add a new ArrayRef class. This is intended to replace the idiom we
[oota-llvm.git] / include / llvm / ADT / SmallVector.h
1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SmallVector class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16
17 #include "llvm/Support/type_traits.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <cstddef>
21 #include <cstdlib>
22 #include <cstring>
23 #include <iterator>
24 #include <memory>
25
26 #ifdef _MSC_VER
27 namespace std {
28 #if _MSC_VER <= 1310
29   // Work around flawed VC++ implementation of std::uninitialized_copy.  Define
30   // additional overloads so that elements with pointer types are recognized as
31   // scalars and not objects, causing bizarre type conversion errors.
32   template<class T1, class T2>
33   inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
34     _Scalar_ptr_iterator_tag _Cat;
35     return _Cat;
36   }
37
38   template<class T1, class T2>
39   inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
40     _Scalar_ptr_iterator_tag _Cat;
41     return _Cat;
42   }
43 #else
44 // FIXME: It is not clear if the problem is fixed in VS 2005.  What is clear
45 // is that the above hack won't work if it wasn't fixed.
46 #endif
47 }
48 #endif
49
50 namespace llvm {
51
52 /// SmallVectorBase - This is all the non-templated stuff common to all
53 /// SmallVectors.
54 class SmallVectorBase {
55 protected:
56   void *BeginX, *EndX, *CapacityX;
57
58   // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
59   // don't want it to be automatically run, so we need to represent the space as
60   // something else.  An array of char would work great, but might not be
61   // aligned sufficiently.  Instead we use some number of union instances for
62   // the space, which guarantee maximal alignment.
63   union U {
64     double D;
65     long double LD;
66     long long L;
67     void *P;
68   } FirstEl;
69   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
70
71 protected:
72   SmallVectorBase(size_t Size)
73     : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
74
75   /// isSmall - Return true if this is a smallvector which has not had dynamic
76   /// memory allocated for it.
77   bool isSmall() const {
78     return BeginX == static_cast<const void*>(&FirstEl);
79   }
80
81   /// size_in_bytes - This returns size()*sizeof(T).
82   size_t size_in_bytes() const {
83     return size_t((char*)EndX - (char*)BeginX);
84   }
85
86   /// capacity_in_bytes - This returns capacity()*sizeof(T).
87   size_t capacity_in_bytes() const {
88     return size_t((char*)CapacityX - (char*)BeginX);
89   }
90
91   /// grow_pod - This is an implementation of the grow() method which only works
92   /// on POD-like data types and is out of line to reduce code duplication.
93   void grow_pod(size_t MinSizeInBytes, size_t TSize);
94
95 public:
96   bool empty() const { return BeginX == EndX; }
97 };
98
99
100 template <typename T>
101 class SmallVectorTemplateCommon : public SmallVectorBase {
102 protected:
103   void setEnd(T *P) { this->EndX = P; }
104 public:
105   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
106
107   typedef size_t size_type;
108   typedef ptrdiff_t difference_type;
109   typedef T value_type;
110   typedef T *iterator;
111   typedef const T *const_iterator;
112
113   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
114   typedef std::reverse_iterator<iterator> reverse_iterator;
115
116   typedef T &reference;
117   typedef const T &const_reference;
118   typedef T *pointer;
119   typedef const T *const_pointer;
120
121   // forward iterator creation methods.
122   iterator begin() { return (iterator)this->BeginX; }
123   const_iterator begin() const { return (const_iterator)this->BeginX; }
124   iterator end() { return (iterator)this->EndX; }
125   const_iterator end() const { return (const_iterator)this->EndX; }
126 protected:
127   iterator capacity_ptr() { return (iterator)this->CapacityX; }
128   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
129 public:
130
131   // reverse iterator creation methods.
132   reverse_iterator rbegin()            { return reverse_iterator(end()); }
133   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
134   reverse_iterator rend()              { return reverse_iterator(begin()); }
135   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
136
137   size_type size() const { return end()-begin(); }
138   size_type max_size() const { return size_type(-1) / sizeof(T); }
139
140   /// capacity - Return the total number of elements in the currently allocated
141   /// buffer.
142   size_t capacity() const { return capacity_ptr() - begin(); }
143
144   /// data - Return a pointer to the vector's buffer, even if empty().
145   pointer data() { return pointer(begin()); }
146   /// data - Return a pointer to the vector's buffer, even if empty().
