1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Calculate a program structure tree built out of single entry single exit
12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
16 // The algorithm to calculate these data structures however is completely
17 // different, as it takes advantage of existing information already available
18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19 // and in practice hopefully better performing algorithm. The runtime of the
20 // algorithms described in the papers above are both linear in graph size,
21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
22 // itself is not, but in practice runtime seems to be in the order of magnitude
23 // of dominance tree calculation.
25 // WARNING: LLVM is generally very concerned about compile time such that
26 // the use of additional analysis passes in the default
27 // optimization sequence is avoided as much as possible.
28 // Specifically, if you do not need the RegionInfo, but dominance
29 // information could be sufficient please base your work only on
30 // the dominator tree. Most passes maintain it, such that using
31 // it has often near zero cost. In contrast RegionInfo is by
32 // default not available, is not maintained by existing
33 // transformations and there is no intention to do so.
35 //===----------------------------------------------------------------------===//
37 #ifndef LLVM_ANALYSIS_REGIONINFO_H
38 #define LLVM_ANALYSIS_REGIONINFO_H
40 #include "llvm/ADT/DepthFirstIterator.h"
41 #include "llvm/ADT/PointerIntPair.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/Dominators.h"
50 // Class to be specialized for different users of RegionInfo
51 // (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
52 // pass around an unreasonable number of template parameters.
53 template <class FuncT_>
60 typedef typename FuncT_::UnknownRegionTypeError BrokenT;
64 class DominanceFrontier;
67 struct PostDominatorTree;
70 template <class RegionTr>
74 template <class RegionTr>
78 struct RegionTraits<Function> {
79 typedef Function FuncT;
80 typedef BasicBlock BlockT;
81 typedef Region RegionT;
82 typedef RegionNode RegionNodeT;
83 typedef RegionInfo RegionInfoT;
84 typedef DominatorTree DomTreeT;
85 typedef DomTreeNode DomTreeNodeT;
86 typedef DominanceFrontier DomFrontierT;
87 typedef PostDominatorTree PostDomTreeT;
88 typedef Instruction InstT;
90 typedef LoopInfo LoopInfoT;
92 static unsigned getNumSuccessors(BasicBlock *BB) {
93 return BB->getTerminator()->getNumSuccessors();
97 /// @brief Marker class to iterate over the elements of a Region in flat mode.
99 /// The class is used to either iterate in Flat mode or by not using it to not
100 /// iterate in Flat mode. During a Flat mode iteration all Regions are entered
101 /// and the iteration returns every BasicBlock. If the Flat mode is not
102 /// selected for SubRegions just one RegionNode containing the subregion is
104 template <class GraphType>
107 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
110 class RegionNodeBase {
111 friend class RegionBase<Tr>;
114 typedef typename Tr::BlockT BlockT;
115 typedef typename Tr::RegionT RegionT;
118 RegionNodeBase(const RegionNodeBase &) = delete;
119 const RegionNodeBase &operator=(const RegionNodeBase &) = delete;
121 /// This is the entry basic block that starts this region node. If this is a
122 /// BasicBlock RegionNode, then entry is just the basic block, that this
123 /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
125 /// In the BBtoRegionNode map of the parent of this node, BB will always map
126 /// to this node no matter which kind of node this one is.
128 /// The node can hold either a Region or a BasicBlock.
129 /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
131 PointerIntPair<BlockT *, 1, bool> entry;
133 /// @brief The parent Region of this RegionNode.
138 /// @brief Create a RegionNode.
140 /// @param Parent The parent of this RegionNode.
141 /// @param Entry The entry BasicBlock of the RegionNode. If this
142 /// RegionNode represents a BasicBlock, this is the
143 /// BasicBlock itself. If it represents a subregion, this
144 /// is the entry BasicBlock of the subregion.
145 /// @param isSubRegion If this RegionNode represents a SubRegion.
146 inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
147 bool isSubRegion = false)
148 : entry(Entry, isSubRegion), parent(Parent) {}
151 /// @brief Get the parent Region of this RegionNode.
153 /// The parent Region is the Region this RegionNode belongs to. If for
154 /// example a BasicBlock is element of two Regions, there exist two
155 /// RegionNodes for this BasicBlock. Each with the getParent() function
156 /// pointing to the Region this RegionNode belongs to.
158 /// @return Get the parent Region of this RegionNode.
159 inline RegionT *getParent() const { return parent; }
161 /// @brief Get the entry BasicBlock of this RegionNode.
