1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an implementation of the approach described in
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // This pass exists to support the DependenceGraph pass. There are two separate
22 // passes because there's a useful separation of concerns. A dependence exists
23 // if two conditions are met:
25 // 1) Two instructions reference the same memory location, and
26 // 2) There is a flow of control leading from one instruction to the other.
28 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
29 // the second (it's not yet ready).
31 // Please note that this is work in progress and the interface is subject to
35 // Return a set of more precise dependences instead of just one dependence
38 //===----------------------------------------------------------------------===//
40 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
43 #include "llvm/ADT/SmallBitVector.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/Pass.h"
52 class ScalarEvolution;
57 /// Dependence - This class represents a dependence between two memory
58 /// memory references in a function. It contains minimal information and
59 /// is used in the very common situation where the compiler is unable to
60 /// determine anything beyond the existence of a dependence; that is, it
61 /// represents a confused dependence (see also FullDependence). In most
62 /// cases (for output, flow, and anti dependences), the dependence implies
63 /// an ordering, where the source must precede the destination; in contrast,
64 /// input dependences are unordered.
66 /// When a dependence graph is built, each Dependence will be a member of
67 /// the set of predecessor edges for its destination instruction and a set
68 /// if successor edges for its source instruction. These sets are represented
69 /// as singly-linked lists, with the "next" fields stored in the dependence
73 Dependence(const Dependence &) = default;
75 // FIXME: When we move to MSVC 2015 as the base compiler for Visual Studio
76 // support, uncomment this line to allow a defaulted move constructor for
77 // Dependence. Currently, FullDependence relies on the copy constructor, but
78 // that is acceptable given the triviality of the class.
79 // Dependence(Dependence &&) = default;
82 Dependence(Instruction *Source,
83 Instruction *Destination) :
86 NextPredecessor(nullptr),
87 NextSuccessor(nullptr) {}
88 virtual ~Dependence() {}
90 /// Dependence::DVEntry - Each level in the distance/direction vector
91 /// has a direction (or perhaps a union of several directions), and
92 /// perhaps a distance.
102 unsigned char Direction : 3; // Init to ALL, then refine.
103 bool Scalar : 1; // Init to true.
104 bool PeelFirst : 1; // Peeling the first iteration will break dependence.
105 bool PeelLast : 1; // Peeling the last iteration will break the dependence.
106 bool Splitable : 1; // Splitting the loop will break dependence.
107 const SCEV *Distance; // NULL implies no distance available.
108 DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
109 PeelLast(false), Splitable(false), Distance(nullptr) { }
112 /// getSrc - Returns the source instruction for this dependence.
114 Instruction *getSrc() const { return Src; }
116 /// getDst - Returns the destination instruction for this dependence.
118 Instruction *getDst() const { return Dst; }
120 /// isInput - Returns true if this is an input dependence.
122 bool isInput() const;
124 /// isOutput - Returns true if this is an output dependence.
126 bool isOutput() const;
128 /// isFlow - Returns true if this is a flow (aka true) dependence.
132 /// isAnti - Returns true if this is an anti dependence.
136 /// isOrdered - Returns true if dependence is Output, Flow, or Anti
138 bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
140 /// isUnordered - Returns true if dependence is Input
142 bool isUnordered() const { return isInput(); }
144 /// isLoopIndependent - Returns true if this is a loop-independent
146 virtual bool isLoopIndependent() const { return true; }
148 /// isConfused - Returns true if this dependence is confused
149 /// (the compiler understands nothing and makes worst-case
151 virtual bool isConfused() const { return true; }
153 /// isConsistent - Returns true if this dependence is consistent
154 /// (occurs every time the source and destination are executed).
155 virtual bool isConsistent() const { return false; }
157 /// getLevels - Returns the number of common loops surrounding the
158 /// source and destination of the dependence.
