Replace a 0 with nullptr. NFC
[oota-llvm.git] / include / llvm / ADT / ilist.h
1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines classes to implement an intrusive doubly linked list class
11 // (i.e. each node of the list must contain a next and previous field for the
12 // list.
13 //
14 // The ilist_traits trait class is used to gain access to the next and previous
15 // fields of the node type that the list is instantiated with.  If it is not
16 // specialized, the list defaults to using the getPrev(), getNext() method calls
17 // to get the next and previous pointers.
18 //
19 // The ilist class itself, should be a plug in replacement for list, assuming
20 // that the nodes contain next/prev pointers.  This list replacement does not
21 // provide a constant time size() method, so be careful to use empty() when you
22 // really want to know if it's empty.
23 //
24 // The ilist class is implemented by allocating a 'tail' node when the list is
25 // created (using ilist_traits<>::createSentinel()).  This tail node is
26 // absolutely required because the user must be able to compute end()-1. Because
27 // of this, users of the direct next/prev links will see an extra link on the
28 // end of the list, which should be ignored.
29 //
30 // Requirements for a user of this list:
31 //
32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33 //      ilist_traits to provide an alternate way of getting and setting next and
34 //      prev links.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ADT_ILIST_H
39 #define LLVM_ADT_ILIST_H
40
41 #include "llvm/Support/Compiler.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <iterator>
46
47 namespace llvm {
48
49 template<typename NodeTy, typename Traits> class iplist;
50 template<typename NodeTy> class ilist_iterator;
51
52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
53 /// that provides default next/prev implementations for common operations.
54 ///
55 template<typename NodeTy>
56 struct ilist_nextprev_traits {
57   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
58   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
59   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
60   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
61
62   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
63   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
64 };
65
66 template<typename NodeTy>
67 struct ilist_traits;
68
69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
70 /// that provides default sentinel implementations for common operations.
71 ///
72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
73 /// strategy. The sentinel is stored in the prev field of ilist's Head.
74 ///
75 template<typename NodeTy>
76 struct ilist_sentinel_traits {
77   /// createSentinel - create the dynamic sentinel
78   static NodeTy *createSentinel() { return new NodeTy(); }
79
80   /// destroySentinel - deallocate the dynamic sentinel
81   static void destroySentinel(NodeTy *N) { delete N; }
82
83   /// provideInitialHead - when constructing an ilist, provide a starting
84   /// value for its Head
85   /// @return null node to indicate that it needs to be allocated later
86   static NodeTy *provideInitialHead() { return nullptr; }
87
88   /// ensureHead - make sure that Head is either already
89   /// initialized or assigned a fresh sentinel
90   /// @return the sentinel
91   static NodeTy *ensureHead(NodeTy *&Head) {
92     if (!Head) {
93       Head = ilist_traits<NodeTy>::createSentinel();
94       ilist_traits<NodeTy>::noteHead(Head, Head);
95       ilist_traits<NodeTy>::setNext(Head, nullptr);
96       return Head;
97     }
98     return ilist_traits<NodeTy>::getPrev(Head);
99   }
100
101   /// noteHead - stash the sentinel into its default location
102   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
103     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
104   }
105 };
106
107 /// ilist_node_traits - A fragment for template traits for intrusive list
108 /// that provides default node related operations.
109 ///
110 template<typename NodeTy>
111 struct ilist_node_traits {
112   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
113   static void deleteNode(NodeTy *V) { delete V; }
114
115   void addNodeToList(NodeTy *) {}
116   void removeNodeFromList(NodeTy *) {}
117   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
118                              ilist_iterator<NodeTy> /*first*/,
119                              ilist_iterator<NodeTy> /*last*/) {}
120 };
121
122 /// ilist_default_traits - Default template traits for intrusive list.
123 /// By inheriting from this, you can easily use default implementations
124 /// for all common operations.
125 ///
126 template<typename NodeTy>
127 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
128                               public ilist_sentinel_traits<NodeTy>,
129                               public ilist_node_traits<NodeTy> {
130 };
131
132 // Template traits for intrusive list.  By specializing this template class, you
133 // can change what next/prev fields are used to store the links...
134 template<typename NodeTy>
135 struct ilist_traits : public ilist_default_traits<NodeTy> {};
136
137 // Const traits are the same as nonconst traits...
