1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Calculate a program structure tree built out of single entry single exit
12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
16 // The algorithm to calculate these data structures however is completely
17 // different, as it takes advantage of existing information already available
18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19 // and in practice hopefully better performing algorithm. The runtime of the
20 // algorithms described in the papers above are both linear in graph size,
21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
22 // itself is not, but in practice runtime seems to be in the order of magnitude
23 // of dominance tree calculation.
25 //===----------------------------------------------------------------------===//
27 #ifndef LLVM_ANALYSIS_REGION_INFO_H
28 #define LLVM_ANALYSIS_REGION_INFO_H
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/Analysis/DominanceFrontier.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/Support/Allocator.h"
44 /// @brief Marker class to iterate over the elements of a Region in flat mode.
46 /// The class is used to either iterate in Flat mode or by not using it to not
47 /// iterate in Flat mode. During a Flat mode iteration all Regions are entered
48 /// and the iteration returns every BasicBlock. If the Flat mode is not
49 /// selected for SubRegions just one RegionNode containing the subregion is
51 template <class GraphType>
54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
58 RegionNode(const RegionNode &);
60 const RegionNode &operator=(const RegionNode &);
63 /// This is the entry basic block that starts this region node. If this is a
64 /// BasicBlock RegionNode, then entry is just the basic block, that this
65 /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
67 /// In the BBtoRegionNode map of the parent of this node, BB will always map
68 /// to this node no matter which kind of node this one is.
70 /// The node can hold either a Region or a BasicBlock.
71 /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
73 PointerIntPair<BasicBlock*, 1, bool> entry;
75 /// @brief The parent Region of this RegionNode.
80 /// @brief Create a RegionNode.
82 /// @param Parent The parent of this RegionNode.
83 /// @param Entry The entry BasicBlock of the RegionNode. If this
84 /// RegionNode represents a BasicBlock, this is the
85 /// BasicBlock itself. If it represents a subregion, this
86 /// is the entry BasicBlock of the subregion.
87 /// @param isSubRegion If this RegionNode represents a SubRegion.
88 inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
89 : entry(Entry, isSubRegion), parent(Parent) {}
91 /// @brief Get the parent Region of this RegionNode.
93 /// The parent Region is the Region this RegionNode belongs to. If for
94 /// example a BasicBlock is element of two Regions, there exist two
95 /// RegionNodes for this BasicBlock. Each with the getParent() function
96 /// pointing to the Region this RegionNode belongs to.
98 /// @return Get the parent Region of this RegionNode.
99 inline Region* getParent() const { return parent; }
101 /// @brief Get the entry BasicBlock of this RegionNode.
103 /// If this RegionNode represents a BasicBlock this is just the BasicBlock
104 /// itself, otherwise we return the entry BasicBlock of the Subregion
106 /// @return The entry BasicBlock of this RegionNode.
107 inline BasicBlock* getEntry() const { return entry.getPointer(); }
109 /// @brief Get the content of this RegionNode.
111 /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
112 /// check the type of the content with the isSubRegion() function call.
114 /// @return The content of this RegionNode.
116 inline T* getNodeAs() const;
118 /// @brief Is this RegionNode a subregion?
120 /// @return True if it contains a subregion. False if it contains a
122 inline bool isSubRegion() const {
123 return entry.getInt();
127 /// Print a RegionNode.
128 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
131 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
132 assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
137 inline Region* RegionNode::getNodeAs<Region>() const {
138 assert(isSubRegion() && "This is not a subregion RegionNode!");
139 return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
142 //===----------------------------------------------------------------------===//
143 /// @brief A single entry single exit Region.
145 /// A Region is a connected subgraph of a control flow graph that has exactly
146 /// two connections to the remaining graph. It can be used to analyze or
147 /// optimize parts of the control flow graph.
149 /// A <em> simple Region </em> is connected to the remaining graph by just two
150 /// edges. One edge entering the Region and another one leaving the Region.
152 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
153 /// transform into a simple Region. The transformation is done by adding
154 /// BasicBlocks that merge several entry or exit edges so that after the merge
155 /// just one entry and one exit edge exists.
157 /// The \e Entry of a Region is the first BasicBlock that is passed after
158 /// entering the Region. It is an element of the Region. The entry BasicBlock
159 /// dominates all BasicBlocks in the Region.