159 virtual unsigned getLevels() const { return 0; }
161 /// getDirection - Returns the direction associated with a particular
163 virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
165 /// getDistance - Returns the distance (or NULL) associated with a
166 /// particular level.
167 virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
169 /// isPeelFirst - Returns true if peeling the first iteration from
170 /// this loop will break this dependence.
171 virtual bool isPeelFirst(unsigned Level) const { return false; }
173 /// isPeelLast - Returns true if peeling the last iteration from
174 /// this loop will break this dependence.
175 virtual bool isPeelLast(unsigned Level) const { return false; }
177 /// isSplitable - Returns true if splitting this loop will break
179 virtual bool isSplitable(unsigned Level) const { return false; }
181 /// isScalar - Returns true if a particular level is scalar; that is,
182 /// if no subscript in the source or destination mention the induction
183 /// variable associated with the loop at this level.
184 virtual bool isScalar(unsigned Level) const;
186 /// getNextPredecessor - Returns the value of the NextPredecessor
188 const Dependence *getNextPredecessor() const { return NextPredecessor; }
190 /// getNextSuccessor - Returns the value of the NextSuccessor
192 const Dependence *getNextSuccessor() const { return NextSuccessor; }
194 /// setNextPredecessor - Sets the value of the NextPredecessor
196 void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
198 /// setNextSuccessor - Sets the value of the NextSuccessor
200 void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
202 /// dump - For debugging purposes, dumps a dependence to OS.
204 void dump(raw_ostream &OS) const;
207 Instruction *Src, *Dst;
208 const Dependence *NextPredecessor, *NextSuccessor;
209 friend class DependenceAnalysis;
212 /// FullDependence - This class represents a dependence between two memory
213 /// references in a function. It contains detailed information about the
214 /// dependence (direction vectors, etc.) and is used when the compiler is
215 /// able to accurately analyze the interaction of the references; that is,
216 /// it is not a confused dependence (see Dependence). In most cases
217 /// (for output, flow, and anti dependences), the dependence implies an
218 /// ordering, where the source must precede the destination; in contrast,
219 /// input dependences are unordered.
220 class FullDependence final : public Dependence {
222 FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
225 FullDependence(FullDependence &&RHS)
226 : Dependence(std::move(RHS)), Levels(RHS.Levels),
227 LoopIndependent(RHS.LoopIndependent), Consistent(RHS.Consistent),
228 DV(std::move(RHS.DV)) {}
230 /// isLoopIndependent - Returns true if this is a loop-independent
232 bool isLoopIndependent() const override { return LoopIndependent; }
234 /// isConfused - Returns true if this dependence is confused
235 /// (the compiler understands nothing and makes worst-case
237 bool isConfused() const override { return false; }
239 /// isConsistent - Returns true if this dependence is consistent
240 /// (occurs every time the source and destination are executed).
241 bool isConsistent() const override { return Consistent; }
243 /// getLevels - Returns the number of common loops surrounding the
244 /// source and destination of the dependence.
245 unsigned getLevels() const override { return Levels; }
247 /// getDirection - Returns the direction associated with a particular
249 unsigned getDirection(unsigned Level) const override;
251 /// getDistance - Returns the distance (or NULL) associated with a
252 /// particular level.
253 const SCEV *getDistance(unsigned Level) const override;
255 /// isPeelFirst - Returns true if peeling the first iteration from
256 /// this loop will break this dependence.
257 bool isPeelFirst(unsigned Level) const override;
259 /// isPeelLast - Returns true if peeling the last iteration from
260 /// this loop will break this dependence.
261 bool isPeelLast(unsigned Level) const override;
263 /// isSplitable - Returns true if splitting the loop will break
265 bool isSplitable(unsigned Level) const override;
267 /// isScalar - Returns true if a particular level is scalar; that is,
268 /// if no subscript in the source or destination mention the induction
269 /// variable associated with the loop at this level.