138 template<typename Ty>
139 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
140
141 //===----------------------------------------------------------------------===//
142 // ilist_iterator<Node> - Iterator for intrusive list.
143 //
144 template<typename NodeTy>
145 class ilist_iterator
146   : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
147
148 public:
149   typedef ilist_traits<NodeTy> Traits;
150   typedef std::iterator<std::bidirectional_iterator_tag,
151                         NodeTy, ptrdiff_t> super;
152
153   typedef typename super::value_type value_type;
154   typedef typename super::difference_type difference_type;
155   typedef typename super::pointer pointer;
156   typedef typename super::reference reference;
157 private:
158   pointer NodePtr;
159
160   // ilist_iterator is not a random-access iterator, but it has an
161   // implicit conversion to pointer-type, which is. Declare (but
162   // don't define) these functions as private to help catch
163   // accidental misuse.
164   void operator[](difference_type) const;
165   void operator+(difference_type) const;
166   void operator-(difference_type) const;
167   void operator+=(difference_type) const;
168   void operator-=(difference_type) const;
169   template<class T> void operator<(T) const;
170   template<class T> void operator<=(T) const;
171   template<class T> void operator>(T) const;
172   template<class T> void operator>=(T) const;
173   template<class T> void operator-(T) const;
174 public:
175
176   ilist_iterator(pointer NP) : NodePtr(NP) {}
177   ilist_iterator(reference NR) : NodePtr(&NR) {}
178   ilist_iterator() : NodePtr(nullptr) {}
179
180   // This is templated so that we can allow constructing a const iterator from
181   // a nonconst iterator...
182   template<class node_ty>
183   ilist_iterator(const ilist_iterator<node_ty> &RHS)
184     : NodePtr(RHS.getNodePtrUnchecked()) {}
185
186   // This is templated so that we can allow assigning to a const iterator from
187   // a nonconst iterator...
188   template<class node_ty>
189   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
190     NodePtr = RHS.getNodePtrUnchecked();
191     return *this;
192   }
193
194   // Accessors...
195   operator pointer() const {
196     return NodePtr;
197   }
198
199   reference operator*() const {
200     return *NodePtr;
201   }
202   pointer operator->() const { return &operator*(); }
203
204   // Comparison operators
205   bool operator==(const ilist_iterator &RHS) const {
206     return NodePtr == RHS.NodePtr;
207   }
208   bool operator!=(const ilist_iterator &RHS) const {
209     return NodePtr != RHS.NodePtr;
210   }
211
212   // Increment and decrement operators...
213   ilist_iterator &operator--() {      // predecrement - Back up
214     NodePtr = Traits::getPrev(NodePtr);
215     assert(NodePtr && "--'d off the beginning of an ilist!");
216     return *this;
217   }
218   ilist_iterator &operator++() {      // preincrement - Advance
219     NodePtr = Traits::getNext(NodePtr);
220     return *this;
221   }
222   ilist_iterator operator--(int) {    // postdecrement operators...
223     ilist_iterator tmp = *this;
224     --*this;
225     return tmp;
226   }
227   ilist_iterator operator++(int) {    // postincrement operators...
228     ilist_iterator tmp = *this;
229     ++*this;
230     return tmp;
231   }
232
233   // Internal interface, do not use...
234   pointer getNodePtrUnchecked() const { return NodePtr; }
235 };
236
237 // These are to catch errors when people try to use them as random access
238 // iterators.
239 template<typename T>
240 void operator-(int, ilist_iterator<T>) = delete;
241 template<typename T>
242 void operator-(ilist_iterator<T>,int) = delete;
243
244 template<typename T>
245 void operator+(int, ilist_iterator<T>) = delete;
246 template<typename T>
247 void operator+(ilist_iterator<T>,int) = delete;
248
249 // operator!=/operator== - Allow mixed comparisons without dereferencing
250 // the iterator, which could very likely be pointing to end().
251 template<typename T>
252 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
253   return LHS != RHS.getNodePtrUnchecked();
254 }
255 template<typename T>
256 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
257   return LHS == RHS.getNodePtrUnchecked();
258 }
259 template<typename T>
260 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
261   return LHS != RHS.getNodePtrUnchecked();
262 }
263 template<typename T>
264 bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
265   return LHS == RHS.getNodePtrUnchecked();
266 }
267
268
269 // Allow ilist_iterators to convert into pointers to a node automatically when
270 // used by the dyn_cast, cast, isa mechanisms...
