset(l + 1) =
1464 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1465 return pathFillFind(x);
1469 // Is the level-1 Branch usable?
1470 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1471 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1472 return pathFillFind(x);
1476 // We reached the root.
1477 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1482 //===----------------------------------------------------------------------===//
1483 //--- IntervalMap::iterator ----//
1484 //===----------------------------------------------------------------------===//
1486 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1487 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1488 friend class IntervalMap;
1489 typedef IntervalMapImpl::IdxPair IdxPair;
1491 explicit iterator(IntervalMap &map) : const_iterator(map) {}
1493 void setNodeStop(unsigned Level, KeyT Stop);
1494 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1495 template <typename NodeT> bool overflow(unsigned Level);
1496 void treeInsert(KeyT a, KeyT b, ValT y);
1497 void eraseNode(unsigned Level);
1498 void treeErase(bool UpdateRoot = true);
1499 bool canCoalesceLeft(KeyT Start, ValT x);
1500 bool canCoalesceRight(KeyT Stop, ValT x);
1503 /// iterator - Create null iterator.
1506 /// setStart - Move the start of the current interval.
1507 /// This may cause coalescing with the previous interval.
1508 /// @param a New start key, must not overlap the previous interval.
1509 void setStart(KeyT a);
1511 /// setStop - Move the end of the current interval.
1512 /// This may cause coalescing with the following interval.
1513 /// @param b New stop key, must not overlap the following interval.
1514 void setStop(KeyT b);
1516 /// setValue - Change the mapped value of the current interval.
1517 /// This may cause coalescing with the previous and following intervals.
1518 /// @param x New value.
1519 void setValue(ValT x);
1521 /// setStartUnchecked - Move the start of the current interval without
1522 /// checking for coalescing or overlaps.
1523 /// This should only be used when it is known that coalescing is not required.
1524 /// @param a New start key.
1525 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1527 /// setStopUnchecked - Move the end of the current interval without checking
1528 /// for coalescing or overlaps.
1529 /// This should only be used when it is known that coalescing is not required.
1530 /// @param b New stop key.
1531 void setStopUnchecked(KeyT b) {
1532 this->unsafeStop() = b;
1533 // Update keys in branch nodes as well.
1534 if (this->path.atLastEntry(this->path.height()))
1535 setNodeStop(this->path.height(), b);
1538 /// setValueUnchecked - Change the mapped value of the current interval
1539 /// without checking for coalescing.
1540 /// @param x New value.
1541 void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1543 /// insert - Insert mapping [a;b] -> y before the current position.
1544 void insert(KeyT a, KeyT b, ValT y);
1546 /// erase - Erase the current interval.
1549 iterator &operator++() {
1550 const_iterator::operator++();
1554 iterator operator++(int) {
1555 iterator tmp = *this;
1560 iterator &operator--() {
1561 const_iterator::operator--();
1565 iterator operator--(int) {
1566 iterator tmp = *this;
1573 /// canCoalesceLeft - Can the current interval coalesce to the left after
1574 /// changing start or value?
1575 /// @param Start New start of current interval.
1576 /// @param Value New value for current interval.
1577 /// @return True when updating the current interval would enable coalescing.
1578 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1579 bool IntervalMap<KeyT, ValT, N, Traits>::
1580 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1581 using namespace IntervalMapImpl;
1582 Path &P = this->path;
1583 if (!this->branched()) {
1584 unsigned i = P.leafOffset();
1585 RootLeaf &Node = P.leaf<RootLeaf>();
1586 return i && Node.value(i-1) == Value &&
1587 Traits::adjacent(Node.stop(i-1), Start);
1590 if (unsigned i = P.leafOffset()) {
1591 Leaf &Node = P.leaf<Leaf>();
1592 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1593 } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1594 unsigned i = NR.size() - 1;
1595 Leaf &Node = NR.get<Leaf>();
1596 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1601 /// canCoalesceRight - Can the current interval coalesce to the right after
1602 /// changing stop or value?
1603 /// @param Stop New stop of current interval.
1604 /// @param Value New value for current interval.