270 bool isScalar(unsigned Level) const override;
273 unsigned short Levels;
274 bool LoopIndependent;
275 bool Consistent; // Init to true, then refine.
276 std::unique_ptr<DVEntry[]> DV;
277 friend class DependenceAnalysis;
280 /// DependenceAnalysis - This class is the main dependence-analysis driver.
282 class DependenceAnalysis : public FunctionPass {
283 void operator=(const DependenceAnalysis &) = delete;
284 DependenceAnalysis(const DependenceAnalysis &) = delete;
287 /// depends - Tests for a dependence between the Src and Dst instructions.
288 /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
289 /// FullDependence) with as much information as can be gleaned.
290 /// The flag PossiblyLoopIndependent should be set by the caller
291 /// if it appears that control flow can reach from Src to Dst
292 /// without traversing a loop back edge.
293 std::unique_ptr<Dependence> depends(Instruction *Src,
295 bool PossiblyLoopIndependent);
297 /// getSplitIteration - Give a dependence that's splittable at some
298 /// particular level, return the iteration that should be used to split
301 /// Generally, the dependence analyzer will be used to build
302 /// a dependence graph for a function (basically a map from instructions
303 /// to dependences). Looking for cycles in the graph shows us loops
304 /// that cannot be trivially vectorized/parallelized.
306 /// We can try to improve the situation by examining all the dependences
307 /// that make up the cycle, looking for ones we can break.
308 /// Sometimes, peeling the first or last iteration of a loop will break
309 /// dependences, and there are flags for those possibilities.
310 /// Sometimes, splitting a loop at some other iteration will do the trick,
311 /// and we've got a flag for that case. Rather than waste the space to
312 /// record the exact iteration (since we rarely know), we provide
313 /// a method that calculates the iteration. It's a drag that it must work
314 /// from scratch, but wonderful in that it's possible.
316 /// Here's an example:
318 /// for (i = 0; i < 10; i++)
322 /// There's a loop-carried flow dependence from the store to the load,
323 /// found by the weak-crossing SIV test. The dependence will have a flag,
324 /// indicating that the dependence can be broken by splitting the loop.
325 /// Calling getSplitIteration will return 5.
326 /// Splitting the loop breaks the dependence, like so:
328 /// for (i = 0; i <= 5; i++)
331 /// for (i = 6; i < 10; i++)
335 /// breaks the dependence and allows us to vectorize/parallelize
337 const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
345 /// Subscript - This private struct represents a pair of subscripts from
346 /// a pair of potentially multi-dimensional array references. We use a
347 /// vector of them to guide subscript partitioning.
351 enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
352 SmallBitVector Loops;
353 SmallBitVector GroupLoops;
354 SmallBitVector Group;
357 struct CoefficientInfo {
361 const SCEV *Iterations;
365 const SCEV *Iterations;
366 const SCEV *Upper[8];
367 const SCEV *Lower[8];
368 unsigned char Direction;
369 unsigned char DirSet;
372 /// Constraint - This private class represents a constraint, as defined
375 /// Practical Dependence Testing
376 /// Goff, Kennedy, Tseng
379 /// There are 5 kinds of constraint, in a hierarchy.
380 /// 1) Any - indicates no constraint, any dependence is possible.
381 /// 2) Line - A line ax + by = c, where a, b, and c are parameters,
382 /// representing the dependence equation.
383 /// 3) Distance - The value d of the dependence distance;
384 /// 4) Point - A point <x, y> representing the dependence from
385 /// iteration x to iteration y.
386 /// 5) Empty - No dependence is possible.
389 enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
394 const Loop *AssociatedLoop;
397 /// isEmpty - Return true if the constraint is of kind Empty.
398 bool isEmpty() const { return Kind == Empty; }
400 /// isPoint - Return true if the constraint is of kind Point.
401 bool isPoint() const { return Kind == Point; }
403 /// isDistance - Return true if the constraint is of kind Distance.