147   const_pointer data() const { return const_pointer(begin()); }
148
149   reference operator[](unsigned idx) {
150     assert(begin() + idx < end());
151     return begin()[idx];
152   }
153   const_reference operator[](unsigned idx) const {
154     assert(begin() + idx < end());
155     return begin()[idx];
156   }
157
158   reference front() {
159     return begin()[0];
160   }
161   const_reference front() const {
162     return begin()[0];
163   }
164
165   reference back() {
166     return end()[-1];
167   }
168   const_reference back() const {
169     return end()[-1];
170   }
171 };
172
173 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
174 /// implementations that are designed to work with non-POD-like T's.
175 template <typename T, bool isPodLike>
176 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
177 public:
178   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
179
180   static void destroy_range(T *S, T *E) {
181     while (S != E) {
182       --E;
183       E->~T();
184     }
185   }
186
187   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
188   /// starting with "Dest", constructing elements into it as needed.
189   template<typename It1, typename It2>
190   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
191     std::uninitialized_copy(I, E, Dest);
192   }
193
194   /// grow - double the size of the allocated memory, guaranteeing space for at
195   /// least one more element or MinSize if specified.
196   void grow(size_t MinSize = 0);
197 };
198
199 // Define this out-of-line to dissuade the C++ compiler from inlining it.
200 template <typename T, bool isPodLike>
201 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
202   size_t CurCapacity = this->capacity();
203   size_t CurSize = this->size();
204   size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero.
205   if (NewCapacity < MinSize)
206     NewCapacity = MinSize;
207   T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
208
209   // Copy the elements over.
210   this->uninitialized_copy(this->begin(), this->end(), NewElts);
211
212   // Destroy the original elements.
213   destroy_range(this->begin(), this->end());
214
215   // If this wasn't grown from the inline copy, deallocate the old space.
216   if (!this->isSmall())
217     free(this->begin());
218
219   this->setEnd(NewElts+CurSize);
220   this->BeginX = NewElts;
221   this->CapacityX = this->begin()+NewCapacity;
222 }
223
224
225 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
226 /// implementations that are designed to work with POD-like T's.
227 template <typename T>
228 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
229 public:
230   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
231
232   // No need to do a destroy loop for POD's.
233   static void destroy_range(T *, T *) {}
234
235   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
236   /// starting with "Dest", constructing elements into it as needed.
237   template<typename It1, typename It2>
238   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
239     // Arbitrary iterator types; just use the basic implementation.
240     std::uninitialized_copy(I, E, Dest);
241   }
242
243   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
244   /// starting with "Dest", constructing elements into it as needed.
245   template<typename T1, typename T2>
246   static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
247     // Use memcpy for PODs iterated by pointers (which includes SmallVector
248     // iterators): std::uninitialized_copy optimizes to memmove, but we can
249     // use memcpy here.
250     memcpy(Dest, I, (E-I)*sizeof(T));
251   }
252
253   /// grow - double the size of the allocated memory, guaranteeing space for at
254   /// least one more element or MinSize if specified.
255   void grow(size_t MinSize = 0) {
256     this->grow_pod(MinSize*sizeof(T), sizeof(T));
257   }
258 };
259
260
261 /// SmallVectorImpl - This class consists of common code factored out of the
262 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
263 /// template parameter.
264 template <typename T>
265 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
266   typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
267
268   SmallVectorImpl(const SmallVectorImpl&); // DISABLED.
269 public:
270   typedef typename SuperClass::iterator iterator;
271   typedef typename SuperClass::size_type size_type;
272
273   // Default ctor - Initialize to empty.
274   explicit SmallVectorImpl(unsigned N)
275     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
276   }
277
278   ~SmallVectorImpl() {
279     // Destroy the constructed elements in the vector.
280     this->destroy_range(this->begin(), this->end());
281
282     // If this wasn't grown from the inline copy, deallocate the old space.
283     if (!this->isSmall())
284       free(this->begin());
285   }
286
287
288   void clear() {
289     this->destroy_range(this->begin(), this->end());
290     this->EndX = this->BeginX;
291   }
292
293   void resize(unsigned N) {
294     if (N < this->size()) {
295       this->destroy_range(this->begin()+N, this->end());
296       this->setEnd(this->begin()+N);
297     } else if (N > this->size()) {
298       if (this->capacity() < N)
299         this->grow(N);
300       this->construct_range(this->end(), this->begin()+N, T());
301       this->setEnd(this->begin()+N);
302     }
303   }
304
305   void resize(unsigned N, const T &NV) {
306     if (N < this->size()) {
307       this->destroy_range(this->begin()+N, this->end());
308       this->setEnd(this->begin()+N);
309     } else if (N > this->size()) {
310       if (this->capacity() < N)
311         this->grow(N);
312       construct_range(this->end(), this->begin()+N, NV);
313       this->setEnd(this->begin()+N);
314     }
315   }
316
317   void reserve(unsigned N) {
318     if (this->capacity() < N)
319       this->grow(N);
320   }
321
322   void push_back(const T &Elt) {
323     if (this->EndX < this->CapacityX) {
324     Retry:
325       new (this->end()) T(Elt);
326       this->setEnd(this->end()+1);
327       return;
328     }
329     this->grow();
330     goto Retry;
331   }
332
333   void pop_back() {
334     this->setEnd(this->end()-1);
335     this->end()->~T();
336   }
337
338   T pop_back_val() {
339     T Result = this->back();
340     pop_back();
341     return Result;
342   }
343
344   void swap(SmallVectorImpl &RHS);
345
346   /// append - Add the specified range to the end of the SmallVector.