1605 /// @return True when updating the current interval would enable coalescing.
1606 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1607 bool IntervalMap<KeyT, ValT, N, Traits>::
1608 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1609 using namespace IntervalMapImpl;
1610 Path &P = this->path;
1611 unsigned i = P.leafOffset() + 1;
1612 if (!this->branched()) {
1613 if (i >= P.leafSize())
1615 RootLeaf &Node = P.leaf<RootLeaf>();
1616 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1619 if (i < P.leafSize()) {
1620 Leaf &Node = P.leaf<Leaf>();
1621 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1622 } else if (NodeRef NR = P.getRightSibling(P.height())) {
1623 Leaf &Node = NR.get<Leaf>();
1624 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1629 /// setNodeStop - Update the stop key of the current node at level and above.
1630 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1631 void IntervalMap<KeyT, ValT, N, Traits>::
1632 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1633 // There are no references to the root node, so nothing to update.
1636 IntervalMapImpl::Path &P = this->path;
1637 // Update nodes pointing to the current node.
1639 P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1640 if (!P.atLastEntry(Level))
1643 // Update root separately since it has a different layout.
1644 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1647 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1648 void IntervalMap<KeyT, ValT, N, Traits>::
1649 iterator::setStart(KeyT a) {
1650 assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1651 KeyT &CurStart = this->unsafeStart();
1652 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1656 // Coalesce with the interval to the left.
1660 setStartUnchecked(a);
1663 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1664 void IntervalMap<KeyT, ValT, N, Traits>::
1665 iterator::setStop(KeyT b) {
1666 assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1667 if (Traits::startLess(b, this->stop()) ||
1668 !canCoalesceRight(b, this->value())) {
1669 setStopUnchecked(b);
1672 // Coalesce with interval to the right.
1673 KeyT a = this->start();
1675 setStartUnchecked(a);
1678 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1679 void IntervalMap<KeyT, ValT, N, Traits>::
1680 iterator::setValue(ValT x) {
1681 setValueUnchecked(x);
1682 if (canCoalesceRight(this->stop(), x)) {
1683 KeyT a = this->start();
1685 setStartUnchecked(a);
1687 if (canCoalesceLeft(this->start(), x)) {
1689 KeyT a = this->start();
1691 setStartUnchecked(a);
1695 /// insertNode - insert a node before the current path at level.
1696 /// Leave the current path pointing at the new node.
1697 /// @param Level path index of the node to be inserted.
1698 /// @param Node The node to be inserted.
1699 /// @param Stop The last index in the new node.
1700 /// @return True if the tree height was increased.
1701 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1702 bool IntervalMap<KeyT, ValT, N, Traits>::
1703 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1704 assert(Level && "Cannot insert next to the root");
1705 bool SplitRoot = false;
1706 IntervalMap &IM = *this->map;
1707 IntervalMapImpl::Path &P = this->path;
1710 // Insert into the root branch node.
1711 if (IM.rootSize < RootBranch::Capacity) {
1712 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1713 P.setSize(0, ++IM.rootSize);
1718 // We need to split the root while keeping our position.
1720 IdxPair Offset = IM.splitRoot(P.offset(0));
1721 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1723 // Fall through to insert at the new higher level.
1727 // When inserting before end(), make sure we have a valid path.
1728 P.legalizeForInsert(--Level);
1730 // Insert into the branch node at Level-1.
1731 if (P.size(Level) == Branch::Capacity) {
1732 // Branch node is full, handle handle the overflow.
1733 assert(!SplitRoot && "Cannot overflow after splitting the root");
1734 SplitRoot = overflow<Branch>(Level);
1737 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1738 P.setSize(Level, P.size(Level) + 1);
1739 if (P.atLastEntry(Level))
1740 setNodeStop(Level, Stop);
1746 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1747 void IntervalMap<KeyT, ValT, N, Traits>::
1748 iterator::insert(KeyT a, KeyT b, ValT y) {
1749 if (this->branched())
1750 return treeInsert(a, b, y);
1751 IntervalMap &IM = *this->map;
1752 IntervalMapImpl::Path &P = this->path;
1754 // Try simple root leaf insert.