404 bool isDistance() const { return Kind == Distance; }
406 /// isLine - Return true if the constraint is of kind Line.
407 /// Since Distance's can also be represented as Lines, we also return
408 /// true if the constraint is of kind Distance.
409 bool isLine() const { return Kind == Line || Kind == Distance; }
411 /// isAny - Return true if the constraint is of kind Any;
412 bool isAny() const { return Kind == Any; }
414 /// getX - If constraint is a point <X, Y>, returns X.
415 /// Otherwise assert.
416 const SCEV *getX() const;
418 /// getY - If constraint is a point <X, Y>, returns Y.
419 /// Otherwise assert.
420 const SCEV *getY() const;
422 /// getA - If constraint is a line AX + BY = C, returns A.
423 /// Otherwise assert.
424 const SCEV *getA() const;
426 /// getB - If constraint is a line AX + BY = C, returns B.
427 /// Otherwise assert.
428 const SCEV *getB() const;
430 /// getC - If constraint is a line AX + BY = C, returns C.
431 /// Otherwise assert.
432 const SCEV *getC() const;
434 /// getD - If constraint is a distance, returns D.
435 /// Otherwise assert.
436 const SCEV *getD() const;
438 /// getAssociatedLoop - Returns the loop associated with this constraint.
439 const Loop *getAssociatedLoop() const;
441 /// setPoint - Change a constraint to Point.
442 void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
444 /// setLine - Change a constraint to Line.
445 void setLine(const SCEV *A, const SCEV *B,
446 const SCEV *C, const Loop *CurrentLoop);
448 /// setDistance - Change a constraint to Distance.
449 void setDistance(const SCEV *D, const Loop *CurrentLoop);
451 /// setEmpty - Change a constraint to Empty.
454 /// setAny - Change a constraint to Any.
455 void setAny(ScalarEvolution *SE);
457 /// dump - For debugging purposes. Dumps the constraint
459 void dump(raw_ostream &OS) const;
462 /// establishNestingLevels - Examines the loop nesting of the Src and Dst
463 /// instructions and establishes their shared loops. Sets the variables
464 /// CommonLevels, SrcLevels, and MaxLevels.
465 /// The source and destination instructions needn't be contained in the same
466 /// loop. The routine establishNestingLevels finds the level of most deeply
467 /// nested loop that contains them both, CommonLevels. An instruction that's
468 /// not contained in a loop is at level = 0. MaxLevels is equal to the level
469 /// of the source plus the level of the destination, minus CommonLevels.
470 /// This lets us allocate vectors MaxLevels in length, with room for every
471 /// distinct loop referenced in both the source and destination subscripts.
472 /// The variable SrcLevels is the nesting depth of the source instruction.
473 /// It's used to help calculate distinct loops referenced by the destination.
474 /// Here's the map from loops to levels:
476 /// 1 - outermost common loop
477 /// ... - other common loops
478 /// CommonLevels - innermost common loop
479 /// ... - loops containing Src but not Dst
480 /// SrcLevels - innermost loop containing Src but not Dst
481 /// ... - loops containing Dst but not Src
482 /// MaxLevels - innermost loop containing Dst but not Src
483 /// Consider the follow code fragment:
500 /// If we're looking at the possibility of a dependence between the store
501 /// to A (the Src) and the load from A (the Dst), we'll note that they
502 /// have 2 loops in common, so CommonLevels will equal 2 and the direction
503 /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
504 /// A map from loop names to level indices would look like
506 /// b - 2 = CommonLevels
508 /// d - 4 = SrcLevels
511 /// g - 7 = MaxLevels
512 void establishNestingLevels(const Instruction *Src,
513 const Instruction *Dst);
515 unsigned CommonLevels, SrcLevels, MaxLevels;
517 /// mapSrcLoop - Given one of the loops containing the source, return
518 /// its level index in our numbering scheme.