347   ///
348   template<typename in_iter>
349   void append(in_iter in_start, in_iter in_end) {
350     size_type NumInputs = std::distance(in_start, in_end);
351     // Grow allocated space if needed.
352     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
353       this->grow(this->size()+NumInputs);
354
355     // Copy the new elements over.
356     // TODO: NEED To compile time dispatch on whether in_iter is a random access
357     // iterator to use the fast uninitialized_copy.
358     std::uninitialized_copy(in_start, in_end, this->end());
359     this->setEnd(this->end() + NumInputs);
360   }
361
362   /// append - Add the specified range to the end of the SmallVector.
363   ///
364   void append(size_type NumInputs, const T &Elt) {
365     // Grow allocated space if needed.
366     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
367       this->grow(this->size()+NumInputs);
368
369     // Copy the new elements over.
370     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
371     this->setEnd(this->end() + NumInputs);
372   }
373
374   void assign(unsigned NumElts, const T &Elt) {
375     clear();
376     if (this->capacity() < NumElts)
377       this->grow(NumElts);
378     this->setEnd(this->begin()+NumElts);
379     construct_range(this->begin(), this->end(), Elt);
380   }
381
382   iterator erase(iterator I) {
383     iterator N = I;
384     // Shift all elts down one.
385     std::copy(I+1, this->end(), I);
386     // Drop the last elt.
387     pop_back();
388     return(N);
389   }
390
391   iterator erase(iterator S, iterator E) {
392     iterator N = S;
393     // Shift all elts down.
394     iterator I = std::copy(E, this->end(), S);
395     // Drop the last elts.
396     this->destroy_range(I, this->end());
397     this->setEnd(I);
398     return(N);
399   }
400
401   iterator insert(iterator I, const T &Elt) {
402     if (I == this->end()) {  // Important special case for empty vector.
403       push_back(Elt);
404       return this->end()-1;
405     }
406
407     if (this->EndX < this->CapacityX) {
408     Retry:
409       new (this->end()) T(this->back());
410       this->setEnd(this->end()+1);
411       // Push everything else over.
412       std::copy_backward(I, this->end()-1, this->end());
413       *I = Elt;
414       return I;
415     }
416     size_t EltNo = I-this->begin();
417     this->grow();
418     I = this->begin()+EltNo;
419     goto Retry;
420   }
421
422   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
423     if (I == this->end()) {  // Important special case for empty vector.
424       append(NumToInsert, Elt);
425       return this->end()-1;
426     }
427
428     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
429     size_t InsertElt = I - this->begin();
430
431     // Ensure there is enough space.
432     reserve(static_cast<unsigned>(this->size() + NumToInsert));
433
434     // Uninvalidate the iterator.
435     I = this->begin()+InsertElt;
436
437     // If there are more elements between the insertion point and the end of the
438     // range than there are being inserted, we can use a simple approach to
439     // insertion.  Since we already reserved space, we know that this won't
440     // reallocate the vector.
441     if (size_t(this->end()-I) >= NumToInsert) {
442       T *OldEnd = this->end();
443       append(this->end()-NumToInsert, this->end());
444
445       // Copy the existing elements that get replaced.
446       std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
447
448       std::fill_n(I, NumToInsert, Elt);
449       return I;
450     }
451
452     // Otherwise, we're inserting more elements than exist already, and we're
453     // not inserting at the end.
454
455     // Copy over the elements that we're about to overwrite.
456     T *OldEnd = this->end();
457     this->setEnd(this->end() + NumToInsert);
458     size_t NumOverwritten = OldEnd-I;
459     this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
460
461     // Replace the overwritten part.
462     std::fill_n(I, NumOverwritten, Elt);
463
464     // Insert the non-overwritten middle part.