271
272 template<typename From> struct simplify_type;
273
274 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
275   typedef NodeTy* SimpleType;
276
277   static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
278     return &*Node;
279   }
280 };
281 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
282   typedef /*const*/ NodeTy* SimpleType;
283
284   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
285     return &*Node;
286   }
287 };
288
289
290 //===----------------------------------------------------------------------===//
291 //
292 /// iplist - The subset of list functionality that can safely be used on nodes
293 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
294 /// holds the next/prev pointers.  The only state of the list itself is a single
295 /// pointer to the head of the list.
296 ///
297 /// This list can be in one of three interesting states:
298 /// 1. The list may be completely unconstructed.  In this case, the head
299 ///    pointer is null.  When in this form, any query for an iterator (e.g.
300 ///    begin() or end()) causes the list to transparently change to state #2.
301 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
302 ///    sentinel is created by the Traits::createSentinel method and is a link
303 ///    in the list.  When the list is empty, the pointer in the iplist points
304 ///    to the sentinel.  Once the sentinel is constructed, it
305 ///    is not destroyed until the list is.
306 /// 3. The list may contain actual objects in it, which are stored as a doubly
307 ///    linked list of nodes.  One invariant of the list is that the predecessor
308 ///    of the first node in the list always points to the last node in the list,
309 ///    and the successor pointer for the sentinel (which always stays at the
310 ///    end of the list) is always null.
311 ///
312 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
313 class iplist : public Traits {
314   mutable NodeTy *Head;
315
316   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
317   // circularly linked list where we snip the 'next' link from the sentinel node
318   // back to the first node in the list (to preserve assertions about going off
319   // the end of the list).
320   NodeTy *getTail() { return this->ensureHead(Head); }
321   const NodeTy *getTail() const { return this->ensureHead(Head); }
322   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
323
324   /// CreateLazySentinel - This method verifies whether the sentinel for the
325   /// list has been created and lazily makes it if not.
326   void CreateLazySentinel() const {
327     this->ensureHead(Head);
328   }
329
330   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
331   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
332
333   // No fundamental reason why iplist can't be copyable, but the default
334   // copy/copy-assign won't do.
335   iplist(const iplist &) = delete;
336   void operator=(const iplist &) = delete;
337
338 public:
339   typedef NodeTy *pointer;
340   typedef const NodeTy *const_pointer;
341   typedef NodeTy &reference;
342   typedef const NodeTy &const_reference;
343   typedef NodeTy value_type;
344   typedef ilist_iterator<NodeTy> iterator;
345   typedef ilist_iterator<const NodeTy> const_iterator;
346   typedef size_t size_type;
347   typedef ptrdiff_t difference_type;
348   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
349   typedef std::reverse_iterator<iterator>  reverse_iterator;
350
351   iplist() : Head(this->provideInitialHead()) {}
352   ~iplist() {
353     if (!Head) return;
354     clear();
355     Traits::destroySentinel(getTail());
356   }
357
358   // Iterator creation methods.
359   iterator begin() {
360     CreateLazySentinel();
361     return iterator(Head);
362   }
363   const_iterator begin() const {
364     CreateLazySentinel();
365     return const_iterator(Head);
366   }
367   iterator end() {
368     CreateLazySentinel();
369     return iterator(getTail());
370   }
371   const_iterator end() const {
372     CreateLazySentinel();
373     return const_iterator(getTail());
374   }
375
376   // reverse iterator creation methods.
377   reverse_iterator rbegin()            { return reverse_iterator(end()); }
378   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
379   reverse_iterator rend()              { return reverse_iterator(begin()); }
380   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
381
382
383   // Miscellaneous inspection routines.
384   size_type max_size() const { return size_type(-1); }
385   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
386     return !Head || Head == getTail();
387   }
388
389   // Front and back accessor functions...