519 unsigned mapSrcLoop(const Loop *SrcLoop) const;
521 /// mapDstLoop - Given one of the loops containing the destination,
522 /// return its level index in our numbering scheme.
523 unsigned mapDstLoop(const Loop *DstLoop) const;
525 /// isLoopInvariant - Returns true if Expression is loop invariant
527 bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
529 /// Makes sure all subscript pairs share the same integer type by
530 /// sign-extending as necessary.
531 /// Sign-extending a subscript is safe because getelementptr assumes the
532 /// array subscripts are signed.
533 void unifySubscriptType(ArrayRef<Subscript *> Pairs);
535 /// removeMatchingExtensions - Examines a subscript pair.
536 /// If the source and destination are identically sign (or zero)
537 /// extended, it strips off the extension in an effort to
538 /// simplify the actual analysis.
539 void removeMatchingExtensions(Subscript *Pair);
541 /// collectCommonLoops - Finds the set of loops from the LoopNest that
542 /// have a level <= CommonLevels and are referred to by the SCEV Expression.
543 void collectCommonLoops(const SCEV *Expression,
544 const Loop *LoopNest,
545 SmallBitVector &Loops) const;
547 /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
548 /// linear. Collect the set of loops mentioned by Src.
549 bool checkSrcSubscript(const SCEV *Src,
550 const Loop *LoopNest,
551 SmallBitVector &Loops);
553 /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
554 /// linear. Collect the set of loops mentioned by Dst.
555 bool checkDstSubscript(const SCEV *Dst,
556 const Loop *LoopNest,
557 SmallBitVector &Loops);
559 /// isKnownPredicate - Compare X and Y using the predicate Pred.
560 /// Basically a wrapper for SCEV::isKnownPredicate,
561 /// but tries harder, especially in the presence of sign and zero
562 /// extensions and symbolics.
563 bool isKnownPredicate(ICmpInst::Predicate Pred,
565 const SCEV *Y) const;
567 /// collectUpperBound - All subscripts are the same type (on my machine,
568 /// an i64). The loop bound may be a smaller type. collectUpperBound
569 /// find the bound, if available, and zero extends it to the Type T.
570 /// (I zero extend since the bound should always be >= 0.)
571 /// If no upper bound is available, return NULL.
572 const SCEV *collectUpperBound(const Loop *l, Type *T) const;
574 /// collectConstantUpperBound - Calls collectUpperBound(), then
575 /// attempts to cast it to SCEVConstant. If the cast fails,
577 const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
579 /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
580 /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
581 /// Collects the associated loops in a set.
582 Subscript::ClassificationKind classifyPair(const SCEV *Src,
583 const Loop *SrcLoopNest,
585 const Loop *DstLoopNest,
586 SmallBitVector &Loops);
588 /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
589 /// Returns true if any possible dependence is disproved.
590 /// If there might be a dependence, returns false.
591 /// If the dependence isn't proven to exist,
592 /// marks the Result as inconsistent.
593 bool testZIV(const SCEV *Src,
595 FullDependence &Result) const;
597 /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
598 /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
599 /// i and j are induction variables, c1 and c2 are loop invariant,
600 /// and a1 and a2 are constant.
601 /// Returns true if any possible dependence is disproved.
602 /// If there might be a dependence, returns false.
603 /// Sets appropriate direction vector entry and, when possible,
604 /// the distance vector entry.
605 /// If the dependence isn't proven to exist,
606 /// marks the Result as inconsistent.
607 bool testSIV(const SCEV *Src,
610 FullDependence &Result,
611 Constraint &NewConstraint,
612 const SCEV *&SplitIter) const;
614 /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
615 /// Things of the form [c1 + a1*i] and [c2 + a2*j]
616 /// where i and j are induction variables, c1 and c2 are loop invariant,
617 /// and a1 and a2 are constant.
618 /// With minor algebra, this test can also be used for things like
619 /// [c1 + a1*i + a2*j][c2].