163 /// If this RegionNode represents a BasicBlock this is just the BasicBlock
164 /// itself, otherwise we return the entry BasicBlock of the Subregion
166 /// @return The entry BasicBlock of this RegionNode.
167 inline BlockT *getEntry() const { return entry.getPointer(); }
169 /// @brief Get the content of this RegionNode.
171 /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
172 /// check the type of the content with the isSubRegion() function call.
174 /// @return The content of this RegionNode.
175 template <class T> inline T *getNodeAs() const;
177 /// @brief Is this RegionNode a subregion?
179 /// @return True if it contains a subregion. False if it contains a
181 inline bool isSubRegion() const { return entry.getInt(); }
184 //===----------------------------------------------------------------------===//
185 /// @brief A single entry single exit Region.
187 /// A Region is a connected subgraph of a control flow graph that has exactly
188 /// two connections to the remaining graph. It can be used to analyze or
189 /// optimize parts of the control flow graph.
191 /// A <em> simple Region </em> is connected to the remaining graph by just two
192 /// edges. One edge entering the Region and another one leaving the Region.
194 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
195 /// transform into a simple Region. The transformation is done by adding
196 /// BasicBlocks that merge several entry or exit edges so that after the merge
197 /// just one entry and one exit edge exists.
199 /// The \e Entry of a Region is the first BasicBlock that is passed after
200 /// entering the Region. It is an element of the Region. The entry BasicBlock
201 /// dominates all BasicBlocks in the Region.
203 /// The \e Exit of a Region is the first BasicBlock that is passed after
204 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
205 /// postdominates all BasicBlocks in the Region.
207 /// A <em> canonical Region </em> cannot be constructed by combining smaller
210 /// Region A is the \e parent of Region B, if B is completely contained in A.
212 /// Two canonical Regions either do not intersect at all or one is
213 /// the parent of the other.
215 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
216 /// Regions in the control flow graph and E is the \e parent relation of these
222 /// A simple control flow graph, that contains two regions.
232 /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
233 /// 9 Region B: 2 -> 9 {2,4,5,6,7}
236 /// You can obtain more examples by either calling
238 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
240 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
242 /// on any LLVM file you are interested in.
244 /// The first call returns a textual representation of the program structure
245 /// tree, the second one creates a graphical representation using graphviz.
247 class RegionBase : public RegionNodeBase<Tr> {
248 typedef typename Tr::FuncT FuncT;
249 typedef typename Tr::BlockT BlockT;
250 typedef typename Tr::RegionInfoT RegionInfoT;
251 typedef typename Tr::RegionT RegionT;
252 typedef typename Tr::RegionNodeT RegionNodeT;
253 typedef typename Tr::DomTreeT DomTreeT;
254 typedef typename Tr::LoopT LoopT;
255 typedef typename Tr::LoopInfoT LoopInfoT;
256 typedef typename Tr::InstT InstT;
258 typedef GraphTraits<BlockT *> BlockTraits;
259 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
260 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
261 typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
263 friend class RegionInfoBase<Tr>;
264 RegionBase(const RegionBase &) = delete;
265 const RegionBase &operator=(const RegionBase &) = delete;
267 // Information necessary to manage this Region.
271 // The exit BasicBlock of this region.
272 // (The entry BasicBlock is part of RegionNode)
275 typedef std::vector<std::unique_ptr<RegionT>> RegionSet;
277 // The subregions of this region.
280 typedef std::map<BlockT *, RegionNodeT *> BBNodeMapT;
282 // Save the BasicBlock RegionNodes that are element of this Region.
283 mutable BBNodeMapT BBNodeMap;
285 /// Check if a BB is in this Region. This check also works
286 /// if the region is incorrectly built. (EXPENSIVE!)
287 void verifyBBInRegion(BlockT *BB) const;
289 /// Walk over all the BBs of the region starting from BB and
290 /// verify that all reachable basic blocks are elements of the region.
292 void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
294 /// Verify if the region and its children are valid regions (EXPENSIVE!)
295 void verifyRegionNest() const;
298 /// @brief Create a new region.
300 /// @param Entry The entry basic block of the region.
301 /// @param Exit The exit basic block of the region.
302 /// @param RI The region info object that is managing this region.
303 /// @param DT The dominator tree of the current function.
304 /// @param Parent The surrounding region or NULL if this is a top level
306 RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
307 RegionT *Parent = nullptr);
309 /// Delete the Region and all its subregions.
312 /// @brief Get the entry BasicBlock of the Region.
313 /// @return The entry BasicBlock of the region.