161 /// The \e Exit of a Region is the first BasicBlock that is passed after
162 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
163 /// postdominates all BasicBlocks in the Region.
165 /// A <em> canonical Region </em> cannot be constructed by combining smaller
168 /// Region A is the \e parent of Region B, if B is completely contained in A.
170 /// Two canonical Regions either do not intersect at all or one is
171 /// the parent of the other.
173 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
174 /// Regions in the control flow graph and E is the \e parent relation of these
180 /// A simple control flow graph, that contains two regions.
190 /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
191 /// 9 Region B: 2 -> 9 {2,4,5,6,7}
194 /// You can obtain more examples by either calling
196 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
198 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
200 /// on any LLVM file you are interested in.
202 /// The first call returns a textual representation of the program structure
203 /// tree, the second one creates a graphical representation using graphviz.
204 class Region : public RegionNode {
205 friend class RegionInfo;
207 Region(const Region &);
209 const Region &operator=(const Region &);
211 // Information necessary to manage this Region.
215 // The exit BasicBlock of this region.
216 // (The entry BasicBlock is part of RegionNode)
219 typedef std::vector<Region*> RegionSet;
221 // The subregions of this region.
224 typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
226 // Save the BasicBlock RegionNodes that are element of this Region.
227 mutable BBNodeMapT BBNodeMap;
229 /// verifyBBInRegion - Check if a BB is in this Region. This check also works
230 /// if the region is incorrectly built. (EXPENSIVE!)
231 void verifyBBInRegion(BasicBlock* BB) const;
233 /// verifyWalk - Walk over all the BBs of the region starting from BB and
234 /// verify that all reachable basic blocks are elements of the region.
236 void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
238 /// verifyRegionNest - Verify if the region and its children are valid
239 /// regions (EXPENSIVE!)
240 void verifyRegionNest() const;
243 /// @brief Create a new region.
245 /// @param Entry The entry basic block of the region.
246 /// @param Exit The exit basic block of the region.
247 /// @param RI The region info object that is managing this region.
248 /// @param DT The dominator tree of the current function.
249 /// @param Parent The surrounding region or NULL if this is a top level
251 Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
252 DominatorTree *DT, Region *Parent = 0);
254 /// Delete the Region and all its subregions.
257 /// @brief Get the entry BasicBlock of the Region.
258 /// @return The entry BasicBlock of the region.
259 BasicBlock *getEntry() const { return RegionNode::getEntry(); }
261 /// @brief Replace the entry basic block of the region with the new basic
264 /// @param BB The new entry basic block of the region.
265 void replaceEntry(BasicBlock *BB);
267 /// @brief Replace the exit basic block of the region with the new basic
270 /// @param BB The new exit basic block of the region.
271 void replaceExit(BasicBlock *BB);
273 /// @brief Get the exit BasicBlock of the Region.
274 /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
276 BasicBlock *getExit() const { return exit; }
278 /// @brief Get the parent of the Region.
279 /// @return The parent of the Region or NULL if this is a top level
281 Region *getParent() const { return RegionNode::getParent(); }
283 /// @brief Get the RegionNode representing the current Region.
284 /// @return The RegionNode representing the current Region.
285 RegionNode* getNode() const {
286 return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
289 /// @brief Get the nesting level of this Region.
291 /// An toplevel Region has depth 0.
293 /// @return The depth of the region.
294 unsigned getDepth() const;
296 /// @brief Check if a Region is the TopLevel region.
298 /// The toplevel region represents the whole function.
299 bool isTopLevelRegion() const { return exit == NULL; }
301 /// @brief Return a new (non canonical) region, that is obtained by joining
302 /// this region with its predecessors.
304 /// @return A region also starting at getEntry(), but reaching to the next
305 /// basic block that forms with getEntry() a (non canonical) region.
306 /// NULL if such a basic block does not exist.
307 Region *getExpandedRegion() const;
309 /// @brief Return the first block of this region's single entry edge,
312 /// @return The BasicBlock starting this region's single entry edge,
314 BasicBlock *getEnteringBlock() const;
316 /// @brief Return the first block of this region's single exit edge,
319 /// @return The BasicBlock starting this region's single exit edge,
321 BasicBlock *getExitingBlock() const;
323 /// @brief Is this a simple region?