465     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
466     return I;
467   }
468
469   template<typename ItTy>
470   iterator insert(iterator I, ItTy From, ItTy To) {
471     if (I == this->end()) {  // Important special case for empty vector.
472       append(From, To);
473       return this->end()-1;
474     }
475
476     size_t NumToInsert = std::distance(From, To);
477     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
478     size_t InsertElt = I - this->begin();
479
480     // Ensure there is enough space.
481     reserve(static_cast<unsigned>(this->size() + NumToInsert));
482
483     // Uninvalidate the iterator.
484     I = this->begin()+InsertElt;
485
486     // If there are more elements between the insertion point and the end of the
487     // range than there are being inserted, we can use a simple approach to
488     // insertion.  Since we already reserved space, we know that this won't
489     // reallocate the vector.
490     if (size_t(this->end()-I) >= NumToInsert) {
491       T *OldEnd = this->end();
492       append(this->end()-NumToInsert, this->end());
493
494       // Copy the existing elements that get replaced.
495       std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
496
497       std::copy(From, To, I);
498       return I;
499     }
500
501     // Otherwise, we're inserting more elements than exist already, and we're
502     // not inserting at the end.
503
504     // Copy over the elements that we're about to overwrite.
505     T *OldEnd = this->end();
506     this->setEnd(this->end() + NumToInsert);
507     size_t NumOverwritten = OldEnd-I;
508     this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
509
510     // Replace the overwritten part.
511     for (; NumOverwritten > 0; --NumOverwritten) {
512       *I = *From;
513       ++I; ++From;
514     }
515
516     // Insert the non-overwritten middle part.
517     this->uninitialized_copy(From, To, OldEnd);
518     return I;
519   }
520
521   const SmallVectorImpl
522   &operator=(const SmallVectorImpl &RHS);
523
524   bool operator==(const SmallVectorImpl &RHS) const {
525     if (this->size() != RHS.size()) return false;
526     return std::equal(this->begin(), this->end(), RHS.begin());
527   }
528   bool operator!=(const SmallVectorImpl &RHS) const {
529     return !(*this == RHS);
530   }
531
532   bool operator<(const SmallVectorImpl &RHS) const {
533     return std::lexicographical_compare(this->begin(), this->end(),
534                                         RHS.begin(), RHS.end());
535   }
536
537   /// set_size - Set the array size to \arg N, which the current array must have
538   /// enough capacity for.
539   ///
540   /// This does not construct or destroy any elements in the vector.
541   ///
542   /// Clients can use this in conjunction with capacity() to write past the end
543   /// of the buffer when they know that more elements are available, and only
544   /// update the size later. This avoids the cost of value initializing elements
545   /// which will only be overwritten.
546   void set_size(unsigned N) {
547     assert(N <= this->capacity());
548     this->setEnd(this->begin() + N);
549   }
550
551 private:
552   static void construct_range(T *S, T *E, const T &Elt) {
553     for (; S != E; ++S)
554       new (S) T(Elt);
555   }
556 };
557
558
559 template <typename T>
560 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
561   if (this == &RHS) return;
562
563   // We can only avoid copying elements if neither vector is small.
564   if (!this->isSmall() && !RHS.isSmall()) {
565     std::swap(this->BeginX, RHS.BeginX);
566     std::swap(this->EndX, RHS.EndX);
567     std::swap(this->CapacityX, RHS.CapacityX);
568     return;
569   }
570   if (RHS.size() > this->capacity())
571     this->grow(RHS.size());
572   if (this->size() > RHS.capacity())
573     RHS.grow(this->size());
574
575   // Swap the shared elements.
576   size_t NumShared = this->size();
577   if (NumShared > RHS.size()) NumShared = RHS.size();
578   for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
579     std::swap((*this)[i], RHS[i]);
580
581   // Copy over the extra elts.
582   if (this->size() > RHS.size()) {
583     size_t EltDiff = this->size() - RHS.size();
584     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
585     RHS.setEnd(RHS.end()+EltDiff);
586     this->destroy_range(this->begin()+NumShared, this->end());
587     this->setEnd(this->begin()+NumShared);
588   } else if (RHS.size() > this->size()) {
589     size_t EltDiff = RHS.size() - this->size();
590     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
591     this->setEnd(this->end() + EltDiff);
592     this->destroy_range(RHS.begin()+NumShared, RHS.end());
593     RHS.setEnd(RHS.begin()+NumShared);
594   }
595 }
596
597 template <typename T>
598 const SmallVectorImpl<T> &SmallVectorImpl<T>::
599   operator=(const SmallVectorImpl<T> &RHS) {
600   // Avoid self-assignment.