314 BlockT *getEntry() const {
315 return RegionNodeBase<Tr>::getEntry();
318 /// @brief Replace the entry basic block of the region with the new basic
321 /// @param BB The new entry basic block of the region.
322 void replaceEntry(BlockT *BB);
324 /// @brief Replace the exit basic block of the region with the new basic
327 /// @param BB The new exit basic block of the region.
328 void replaceExit(BlockT *BB);
330 /// @brief Recursively replace the entry basic block of the region.
332 /// This function replaces the entry basic block with a new basic block. It
333 /// also updates all child regions that have the same entry basic block as
336 /// @param NewEntry The new entry basic block.
337 void replaceEntryRecursive(BlockT *NewEntry);
339 /// @brief Recursively replace the exit basic block of the region.
341 /// This function replaces the exit basic block with a new basic block. It
342 /// also updates all child regions that have the same exit basic block as
345 /// @param NewExit The new exit basic block.
346 void replaceExitRecursive(BlockT *NewExit);
348 /// @brief Get the exit BasicBlock of the Region.
349 /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
351 BlockT *getExit() const { return exit; }
353 /// @brief Get the parent of the Region.
354 /// @return The parent of the Region or NULL if this is a top level
356 RegionT *getParent() const {
357 return RegionNodeBase<Tr>::getParent();
360 /// @brief Get the RegionNode representing the current Region.
361 /// @return The RegionNode representing the current Region.
362 RegionNodeT *getNode() const {
363 return const_cast<RegionNodeT *>(
364 reinterpret_cast<const RegionNodeT *>(this));
367 /// @brief Get the nesting level of this Region.
369 /// An toplevel Region has depth 0.
371 /// @return The depth of the region.
372 unsigned getDepth() const;
374 /// @brief Check if a Region is the TopLevel region.
376 /// The toplevel region represents the whole function.
377 bool isTopLevelRegion() const { return exit == nullptr; }
379 /// @brief Return a new (non-canonical) region, that is obtained by joining
380 /// this region with its predecessors.
382 /// @return A region also starting at getEntry(), but reaching to the next
383 /// basic block that forms with getEntry() a (non-canonical) region.
384 /// NULL if such a basic block does not exist.
385 RegionT *getExpandedRegion() const;
387 /// @brief Return the first block of this region's single entry edge,
390 /// @return The BasicBlock starting this region's single entry edge,
392 BlockT *getEnteringBlock() const;
394 /// @brief Return the first block of this region's single exit edge,
397 /// @return The BasicBlock starting this region's single exit edge,
399 BlockT *getExitingBlock() const;
401 /// @brief Is this a simple region?
403 /// A region is simple if it has exactly one exit and one entry edge.
405 /// @return True if the Region is simple.
406 bool isSimple() const;
408 /// @brief Returns the name of the Region.
409 /// @return The Name of the Region.
410 std::string getNameStr() const;
412 /// @brief Return the RegionInfo object, that belongs to this Region.
413 RegionInfoT *getRegionInfo() const { return RI; }
415 /// PrintStyle - Print region in difference ways.
416 enum PrintStyle { PrintNone, PrintBB, PrintRN };
418 /// @brief Print the region.
420 /// @param OS The output stream the Region is printed to.
421 /// @param printTree Print also the tree of subregions.
422 /// @param level The indentation level used for printing.
423 void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
424 PrintStyle Style = PrintNone) const;
426 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
427 /// @brief Print the region to stderr.
431 /// @brief Check if the region contains a BasicBlock.
433 /// @param BB The BasicBlock that might be contained in this Region.
434 /// @return True if the block is contained in the region otherwise false.
435 bool contains(const BlockT *BB) const;
437 /// @brief Check if the region contains another region.
439 /// @param SubRegion The region that might be contained in this Region.
440 /// @return True if SubRegion is contained in the region otherwise false.
441 bool contains(const RegionT *SubRegion) const {
446 return contains(SubRegion->getEntry()) &&
447 (contains(SubRegion->getExit()) ||
448 SubRegion->getExit() == getExit());
451 /// @brief Check if the region contains an Instruction.
453 /// @param Inst The Instruction that might be contained in this region.
454 /// @return True if the Instruction is contained in the region otherwise
456 bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
458 /// @brief Check if the region contains a loop.
460 /// @param L The loop that might be contained in this region.
461 /// @return True if the loop is contained in the region otherwise false.
462 /// In case a NULL pointer is passed to this function the result
463 /// is false, except for the region that describes the whole function.