325 /// A region is simple if it has exactly one exit and one entry edge.
327 /// @return True if the Region is simple.
328 bool isSimple() const;
330 /// @brief Returns the name of the Region.
331 /// @return The Name of the Region.
332 std::string getNameStr() const;
334 /// @brief Return the RegionInfo object, that belongs to this Region.
335 RegionInfo *getRegionInfo() const {
339 /// PrintStyle - Print region in difference ways.
340 enum PrintStyle { PrintNone, PrintBB, PrintRN };
342 /// @brief Print the region.
344 /// @param OS The output stream the Region is printed to.
345 /// @param printTree Print also the tree of subregions.
346 /// @param level The indentation level used for printing.
347 void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
348 enum PrintStyle Style = PrintNone) const;
350 /// @brief Print the region to stderr.
353 /// @brief Check if the region contains a BasicBlock.
355 /// @param BB The BasicBlock that might be contained in this Region.
356 /// @return True if the block is contained in the region otherwise false.
357 bool contains(const BasicBlock *BB) const;
359 /// @brief Check if the region contains another region.
361 /// @param SubRegion The region that might be contained in this Region.
362 /// @return True if SubRegion is contained in the region otherwise false.
363 bool contains(const Region *SubRegion) const {
368 return contains(SubRegion->getEntry())
369 && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
372 /// @brief Check if the region contains an Instruction.
374 /// @param Inst The Instruction that might be contained in this region.
375 /// @return True if the Instruction is contained in the region otherwise false.
376 bool contains(const Instruction *Inst) const {
377 return contains(Inst->getParent());
380 /// @brief Check if the region contains a loop.
382 /// @param L The loop that might be contained in this region.
383 /// @return True if the loop is contained in the region otherwise false.
384 /// In case a NULL pointer is passed to this function the result
385 /// is false, except for the region that describes the whole function.
386 /// In that case true is returned.
387 bool contains(const Loop *L) const;
389 /// @brief Get the outermost loop in the region that contains a loop.
391 /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
392 /// and is itself contained in the region.
394 /// @param L The loop the lookup is started.
395 /// @return The outermost loop in the region, NULL if such a loop does not
396 /// exist or if the region describes the whole function.
397 Loop *outermostLoopInRegion(Loop *L) const;
399 /// @brief Get the outermost loop in the region that contains a basic block.
401 /// Find for a basic block BB the outermost loop L that contains BB and is
402 /// itself contained in the region.
404 /// @param LI A pointer to a LoopInfo analysis.
405 /// @param BB The basic block surrounded by the loop.
406 /// @return The outermost loop in the region, NULL if such a loop does not
407 /// exist or if the region describes the whole function.
408 Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
410 /// @brief Get the subregion that starts at a BasicBlock
412 /// @param BB The BasicBlock the subregion should start.
413 /// @return The Subregion if available, otherwise NULL.
414 Region* getSubRegionNode(BasicBlock *BB) const;
416 /// @brief Get the RegionNode for a BasicBlock
418 /// @param BB The BasicBlock at which the RegionNode should start.
419 /// @return If available, the RegionNode that represents the subregion
420 /// starting at BB. If no subregion starts at BB, the RegionNode
422 RegionNode* getNode(BasicBlock *BB) const;
424 /// @brief Get the BasicBlock RegionNode for a BasicBlock
426 /// @param BB The BasicBlock for which the RegionNode is requested.
427 /// @return The RegionNode representing the BB.
428 RegionNode* getBBNode(BasicBlock *BB) const;
430 /// @brief Add a new subregion to this Region.
432 /// @param SubRegion The new subregion that will be added.
433 /// @param moveChildren Move the children of this region, that are also
434 /// contained in SubRegion into SubRegion.
435 void addSubRegion(Region *SubRegion, bool moveChildren = false);
437 /// @brief Remove a subregion from this Region.
439 /// The subregion is not deleted, as it will probably be inserted into another
441 /// @param SubRegion The SubRegion that will be removed.
442 Region *removeSubRegion(Region *SubRegion);
444 /// @brief Move all direct child nodes of this Region to another Region.
446 /// @param To The Region the child nodes will be transferred to.
447 void transferChildrenTo(Region *To);
449 /// @brief Verify if the region is a correct region.
