1 //===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a map that provides insertion order iteration. The
11 // interface is purposefully minimal. The key is assumed to be cheap to copy
12 // and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_ADT_MAPVECTOR_H
18 #define LLVM_ADT_MAPVECTOR_H
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallVector.h"
26 /// This class implements a map that also provides access to all stored values
27 /// in a deterministic order. The values are kept in a std::vector and the
28 /// mapping is done with DenseMap from Keys to indexes in that vector.
29 template<typename KeyT, typename ValueT,
30 typename MapType = llvm::DenseMap<KeyT, unsigned>,
31 typename VectorType = std::vector<std::pair<KeyT, ValueT> > >
33 typedef typename VectorType::size_type size_type;
39 typedef typename VectorType::iterator iterator;
40 typedef typename VectorType::const_iterator const_iterator;
41 typedef typename VectorType::reverse_iterator reverse_iterator;
42 typedef typename VectorType::const_reverse_iterator const_reverse_iterator;
44 size_type size() const { return Vector.size(); }
46 iterator begin() { return Vector.begin(); }
47 const_iterator begin() const { return Vector.begin(); }
48 iterator end() { return Vector.end(); }
49 const_iterator end() const { return Vector.end(); }
51 reverse_iterator rbegin() { return Vector.rbegin(); }
52 const_reverse_iterator rbegin() const { return Vector.rbegin(); }
53 reverse_iterator rend() { return Vector.rend(); }
54 const_reverse_iterator rend() const { return Vector.rend(); }
57 return Vector.empty();
60 std::pair<KeyT, ValueT> &front() { return Vector.front(); }
61 const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
62 std::pair<KeyT, ValueT> &back() { return Vector.back(); }
63 const std::pair<KeyT, ValueT> &back() const { return Vector.back(); }
70 ValueT &operator[](const KeyT &Key) {
71 std::pair<KeyT, unsigned> Pair = std::make_pair(Key, 0);
72 std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
73 unsigned &I = Result.first->second;
75 Vector.push_back(std::make_pair(Key, ValueT()));
76 I = Vector.size() - 1;
78 return Vector[I].second;
81 ValueT lookup(const KeyT &Key) const {
82 typename MapType::const_iterator Pos = Map.find(Key);
83 return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
86 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
87 std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
88 std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
89 unsigned &I = Result.first->second;
91 Vector.push_back(std::make_pair(KV.first, KV.second));
92 I = Vector.size() - 1;
93 return std::make_pair(std::prev(end()), true);
95 return std::make_pair(begin() + I, false);
98 size_type count(const KeyT &Key) const {
99 typename MapType::const_iterator Pos = Map.find(Key);
100 return Pos == Map.end()? 0 : 1;
103 iterator find(const KeyT &Key) {
104 typename MapType::const_iterator Pos = Map.find(Key);
105 return Pos == Map.end()? Vector.end() :
106 (Vector.begin() + Pos->second);
109 const_iterator find(const KeyT &Key) const {
110 typename MapType::const_iterator Pos = Map.find(Key);
111 return Pos == Map.end()? Vector.end() :
112 (Vector.begin() + Pos->second);
115 /// \brief Remove the last element from the vector.
117 typename MapType::iterator Pos = Map.find(Vector.back().first);
122 /// \brief Remove the element given by Iterator.
124 /// Returns an iterator to the element following the one which was removed,
125 /// which may be end().
127 /// \note This is a deceivingly expensive operation (linear time). It's
128 /// usually better to use \a remove_if() if possible.
129 typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
130 Map.erase(Iterator->first);
131 auto Next = Vector.erase(Iterator);
132 if (Next == Vector.end())
135 // Update indices in the map.
136 size_t Index = Next - Vector.begin();
137 for (auto &I : Map) {
138 assert(I.second != Index && "Index was already erased!");
139 if (I.second > Index)
145 /// \brief Remove all elements with the key value Key.
147 /// Returns the number of elements removed.
148 size_type erase(const KeyT &Key) {
149 auto Iterator = find(Key);
150 if (Iterator == end())
156 /// \brief Remove the elements that match the predicate.
158 /// Erase all elements that match \c Pred in a single pass. Takes linear
160 template <class Predicate> void remove_if(Predicate Pred);
163 template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
164 template <class Function>
165 void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
166 auto O = Vector.begin();
167 for (auto I = O, E = Vector.end(); I != E; ++I) {
169 // Erase from the map.
175 // Move the value and update the index in the map.
177 Map[O->first] = O - Vector.begin();
181 // Erase trailing entries in the vector.
182 Vector.erase(O, Vector.end());
185 /// \brief A MapVector that performs no allocations if smaller than a certain
187 template <typename KeyT, typename ValueT, unsigned N>
188 struct SmallMapVector
189 : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
190 SmallVector<std::pair<KeyT, ValueT>, N>> {
193 } // end namespace llvm