620 /// Returns true if any possible dependence is disproved.
621 /// If there might be a dependence, returns false.
622 /// Marks the Result as inconsistent.
623 bool testRDIV(const SCEV *Src,
625 FullDependence &Result) const;
627 /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
628 /// Returns true if dependence disproved.
629 /// Can sometimes refine direction vectors.
630 bool testMIV(const SCEV *Src,
632 const SmallBitVector &Loops,
633 FullDependence &Result) const;
635 /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
637 /// Things of the form [c1 + a*i] and [c2 + a*i],
638 /// where i is an induction variable, c1 and c2 are loop invariant,
639 /// and a is a constant
640 /// Returns true if any possible dependence is disproved.
641 /// If there might be a dependence, returns false.
642 /// Sets appropriate direction and distance.
643 bool strongSIVtest(const SCEV *Coeff,
644 const SCEV *SrcConst,
645 const SCEV *DstConst,
646 const Loop *CurrentLoop,
648 FullDependence &Result,
649 Constraint &NewConstraint) const;
651 /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
652 /// (Src and Dst) for dependence.
653 /// Things of the form [c1 + a*i] and [c2 - a*i],
654 /// where i is an induction variable, c1 and c2 are loop invariant,
655 /// and a is a constant.
656 /// Returns true if any possible dependence is disproved.
657 /// If there might be a dependence, returns false.
658 /// Sets appropriate direction entry.
659 /// Set consistent to false.
660 /// Marks the dependence as splitable.
661 bool weakCrossingSIVtest(const SCEV *SrcCoeff,
662 const SCEV *SrcConst,
663 const SCEV *DstConst,
664 const Loop *CurrentLoop,
666 FullDependence &Result,
667 Constraint &NewConstraint,
668 const SCEV *&SplitIter) const;
670 /// ExactSIVtest - Tests the SIV subscript pair
671 /// (Src and Dst) for dependence.
672 /// Things of the form [c1 + a1*i] and [c2 + a2*i],
673 /// where i is an induction variable, c1 and c2 are loop invariant,
674 /// and a1 and a2 are constant.
675 /// Returns true if any possible dependence is disproved.
676 /// If there might be a dependence, returns false.
677 /// Sets appropriate direction entry.
678 /// Set consistent to false.
679 bool exactSIVtest(const SCEV *SrcCoeff,
680 const SCEV *DstCoeff,
681 const SCEV *SrcConst,
682 const SCEV *DstConst,
683 const Loop *CurrentLoop,
685 FullDependence &Result,
686 Constraint &NewConstraint) const;
688 /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
689 /// (Src and Dst) for dependence.
690 /// Things of the form [c1] and [c2 + a*i],
691 /// where i is an induction variable, c1 and c2 are loop invariant,
692 /// and a is a constant. See also weakZeroDstSIVtest.
693 /// Returns true if any possible dependence is disproved.
694 /// If there might be a dependence, returns false.
695 /// Sets appropriate direction entry.
696 /// Set consistent to false.
697 /// If loop peeling will break the dependence, mark appropriately.
698 bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
699 const SCEV *SrcConst,
700 const SCEV *DstConst,
701 const Loop *CurrentLoop,
703 FullDependence &Result,
704 Constraint &NewConstraint) const;
706 /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
707 /// (Src and Dst) for dependence.
708 /// Things of the form [c1 + a*i] and [c2],
709 /// where i is an induction variable, c1 and c2 are loop invariant,
710 /// and a is a constant. See also weakZeroSrcSIVtest.
711 /// Returns true if any possible dependence is disproved.
712 /// If there might be a dependence, returns false.
713 /// Sets appropriate direction entry.
714 /// Set consistent to false.
715 /// If loop peeling will break the dependence, mark appropriately.