464 /// In that case true is returned.
465 bool contains(const LoopT *L) const;
467 /// @brief Get the outermost loop in the region that contains a loop.
469 /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
470 /// and is itself contained in the region.
472 /// @param L The loop the lookup is started.
473 /// @return The outermost loop in the region, NULL if such a loop does not
474 /// exist or if the region describes the whole function.
475 LoopT *outermostLoopInRegion(LoopT *L) const;
477 /// @brief Get the outermost loop in the region that contains a basic block.
479 /// Find for a basic block BB the outermost loop L that contains BB and is
480 /// itself contained in the region.
482 /// @param LI A pointer to a LoopInfo analysis.
483 /// @param BB The basic block surrounded by the loop.
484 /// @return The outermost loop in the region, NULL if such a loop does not
485 /// exist or if the region describes the whole function.
486 LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
488 /// @brief Get the subregion that starts at a BasicBlock
490 /// @param BB The BasicBlock the subregion should start.
491 /// @return The Subregion if available, otherwise NULL.
492 RegionT *getSubRegionNode(BlockT *BB) const;
494 /// @brief Get the RegionNode for a BasicBlock
496 /// @param BB The BasicBlock at which the RegionNode should start.
497 /// @return If available, the RegionNode that represents the subregion
498 /// starting at BB. If no subregion starts at BB, the RegionNode
500 RegionNodeT *getNode(BlockT *BB) const;
502 /// @brief Get the BasicBlock RegionNode for a BasicBlock
504 /// @param BB The BasicBlock for which the RegionNode is requested.
505 /// @return The RegionNode representing the BB.
506 RegionNodeT *getBBNode(BlockT *BB) const;
508 /// @brief Add a new subregion to this Region.
510 /// @param SubRegion The new subregion that will be added.
511 /// @param moveChildren Move the children of this region, that are also
512 /// contained in SubRegion into SubRegion.
513 void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
515 /// @brief Remove a subregion from this Region.
517 /// The subregion is not deleted, as it will probably be inserted into another
519 /// @param SubRegion The SubRegion that will be removed.
520 RegionT *removeSubRegion(RegionT *SubRegion);
522 /// @brief Move all direct child nodes of this Region to another Region.
524 /// @param To The Region the child nodes will be transferred to.
525 void transferChildrenTo(RegionT *To);
527 /// @brief Verify if the region is a correct region.
529 /// Check if this is a correctly build Region. This is an expensive check, as
530 /// the complete CFG of the Region will be walked.
531 void verifyRegion() const;
533 /// @brief Clear the cache for BB RegionNodes.
535 /// After calling this function the BasicBlock RegionNodes will be stored at
536 /// different memory locations. RegionNodes obtained before this function is
537 /// called are therefore not comparable to RegionNodes abtained afterwords.
538 void clearNodeCache();
540 /// @name Subregion Iterators
542 /// These iterators iterator over all subregions of this Region.
544 typedef typename RegionSet::iterator iterator;
545 typedef typename RegionSet::const_iterator const_iterator;
547 iterator begin() { return children.begin(); }
548 iterator end() { return children.end(); }
550 const_iterator begin() const { return children.begin(); }
551 const_iterator end() const { return children.end(); }
554 /// @name BasicBlock Iterators
556 /// These iterators iterate over all BasicBlocks that are contained in this
557 /// Region. The iterator also iterates over BasicBlocks that are elements of
558 /// a subregion of this Region. It is therefore called a flat iterator.
560 template <bool IsConst>
561 class block_iterator_wrapper
562 : public df_iterator<
563 typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
565 typename std::conditional<IsConst, const BlockT, BlockT>::type *> super;
568 typedef block_iterator_wrapper<IsConst> Self;
569 typedef typename super::pointer pointer;
571 // Construct the begin iterator.
572 block_iterator_wrapper(pointer Entry, pointer Exit)
573 : super(df_begin(Entry)) {
574 // Mark the exit of the region as visited, so that the children of the
575 // exit and the exit itself, i.e. the block outside the region will never
577 super::Visited.insert(Exit);
580 // Construct the end iterator.
581 block_iterator_wrapper() : super(df_end<pointer>((BlockT *)nullptr)) {}
583 /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
585 // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
586 // This was introduced for backwards compatibility, but should
587 // be removed as soon as all users are fixed.