451 /// Check if this is a correctly build Region. This is an expensive check, as
452 /// the complete CFG of the Region will be walked.
453 void verifyRegion() const;
455 /// @brief Clear the cache for BB RegionNodes.
457 /// After calling this function the BasicBlock RegionNodes will be stored at
458 /// different memory locations. RegionNodes obtained before this function is
459 /// called are therefore not comparable to RegionNodes abtained afterwords.
460 void clearNodeCache();
462 /// @name Subregion Iterators
464 /// These iterators iterator over all subregions of this Region.
466 typedef RegionSet::iterator iterator;
467 typedef RegionSet::const_iterator const_iterator;
469 iterator begin() { return children.begin(); }
470 iterator end() { return children.end(); }
472 const_iterator begin() const { return children.begin(); }
473 const_iterator end() const { return children.end(); }
476 /// @name BasicBlock Node Iterators
478 /// These iterators iterate over all BasicBlock RegionNodes that are
479 /// contained in this Region. The iterator also iterates over BasicBlock
480 /// RegionNodes that are elements of a subregion of this Region. It is
481 /// therefore called a flat iterator.
483 typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
484 GraphTraits<FlatIt<RegionNode*> > > block_node_iterator;
486 typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
487 false, GraphTraits<FlatIt<const RegionNode*> > >
488 const_block_node_iterator;
490 block_node_iterator block_node_begin();
491 block_node_iterator block_node_end();
493 const_block_node_iterator block_node_begin() const;
494 const_block_node_iterator block_node_end() const;
497 /// @name BasicBlock Iterators
499 /// These iterators iterate over all BasicBlocks that are contained in this
500 /// Region. The iterator also iterates over BasicBlocks that are elements of
501 /// a subregion of this Region. It is therefore called a flat iterator.
503 template <typename RegionNodeItT>
504 class block_iterator_wrapper
505 : public std::iterator<std::forward_iterator_tag, BasicBlock, ptrdiff_t> {
506 typedef std::iterator<std::forward_iterator_tag, BasicBlock, ptrdiff_t>
512 typedef block_iterator_wrapper<RegionNodeItT> Self;
513 typedef typename super::pointer pointer;
515 block_iterator_wrapper(RegionNodeItT Iter) : Iter(Iter) {}
517 bool operator==(const Self &RHS) const { return Iter == RHS.Iter; }
518 bool operator!=(const Self &RHS) const { return Iter != RHS.Iter; }
519 pointer operator*() const {
520 return (*Iter)->template getNodeAs<BasicBlock>();
527 Self operator++(int) {
533 const Self &operator=(const Self &I) {
538 typedef block_iterator_wrapper<block_node_iterator> block_iterator;
539 typedef block_iterator_wrapper<const_block_node_iterator>
540 const_block_iterator;
542 block_iterator block_begin();
543 block_iterator block_end();
545 const_block_iterator block_begin() const;
546 const_block_iterator block_end() const;
549 /// @name Element Iterators
551 /// These iterators iterate over all BasicBlock and subregion RegionNodes that
552 /// are direct children of this Region. It does not iterate over any
553 /// RegionNodes that are also element of a subregion of this Region.
555 typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
556 GraphTraits<RegionNode*> > element_iterator;
558 typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
559 false, GraphTraits<const RegionNode*> >
560 const_element_iterator;
562 element_iterator element_begin();
563 element_iterator element_end();
565 const_element_iterator element_begin() const;
566 const_element_iterator element_end() const;
570 //===----------------------------------------------------------------------===//
571 /// @brief Analysis that detects all canonical Regions.
573 /// The RegionInfo pass detects all canonical regions in a function. The Regions
574 /// are connected using the parent relation. This builds a Program Structure
576 class RegionInfo : public FunctionPass {
577 typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
578 typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
579 typedef SmallPtrSet<Region*, 4> RegionSet;
582 RegionInfo(const RegionInfo &);
584 const RegionInfo &operator=(const RegionInfo &);
587 PostDominatorTree *PDT;
588 DominanceFrontier *DF;
590 /// The top level region.
591 Region *TopLevelRegion;
593 /// Map every BB to the smallest region, that contains BB.