716 bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
717 const SCEV *SrcConst,
718 const SCEV *DstConst,
719 const Loop *CurrentLoop,
721 FullDependence &Result,
722 Constraint &NewConstraint) const;
724 /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
725 /// Things of the form [c1 + a*i] and [c2 + b*j],
726 /// where i and j are induction variable, c1 and c2 are loop invariant,
727 /// and a and b are constants.
728 /// Returns true if any possible dependence is disproved.
729 /// Marks the result as inconsistent.
730 /// Works in some cases that symbolicRDIVtest doesn't,
732 bool exactRDIVtest(const SCEV *SrcCoeff,
733 const SCEV *DstCoeff,
734 const SCEV *SrcConst,
735 const SCEV *DstConst,
738 FullDependence &Result) const;
740 /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
741 /// Things of the form [c1 + a*i] and [c2 + b*j],
742 /// where i and j are induction variable, c1 and c2 are loop invariant,
743 /// and a and b are constants.
744 /// Returns true if any possible dependence is disproved.
745 /// Marks the result as inconsistent.
746 /// Works in some cases that exactRDIVtest doesn't,
747 /// and vice versa. Can also be used as a backup for
748 /// ordinary SIV tests.
749 bool symbolicRDIVtest(const SCEV *SrcCoeff,
750 const SCEV *DstCoeff,
751 const SCEV *SrcConst,
752 const SCEV *DstConst,
754 const Loop *DstLoop) const;
756 /// gcdMIVtest - Tests an MIV subscript pair for dependence.
757 /// Returns true if any possible dependence is disproved.
758 /// Marks the result as inconsistent.
759 /// Can sometimes disprove the equal direction for 1 or more loops.
760 // Can handle some symbolics that even the SIV tests don't get,
761 /// so we use it as a backup for everything.
762 bool gcdMIVtest(const SCEV *Src,
764 FullDependence &Result) const;
766 /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
767 /// Returns true if any possible dependence is disproved.
768 /// Marks the result as inconsistent.
769 /// Computes directions.
770 bool banerjeeMIVtest(const SCEV *Src,
772 const SmallBitVector &Loops,
773 FullDependence &Result) const;
775 /// collectCoefficientInfo - Walks through the subscript,
776 /// collecting each coefficient, the associated loop bounds,
777 /// and recording its positive and negative parts for later use.
778 CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
780 const SCEV *&Constant) const;
782 /// getPositivePart - X^+ = max(X, 0).
784 const SCEV *getPositivePart(const SCEV *X) const;
786 /// getNegativePart - X^- = min(X, 0).
788 const SCEV *getNegativePart(const SCEV *X) const;
790 /// getLowerBound - Looks through all the bounds info and
791 /// computes the lower bound given the current direction settings
793 const SCEV *getLowerBound(BoundInfo *Bound) const;
795 /// getUpperBound - Looks through all the bounds info and
796 /// computes the upper bound given the current direction settings
798 const SCEV *getUpperBound(BoundInfo *Bound) const;
800 /// exploreDirections - Hierarchically expands the direction vector
801 /// search space, combining the directions of discovered dependences
802 /// in the DirSet field of Bound. Returns the number of distinct
803 /// dependences discovered. If the dependence is disproved,
804 /// it will return 0.
805 unsigned exploreDirections(unsigned Level,
809 const SmallBitVector &Loops,
810 unsigned &DepthExpanded,
811 const SCEV *Delta) const;
813 /// testBounds - Returns true iff the current bounds are plausible.
814 bool testBounds(unsigned char DirKind,
817 const SCEV *Delta) const;
819 /// findBoundsALL - Computes the upper and lower bounds for level K
820 /// using the * direction. Records them in Bound.
821 void findBoundsALL(CoefficientInfo *A,
826 /// findBoundsLT - Computes the upper and lower bounds for level K
827 /// using the < direction. Records them in Bound.
828 void findBoundsLT(CoefficientInfo *A,
833 /// findBoundsGT - Computes the upper and lower bounds for level K
834 /// using the > direction. Records them in Bound.