601   if (this == &RHS) return *this;
602
603   // If we already have sufficient space, assign the common elements, then
604   // destroy any excess.
605   size_t RHSSize = RHS.size();
606   size_t CurSize = this->size();
607   if (CurSize >= RHSSize) {
608     // Assign common elements.
609     iterator NewEnd;
610     if (RHSSize)
611       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
612     else
613       NewEnd = this->begin();
614
615     // Destroy excess elements.
616     this->destroy_range(NewEnd, this->end());
617
618     // Trim.
619     this->setEnd(NewEnd);
620     return *this;
621   }
622
623   // If we have to grow to have enough elements, destroy the current elements.
624   // This allows us to avoid copying them during the grow.
625   if (this->capacity() < RHSSize) {
626     // Destroy current elements.
627     this->destroy_range(this->begin(), this->end());
628     this->setEnd(this->begin());
629     CurSize = 0;
630     this->grow(RHSSize);
631   } else if (CurSize) {
632     // Otherwise, use assignment for the already-constructed elements.
633     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
634   }
635
636   // Copy construct the new elements in place.
637   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
638                            this->begin()+CurSize);
639
640   // Set end.
641   this->setEnd(this->begin()+RHSSize);
642   return *this;
643 }
644
645
646 /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
647 /// for the case when the array is small.  It contains some number of elements
648 /// in-place, which allows it to avoid heap allocation when the actual number of
649 /// elements is below that threshold.  This allows normal "small" cases to be
650 /// fast without losing generality for large inputs.
651 ///
652 /// Note that this does not attempt to be exception safe.
653 ///
654 template <typename T, unsigned N>
655 class SmallVector : public SmallVectorImpl<T> {
656   /// InlineElts - These are 'N-1' elements that are stored inline in the body
657   /// of the vector.  The extra '1' element is stored in SmallVectorImpl.
658   typedef typename SmallVectorImpl<T>::U U;
659   enum {
660     // MinUs - The number of U's require to cover N T's.
661     MinUs = (static_cast<unsigned int>(sizeof(T))*N +
662              static_cast<unsigned int>(sizeof(U)) - 1) /
663             static_cast<unsigned int>(sizeof(U)),
664
665     // NumInlineEltsElts - The number of elements actually in this array.  There
666     // is already one in the parent class, and we have to round up to avoid
667     // having a zero-element array.
668     NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1,
669
670     // NumTsAvailable - The number of T's we actually have space for, which may
671     // be more than N due to rounding.
672     NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/
673                      static_cast<unsigned int>(sizeof(T))
674   };
675   U InlineElts[NumInlineEltsElts];
676 public:
677   SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
678   }
679
680   explicit SmallVector(unsigned Size, const T &Value = T())
681     : SmallVectorImpl<T>(NumTsAvailable) {
682     this->reserve(Size);
683     while (Size--)
684       this->push_back(Value);
685   }
686
687   template<typename ItTy>
688   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
689     this->append(S, E);
690   }
691
692   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
693     if (!RHS.empty())
694       SmallVectorImpl<T>::operator=(RHS);
695   }
696
697   const SmallVector &operator=(const SmallVector &RHS) {
698     SmallVectorImpl<T>::operator=(RHS);
699     return *this;
700   }
701
702 };
703
704 /// Specialize SmallVector at N=0.  This specialization guarantees
705 /// that it can be instantiated at an incomplete T if none of its
706 /// members are required.
707 template <typename T>
708 class SmallVector<T,0> : public SmallVectorImpl<T> {
709 public:
710   SmallVector() : SmallVectorImpl<T>(0) {}
711
712   explicit SmallVector(unsigned Size, const T &Value = T())
713     : SmallVectorImpl<T>(0) {
714     this->reserve(Size);
715     while (Size--)
716       this->push_back(Value);
717   }
718
719   template<typename ItTy>
720   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(0) {
721     this->append(S, E);
722   }
723
724   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(0) {
725     SmallVectorImpl<T>::operator=(RHS);
726   }
727
728   SmallVector &operator=(const SmallVectorImpl<T> &RHS) {
729     return SmallVectorImpl<T>::operator=(RHS);
730   }
731
732 };
733
734 } // End llvm namespace
735
736 namespace std {
737   /// Implement std::swap in terms of SmallVector swap.
738   template<typename T>
739   inline void
740   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
741     LHS.swap(RHS);
742   }
743
744   /// Implement std::swap in terms of SmallVector swap.
745   template<typename T, unsigned N>
746   inline void
747   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
748     LHS.swap(RHS);
749   }
750 }
751
752 #endif