594 BBtoRegionMap BBtoRegion;
596 // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
597 // entry, because it was inherited from exit. In the other case there is an
598 // edge going from entry to BB without passing exit.
599 bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
600 BasicBlock* exit) const;
602 // isRegion - Check if entry and exit surround a valid region, based on
603 // dominance tree and dominance frontier.
604 bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
606 // insertShortCut - Saves a shortcut pointing from entry to exit.
607 // This function may extend this shortcut if possible.
608 void insertShortCut(BasicBlock* entry, BasicBlock* exit,
609 BBtoBBMap* ShortCut) const;
611 // getNextPostDom - Returns the next BB that postdominates N, while skipping
612 // all post dominators that cannot finish a canonical region.
613 DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
615 // isTrivialRegion - A region is trivial, if it contains only one BB.
616 bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
618 // createRegion - Creates a single entry single exit region.
619 Region *createRegion(BasicBlock *entry, BasicBlock *exit);
621 // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
622 void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
624 // scanForRegions - Detects regions in F.
625 void scanForRegions(Function &F, BBtoBBMap *ShortCut);
627 // getTopMostParent - Get the top most parent with the same entry block.
628 Region *getTopMostParent(Region *region);
630 // buildRegionsTree - build the region hierarchy after all region detected.
631 void buildRegionsTree(DomTreeNode *N, Region *region);
633 // Calculate - detecte all regions in function and build the region tree.
634 void Calculate(Function& F);
636 void releaseMemory();
638 // updateStatistics - Update statistic about created regions.
639 void updateStatistics(Region *R);
641 // isSimple - Check if a region is a simple region with exactly one entry
642 // edge and exactly one exit edge.
643 bool isSimple(Region* R) const;
647 explicit RegionInfo();
651 /// @name FunctionPass interface
653 virtual bool runOnFunction(Function &F);
654 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
655 virtual void print(raw_ostream &OS, const Module *) const;
656 virtual void verifyAnalysis() const;
659 /// @brief Get the smallest region that contains a BasicBlock.
661 /// @param BB The basic block.
662 /// @return The smallest region, that contains BB or NULL, if there is no
663 /// region containing BB.
664 Region *getRegionFor(BasicBlock *BB) const;
666 /// @brief Set the smallest region that surrounds a basic block.
668 /// @param BB The basic block surrounded by a region.
669 /// @param R The smallest region that surrounds BB.
670 void setRegionFor(BasicBlock *BB, Region *R);
672 /// @brief A shortcut for getRegionFor().
674 /// @param BB The basic block.
675 /// @return The smallest region, that contains BB or NULL, if there is no
676 /// region containing BB.
677 Region *operator[](BasicBlock *BB) const;
679 /// @brief Return the exit of the maximal refined region, that starts at a
682 /// @param BB The BasicBlock the refined region starts.
683 BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
685 /// @brief Find the smallest region that contains two regions.
687 /// @param A The first region.
688 /// @param B The second region.
689 /// @return The smallest region containing A and B.
690 Region *getCommonRegion(Region* A, Region *B) const;
692 /// @brief Find the smallest region that contains two basic blocks.
694 /// @param A The first basic block.
695 /// @param B The second basic block.
696 /// @return The smallest region that contains A and B.
697 Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
698 return getCommonRegion(getRegionFor(A), getRegionFor(B));
701 /// @brief Find the smallest region that contains a set of regions.
703 /// @param Regions A vector of regions.
704 /// @return The smallest region that contains all regions in Regions.
705 Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
707 /// @brief Find the smallest region that contains a set of basic blocks.
709 /// @param BBs A vector of basic blocks.
710 /// @return The smallest region that contains all basic blocks in BBS.
711 Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
713 Region *getTopLevelRegion() const {
714 return TopLevelRegion;
717 /// @brief Update RegionInfo after a basic block was split.
719 /// @param NewBB The basic block that was created before OldBB.
720 /// @param OldBB The old basic block.
721 void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
723 /// @brief Clear the Node Cache for all Regions.
725 /// @see Region::clearNodeCache()
726 void clearNodeCache() {
728 TopLevelRegion->clearNodeCache();
732 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
733 if (Node.isSubRegion())
734 return OS << Node.getNodeAs<Region>()->getNameStr();
736 return OS << Node.getNodeAs<BasicBlock>()->getName();
738 } // End llvm namespace