1755 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1757 // Was the root node insert successful?
1758 if (Size <= RootLeaf::Capacity) {
1759 P.setSize(0, IM.rootSize = Size);
1763 // Root leaf node is full, we must branch.
1764 IdxPair Offset = IM.branchRoot(P.leafOffset());
1765 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1767 // Now it fits in the new leaf.
1768 treeInsert(a, b, y);
1772 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1773 void IntervalMap<KeyT, ValT, N, Traits>::
1774 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1775 using namespace IntervalMapImpl;
1776 Path &P = this->path;
1779 P.legalizeForInsert(this->map->height);
1781 // Check if this insertion will extend the node to the left.
1782 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1783 // Node is growing to the left, will it affect a left sibling node?
1784 if (NodeRef Sib = P.getLeftSibling(P.height())) {
1785 Leaf &SibLeaf = Sib.get<Leaf>();
1786 unsigned SibOfs = Sib.size() - 1;
1787 if (SibLeaf.value(SibOfs) == y &&
1788 Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1789 // This insertion will coalesce with the last entry in SibLeaf. We can
1790 // handle it in two ways:
1791 // 1. Extend SibLeaf.stop to b and be done, or
1792 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1793 // We prefer 1., but need 2 when coalescing to the right as well.
1794 Leaf &CurLeaf = P.leaf<Leaf>();
1795 P.moveLeft(P.height());
1796 if (Traits::stopLess(b, CurLeaf.start(0)) &&
1797 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1798 // Easy, just extend SibLeaf and we're done.
1799 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1802 // We have both left and right coalescing. Erase the old SibLeaf entry
1803 // and continue inserting the larger interval.
1804 a = SibLeaf.start(SibOfs);
1805 treeErase(/* UpdateRoot= */false);
1809 // No left sibling means we are at begin(). Update cached bound.
1810 this->map->rootBranchStart() = a;
1814 // When we are inserting at the end of a leaf node, we must update stops.
1815 unsigned Size = P.leafSize();
1816 bool Grow = P.leafOffset() == Size;
1817 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1819 // Leaf insertion unsuccessful? Overflow and try again.
1820 if (Size > Leaf::Capacity) {
1821 overflow<Leaf>(P.height());
1822 Grow = P.leafOffset() == P.leafSize();
1823 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1824 assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1827 // Inserted, update offset and leaf size.
1828 P.setSize(P.height(), Size);
1830 // Insert was the last node entry, update stops.
1832 setNodeStop(P.height(), b);
1835 /// erase - erase the current interval and move to the next position.
1836 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1837 void IntervalMap<KeyT, ValT, N, Traits>::
1839 IntervalMap &IM = *this->map;
1840 IntervalMapImpl::Path &P = this->path;
1841 assert(P.valid() && "Cannot erase end()");
1842 if (this->branched())
1844 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1845 P.setSize(0, --IM.rootSize);
1848 /// treeErase - erase() for a branched tree.
1849 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1850 void IntervalMap<KeyT, ValT, N, Traits>::
1851 iterator::treeErase(bool UpdateRoot) {
1852 IntervalMap &IM = *this->map;
1853 IntervalMapImpl::Path &P = this->path;
1854 Leaf &Node = P.leaf<Leaf>();
1856 // Nodes are not allowed to become empty.
1857 if (P.leafSize() == 1) {
1858 IM.deleteNode(&Node);
1859 eraseNode(IM.height);
1860 // Update rootBranchStart if we erased begin().
1861 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1862 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1866 // Erase current entry.
1867 Node.erase(P.leafOffset(), P.leafSize());
1868 unsigned NewSize = P.leafSize() - 1;
1869 P.setSize(IM.height, NewSize);
1870 // When we erase the last entry, update stop and move to a legal position.
1871 if (P.leafOffset() == NewSize) {
1872 setNodeStop(IM.height, Node.stop(NewSize - 1));
1873 P.moveRight(IM.height);
1874 } else if (UpdateRoot && P.atBegin())
1875 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1878 /// eraseNode - Erase the current node at Level from its parent and move path to
1879 /// the first entry of the next sibling node.