390   reference front() {
391     assert(!empty() && "Called front() on empty list!");
392     return *Head;
393   }
394   const_reference front() const {
395     assert(!empty() && "Called front() on empty list!");
396     return *Head;
397   }
398   reference back() {
399     assert(!empty() && "Called back() on empty list!");
400     return *this->getPrev(getTail());
401   }
402   const_reference back() const {
403     assert(!empty() && "Called back() on empty list!");
404     return *this->getPrev(getTail());
405   }
406
407   void swap(iplist &RHS) {
408     assert(0 && "Swap does not use list traits callback correctly yet!");
409     std::swap(Head, RHS.Head);
410   }
411
412   iterator insert(iterator where, NodeTy *New) {
413     NodeTy *CurNode = where.getNodePtrUnchecked();
414     NodeTy *PrevNode = this->getPrev(CurNode);
415     this->setNext(New, CurNode);
416     this->setPrev(New, PrevNode);
417
418     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
419       this->setNext(PrevNode, New);
420     else
421       Head = New;
422     this->setPrev(CurNode, New);
423
424     this->addNodeToList(New);  // Notify traits that we added a node...
425     return New;
426   }
427
428   iterator insertAfter(iterator where, NodeTy *New) {
429     if (empty())
430       return insert(begin(), New);
431     else
432       return insert(++where, New);
433   }
434
435   NodeTy *remove(iterator &IT) {
436     assert(IT != end() && "Cannot remove end of list!");
437     NodeTy *Node = &*IT;
438     NodeTy *NextNode = this->getNext(Node);
439     NodeTy *PrevNode = this->getPrev(Node);
440
441     if (Node != Head)  // Is PrevNode off the beginning of the list?
442       this->setNext(PrevNode, NextNode);
443     else
444       Head = NextNode;
445     this->setPrev(NextNode, PrevNode);
446     IT = NextNode;
447     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
448
449     // Set the next/prev pointers of the current node to null.  This isn't
450     // strictly required, but this catches errors where a node is removed from
451     // an ilist (and potentially deleted) with iterators still pointing at it.
452     // When those iterators are incremented or decremented, they will assert on
453     // the null next/prev pointer instead of "usually working".
454     this->setNext(Node, nullptr);
455     this->setPrev(Node, nullptr);
456     return Node;
457   }
458
459   NodeTy *remove(const iterator &IT) {
460     iterator MutIt = IT;
461     return remove(MutIt);
462   }
463
464   // erase - remove a node from the controlled sequence... and delete it.
465   iterator erase(iterator where) {
466     this->deleteNode(remove(where));
467     return where;
468   }
469
470   /// Remove all nodes from the list like clear(), but do not call
471   /// removeNodeFromList() or deleteNode().
472   ///
473   /// This should only be used immediately before freeing nodes in bulk to
474   /// avoid traversing the list and bringing all the nodes into cache.
475   void clearAndLeakNodesUnsafely() {
476     if (Head) {
477       Head = getTail();
478       this->setPrev(Head, Head);
479     }
480   }
481
482 private:
483   // transfer - The heart of the splice function.  Move linked list nodes from
484   // [first, last) into position.
485   //
486   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
487     assert(first != last && "Should be checked by callers");
488     // Position cannot be contained in the range to be transferred.
489     // Check for the most common mistake.
490     assert(position != first &&
491            "Insertion point can't be one of the transferred nodes");
492
493     if (position != last) {
494       // Note: we have to be careful about the case when we move the first node
495       // in the list.  This node is the list sentinel node and we can't move it.
496       NodeTy *ThisSentinel = getTail();
497       setTail(nullptr);
498       NodeTy *L2Sentinel = L2.getTail();
499       L2.setTail(nullptr);
500
501       // Remove [first, last) from its old position.
502       NodeTy *First = &*first, *Prev = this->getPrev(First);
503       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
504       if (Prev)
505         this->setNext(Prev, Next);
506       else
507         L2.Head = Next;
508       this->setPrev(Next, Prev);
509
510       // Splice [first, last) into its new position.
511       NodeTy *PosNext = position.getNodePtrUnchecked();
512       NodeTy *PosPrev = this->getPrev(PosNext);
513
514       // Fix head of list...
515       if (PosPrev)
516         this->setNext(PosPrev, First);
517       else
518         Head = First;
519       this->setPrev(First, PosPrev);
520
521       // Fix end of list...
522       this->setNext(Last, PosNext);
523       this->setPrev(PosNext, Last);
524
525       this->transferNodesFromList(L2, First, PosNext);
526
527       // Now that everything is set, restore the pointers to the list sentinels.