588 BlockT *operator*() const {
589 return const_cast<BlockT *>(super::operator*());
593 typedef block_iterator_wrapper<false> block_iterator;
594 typedef block_iterator_wrapper<true> const_block_iterator;
596 block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
598 block_iterator block_end() { return block_iterator(); }
600 const_block_iterator block_begin() const {
601 return const_block_iterator(getEntry(), getExit());
603 const_block_iterator block_end() const { return const_block_iterator(); }
605 typedef iterator_range<block_iterator> block_range;
606 typedef iterator_range<const_block_iterator> const_block_range;
608 /// @brief Returns a range view of the basic blocks in the region.
609 inline block_range blocks() {
610 return block_range(block_begin(), block_end());
613 /// @brief Returns a range view of the basic blocks in the region.
615 /// This is the 'const' version of the range view.
616 inline const_block_range blocks() const {
617 return const_block_range(block_begin(), block_end());
621 /// @name Element Iterators
623 /// These iterators iterate over all BasicBlock and subregion RegionNodes that
624 /// are direct children of this Region. It does not iterate over any
625 /// RegionNodes that are also element of a subregion of this Region.
627 typedef df_iterator<RegionNodeT *, SmallPtrSet<RegionNodeT *, 8>, false,
628 GraphTraits<RegionNodeT *>> element_iterator;
630 typedef df_iterator<const RegionNodeT *, SmallPtrSet<const RegionNodeT *, 8>,
632 GraphTraits<const RegionNodeT *>> const_element_iterator;
634 element_iterator element_begin();
635 element_iterator element_end();
637 const_element_iterator element_begin() const;
638 const_element_iterator element_end() const;
642 /// Print a RegionNode.
644 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
646 //===----------------------------------------------------------------------===//
647 /// @brief Analysis that detects all canonical Regions.
649 /// The RegionInfo pass detects all canonical regions in a function. The Regions
650 /// are connected using the parent relation. This builds a Program Structure
653 class RegionInfoBase {
654 typedef typename Tr::BlockT BlockT;
655 typedef typename Tr::FuncT FuncT;
656 typedef typename Tr::RegionT RegionT;
657 typedef typename Tr::RegionInfoT RegionInfoT;
658 typedef typename Tr::DomTreeT DomTreeT;
659 typedef typename Tr::DomTreeNodeT DomTreeNodeT;
660 typedef typename Tr::PostDomTreeT PostDomTreeT;
661 typedef typename Tr::DomFrontierT DomFrontierT;
662 typedef GraphTraits<BlockT *> BlockTraits;
663 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
664 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
665 typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
667 friend class RegionInfo;
668 friend class MachineRegionInfo;
669 typedef DenseMap<BlockT *, BlockT *> BBtoBBMap;
670 typedef DenseMap<BlockT *, RegionT *> BBtoRegionMap;
671 typedef SmallPtrSet<RegionT *, 4> RegionSet;
674 virtual ~RegionInfoBase();
676 RegionInfoBase(const RegionInfoBase &) = delete;
677 const RegionInfoBase &operator=(const RegionInfoBase &) = delete;
683 /// The top level region.
684 RegionT *TopLevelRegion;
687 /// Map every BB to the smallest region, that contains BB.
688 BBtoRegionMap BBtoRegion;
690 // Check whether the entries of BBtoRegion for the BBs of region
691 // SR are correct. Triggers an assertion if not. Calls itself recursively for
693 void verifyBBMap(const RegionT *SR) const;
695 // Returns true if BB is in the dominance frontier of
696 // entry, because it was inherited from exit. In the other case there is an
697 // edge going from entry to BB without passing exit.
698 bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
700 // Check if entry and exit surround a valid region, based on
701 // dominance tree and dominance frontier.
702 bool isRegion(BlockT *entry, BlockT *exit) const;
704 // Saves a shortcut pointing from entry to exit.
705 // This function may extend this shortcut if possible.
706 void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
708 // Returns the next BB that postdominates N, while skipping
709 // all post dominators that cannot finish a canonical region.
710 DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
712 // A region is trivial, if it contains only one BB.
713 bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
715 // Creates a single entry single exit region.
716 RegionT *createRegion(BlockT *entry, BlockT *exit);
718 // Detect all regions starting with bb 'entry'.
719 void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
721 // Detects regions in F.
722 void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
724 // Get the top most parent with the same entry block.
725 RegionT *getTopMostParent(RegionT *region);
727 // Build the region hierarchy after all region detected.
728 void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
730 // Update statistic about created regions.
731 virtual void updateStatistics(RegionT *R) = 0;
733 // Detect all regions in function and build the region tree.