1880 /// The node must be deallocated by the caller.
1881 /// @param Level 1..height, the root node cannot be erased.
1882 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1883 void IntervalMap<KeyT, ValT, N, Traits>::
1884 iterator::eraseNode(unsigned Level) {
1885 assert(Level && "Cannot erase root node");
1886 IntervalMap &IM = *this->map;
1887 IntervalMapImpl::Path &P = this->path;
1890 IM.rootBranch().erase(P.offset(0), IM.rootSize);
1891 P.setSize(0, --IM.rootSize);
1892 // If this cleared the root, switch to height=0.
1894 IM.switchRootToLeaf();
1899 // Remove node ref from branch node at Level.
1900 Branch &Parent = P.node<Branch>(Level);
1901 if (P.size(Level) == 1) {
1902 // Branch node became empty, remove it recursively.
1903 IM.deleteNode(&Parent);
1906 // Branch node won't become empty.
1907 Parent.erase(P.offset(Level), P.size(Level));
1908 unsigned NewSize = P.size(Level) - 1;
1909 P.setSize(Level, NewSize);
1910 // If we removed the last branch, update stop and move to a legal pos.
1911 if (P.offset(Level) == NewSize) {
1912 setNodeStop(Level, Parent.stop(NewSize - 1));
1917 // Update path cache for the new right sibling position.
1920 P.offset(Level + 1) = 0;
1924 /// overflow - Distribute entries of the current node evenly among
1925 /// its siblings and ensure that the current node is not full.
1926 /// This may require allocating a new node.
1927 /// @param NodeT The type of node at Level (Leaf or Branch).
1928 /// @param Level path index of the overflowing node.
1929 /// @return True when the tree height was changed.
1930 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1931 template <typename NodeT>
1932 bool IntervalMap<KeyT, ValT, N, Traits>::
1933 iterator::overflow(unsigned Level) {
1934 using namespace IntervalMapImpl;
1935 Path &P = this->path;
1936 unsigned CurSize[4];
1939 unsigned Elements = 0;
1940 unsigned Offset = P.offset(Level);
1942 // Do we have a left sibling?
1943 NodeRef LeftSib = P.getLeftSibling(Level);
1945 Offset += Elements = CurSize[Nodes] = LeftSib.size();
1946 Node[Nodes++] = &LeftSib.get<NodeT>();
1950 Elements += CurSize[Nodes] = P.size(Level);
1951 Node[Nodes++] = &P.node<NodeT>(Level);
1953 // Do we have a right sibling?
1954 NodeRef RightSib = P.getRightSibling(Level);
1956 Elements += CurSize[Nodes] = RightSib.size();
1957 Node[Nodes++] = &RightSib.get<NodeT>();
1960 // Do we need to allocate a new node?
1961 unsigned NewNode = 0;
1962 if (Elements + 1 > Nodes * NodeT::Capacity) {
1963 // Insert NewNode at the penultimate position, or after a single node.
1964 NewNode = Nodes == 1 ? 1 : Nodes - 1;
1965 CurSize[Nodes] = CurSize[NewNode];
1966 Node[Nodes] = Node[NewNode];
1967 CurSize[NewNode] = 0;
1968 Node[NewNode] = this->map->newNode<NodeT>();
1972 // Compute the new element distribution.
1973 unsigned NewSize[4];
1974 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1975 CurSize, NewSize, Offset, true);
1976 adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1978 // Move current location to the leftmost node.
1982 // Elements have been rearranged, now update node sizes and stops.
1983 bool SplitRoot = false;
1986 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
1987 if (NewNode && Pos == NewNode) {
1988 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
1991 P.setSize(Level, NewSize[Pos]);
1992 setNodeStop(Level, Stop);
1994 if (Pos + 1 == Nodes)
2000 // Where was I? Find NewOffset.
2001 while(Pos != NewOffset.first) {
2005 P.offset(Level) = NewOffset.second;