528       L2.setTail(L2Sentinel);
529       setTail(ThisSentinel);
530     }
531   }
532
533 public:
534
535   //===----------------------------------------------------------------------===
536   // Functionality derived from other functions defined above...
537   //
538
539   size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
540     if (!Head) return 0; // Don't require construction of sentinel if empty.
541     return std::distance(begin(), end());
542   }
543
544   iterator erase(iterator first, iterator last) {
545     while (first != last)
546       first = erase(first);
547     return last;
548   }
549
550   void clear() { if (Head) erase(begin(), end()); }
551
552   // Front and back inserters...
553   void push_front(NodeTy *val) { insert(begin(), val); }
554   void push_back(NodeTy *val) { insert(end(), val); }
555   void pop_front() {
556     assert(!empty() && "pop_front() on empty list!");
557     erase(begin());
558   }
559   void pop_back() {
560     assert(!empty() && "pop_back() on empty list!");
561     iterator t = end(); erase(--t);
562   }
563
564   // Special forms of insert...
565   template<class InIt> void insert(iterator where, InIt first, InIt last) {
566     for (; first != last; ++first) insert(where, *first);
567   }
568
569   // Splice members - defined in terms of transfer...
570   void splice(iterator where, iplist &L2) {
571     if (!L2.empty())
572       transfer(where, L2, L2.begin(), L2.end());
573   }
574   void splice(iterator where, iplist &L2, iterator first) {
575     iterator last = first; ++last;
576     if (where == first || where == last) return; // No change
577     transfer(where, L2, first, last);
578   }
579   void splice(iterator where, iplist &L2, iterator first, iterator last) {
580     if (first != last) transfer(where, L2, first, last);
581   }
582 };
583
584
585 template<typename NodeTy>
586 struct ilist : public iplist<NodeTy> {
587   typedef typename iplist<NodeTy>::size_type size_type;
588   typedef typename iplist<NodeTy>::iterator iterator;
589
590   ilist() {}
591   ilist(const ilist &right) {
592     insert(this->begin(), right.begin(), right.end());
593   }
594   explicit ilist(size_type count) {
595     insert(this->begin(), count, NodeTy());
596   }
597   ilist(size_type count, const NodeTy &val) {
598     insert(this->begin(), count, val);
599   }
600   template<class InIt> ilist(InIt first, InIt last) {
601     insert(this->begin(), first, last);
602   }
603
604   // bring hidden functions into scope
605   using iplist<NodeTy>::insert;
606   using iplist<NodeTy>::push_front;
607   using iplist<NodeTy>::push_back;
608
609   // Main implementation here - Insert for a node passed by value...
610   iterator insert(iterator where, const NodeTy &val) {
611     return insert(where, this->createNode(val));
612   }
613
614
615   // Front and back inserters...
616   void push_front(const NodeTy &val) { insert(this->begin(), val); }
617   void push_back(const NodeTy &val) { insert(this->end(), val); }
618
619   void insert(iterator where, size_type count, const NodeTy &val) {
620     for (; count != 0; --count) insert(where, val);
621   }
622
623   // Assign special forms...
624   void assign(size_type count, const NodeTy &val) {
625     iterator I = this->begin();
626     for (; I != this->end() && count != 0; ++I, --count)
627       *I = val;
628     if (count != 0)
629       insert(this->end(), val, val);
630     else
631       erase(I, this->end());
632   }
633   template<class InIt> void assign(InIt first1, InIt last1) {
634     iterator first2 = this->begin(), last2 = this->end();
635     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
636       *first1 = *first2;
637     if (first2 == last2)
638       erase(first1, last1);
639     else
640       insert(last1, first2, last2);
641   }
642
643
644   // Resize members...
645   void resize(size_type newsize, NodeTy val) {
646     iterator i = this->begin();
647     size_type len = 0;
648     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
649
650     if (len == newsize)
651       erase(i, this->end());
652     else                                          // i == end()
653       insert(this->end(), newsize - len, val);
654   }
655   void resize(size_type newsize) { resize(newsize, NodeTy()); }
656 };
657
658 } // End llvm namespace
659
660 namespace std {
661   // Ensure that swap uses the fast list swap...
662   template<class Ty>
663   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
664     Left.swap(Right);
665   }
666 }  // End 'std' extensions...
667
668 #endif // LLVM_ADT_ILIST_H