835 void findBoundsGT(CoefficientInfo *A,
840 /// findBoundsEQ - Computes the upper and lower bounds for level K
841 /// using the = direction. Records them in Bound.
842 void findBoundsEQ(CoefficientInfo *A,
847 /// intersectConstraints - Updates X with the intersection
848 /// of the Constraints X and Y. Returns true if X has changed.
849 bool intersectConstraints(Constraint *X,
850 const Constraint *Y);
852 /// propagate - Review the constraints, looking for opportunities
853 /// to simplify a subscript pair (Src and Dst).
854 /// Return true if some simplification occurs.
855 /// If the simplification isn't exact (that is, if it is conservative
856 /// in terms of dependence), set consistent to false.
857 bool propagate(const SCEV *&Src,
859 SmallBitVector &Loops,
860 SmallVectorImpl<Constraint> &Constraints,
863 /// propagateDistance - Attempt to propagate a distance
864 /// constraint into a subscript pair (Src and Dst).
865 /// Return true if some simplification occurs.
866 /// If the simplification isn't exact (that is, if it is conservative
867 /// in terms of dependence), set consistent to false.
868 bool propagateDistance(const SCEV *&Src,
870 Constraint &CurConstraint,
873 /// propagatePoint - Attempt to propagate a point
874 /// constraint into a subscript pair (Src and Dst).
875 /// Return true if some simplification occurs.
876 bool propagatePoint(const SCEV *&Src,
878 Constraint &CurConstraint);
880 /// propagateLine - Attempt to propagate a line
881 /// constraint into a subscript pair (Src and Dst).
882 /// Return true if some simplification occurs.
883 /// If the simplification isn't exact (that is, if it is conservative
884 /// in terms of dependence), set consistent to false.
885 bool propagateLine(const SCEV *&Src,
887 Constraint &CurConstraint,
890 /// findCoefficient - Given a linear SCEV,
891 /// return the coefficient corresponding to specified loop.
892 /// If there isn't one, return the SCEV constant 0.
893 /// For example, given a*i + b*j + c*k, returning the coefficient
894 /// corresponding to the j loop would yield b.
895 const SCEV *findCoefficient(const SCEV *Expr,
896 const Loop *TargetLoop) const;
898 /// zeroCoefficient - Given a linear SCEV,
899 /// return the SCEV given by zeroing out the coefficient
900 /// corresponding to the specified loop.
901 /// For example, given a*i + b*j + c*k, zeroing the coefficient
902 /// corresponding to the j loop would yield a*i + c*k.
903 const SCEV *zeroCoefficient(const SCEV *Expr,
904 const Loop *TargetLoop) const;
906 /// addToCoefficient - Given a linear SCEV Expr,
907 /// return the SCEV given by adding some Value to the
908 /// coefficient corresponding to the specified TargetLoop.
909 /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
910 /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
911 const SCEV *addToCoefficient(const SCEV *Expr,
912 const Loop *TargetLoop,
913 const SCEV *Value) const;
915 /// updateDirection - Update direction vector entry
916 /// based on the current constraint.
917 void updateDirection(Dependence::DVEntry &Level,
918 const Constraint &CurConstraint) const;
920 bool tryDelinearize(Instruction *Src, Instruction *Dst,
921 SmallVectorImpl<Subscript> &Pair);
924 static char ID; // Class identification, replacement for typeinfo
925 DependenceAnalysis() : FunctionPass(ID) {
926 initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
929 bool runOnFunction(Function &F) override;
930 void releaseMemory() override;
931 void getAnalysisUsage(AnalysisUsage &) const override;
932 void print(raw_ostream &, const Module * = nullptr) const override;
933 }; // class DependenceAnalysis
935 /// createDependenceAnalysisPass - This creates an instance of the
936 /// DependenceAnalysis pass.
937 FunctionPass *createDependenceAnalysisPass();