734 void calculate(FuncT &F);
737 static bool VerifyRegionInfo;
738 static typename RegionT::PrintStyle printStyle;
740 void print(raw_ostream &OS) const;
741 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
745 void releaseMemory();
747 /// @brief Get the smallest region that contains a BasicBlock.
749 /// @param BB The basic block.
750 /// @return The smallest region, that contains BB or NULL, if there is no
751 /// region containing BB.
752 RegionT *getRegionFor(BlockT *BB) const;
754 /// @brief Set the smallest region that surrounds a basic block.
756 /// @param BB The basic block surrounded by a region.
757 /// @param R The smallest region that surrounds BB.
758 void setRegionFor(BlockT *BB, RegionT *R);
760 /// @brief A shortcut for getRegionFor().
762 /// @param BB The basic block.
763 /// @return The smallest region, that contains BB or NULL, if there is no
764 /// region containing BB.
765 RegionT *operator[](BlockT *BB) const;
767 /// @brief Return the exit of the maximal refined region, that starts at a
770 /// @param BB The BasicBlock the refined region starts.
771 BlockT *getMaxRegionExit(BlockT *BB) const;
773 /// @brief Find the smallest region that contains two regions.
775 /// @param A The first region.
776 /// @param B The second region.
777 /// @return The smallest region containing A and B.
778 RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
780 /// @brief Find the smallest region that contains two basic blocks.
782 /// @param A The first basic block.
783 /// @param B The second basic block.
784 /// @return The smallest region that contains A and B.
785 RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
786 return getCommonRegion(getRegionFor(A), getRegionFor(B));
789 /// @brief Find the smallest region that contains a set of regions.
791 /// @param Regions A vector of regions.
792 /// @return The smallest region that contains all regions in Regions.
793 RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
795 /// @brief Find the smallest region that contains a set of basic blocks.
797 /// @param BBs A vector of basic blocks.
798 /// @return The smallest region that contains all basic blocks in BBS.
799 RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
801 RegionT *getTopLevelRegion() const { return TopLevelRegion; }
803 /// @brief Clear the Node Cache for all Regions.
805 /// @see Region::clearNodeCache()
806 void clearNodeCache() {
808 TopLevelRegion->clearNodeCache();
811 void verifyAnalysis() const;
816 class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
818 inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
819 : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
821 bool operator==(const Region &RN) const {
822 return this == reinterpret_cast<const RegionNode *>(&RN);
826 class Region : public RegionBase<RegionTraits<Function>> {
828 Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
829 Region *Parent = nullptr);
832 bool operator==(const RegionNode &RN) const {
833 return &RN == reinterpret_cast<const RegionNode *>(this);
837 class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
839 explicit RegionInfo();
841 ~RegionInfo() override;
843 // updateStatistics - Update statistic about created regions.
844 void updateStatistics(Region *R) final;
846 void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
847 DominanceFrontier *DF);
850 /// @brief Opens a viewer to show the GraphViz visualization of the regions.
852 /// Useful during debugging as an alternative to dump().
855 /// @brief Opens a viewer to show the GraphViz visualization of this region
856 /// without instructions in the BasicBlocks.
858 /// Useful during debugging as an alternative to dump().
863 class RegionInfoPass : public FunctionPass {
868 explicit RegionInfoPass();
870 ~RegionInfoPass() override;
872 RegionInfo &getRegionInfo() { return RI; }
874 const RegionInfo &getRegionInfo() const { return RI; }
876 /// @name FunctionPass interface
878 bool runOnFunction(Function &F) override;
879 void releaseMemory() override;
880 void verifyAnalysis() const override;
881 void getAnalysisUsage(AnalysisUsage &AU) const override;
882 void print(raw_ostream &OS, const Module *) const override;
890 RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
891 assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
898 RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
899 assert(isSubRegion() && "This is not a subregion RegionNode!");
900 auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
901 return reinterpret_cast<Region *>(Unconst);
905 inline raw_ostream &operator<<(raw_ostream &OS,
906 const RegionNodeBase<Tr> &Node) {
907 typedef typename Tr::BlockT BlockT;
908 typedef typename Tr::RegionT RegionT;
910 if (Node.isSubRegion())
911 return OS << Node.template getNodeAs<RegionT>()->getNameStr();
913 return OS << Node.template getNodeAs<BlockT>()->getName();
916 extern template class RegionBase<RegionTraits<Function>>;
917 extern template class RegionNodeBase<RegionTraits<Function>>;
918 extern template class RegionInfoBase<RegionTraits<Function>>;
920 } // End llvm namespace