[WinEH] Don't emit CATCHRET from visitCatchPad
[oota-llvm.git] / include / llvm / CodeGen / MachineDominators.h
1 //=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
11 // but for target-specific code rather than target-independent IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
16 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
17
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
24
25 namespace llvm {
26
27 template<>
28 inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
29   this->Roots.push_back(MBB);
30 }
31
32 extern template class DomTreeNodeBase<MachineBasicBlock>;
33 extern template class DominatorTreeBase<MachineBasicBlock>;
34
35 typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
36
37 //===-------------------------------------
38 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
39 /// compute a normal dominator tree.
40 ///
41 class MachineDominatorTree : public MachineFunctionPass {
42   /// \brief Helper structure used to hold all the basic blocks
43   /// involved in the split of a critical edge.
44   struct CriticalEdge {
45     MachineBasicBlock *FromBB;
46     MachineBasicBlock *ToBB;
47     MachineBasicBlock *NewBB;
48   };
49
50   /// \brief Pile up all the critical edges to be split.
51   /// The splitting of a critical edge is local and thus, it is possible
52   /// to apply several of those changes at the same time.
53   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
54   /// \brief Remember all the basic blocks that are inserted during
55   /// edge splitting.
56   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
57   /// field of all the elements of CriticalEdgesToSplit.
58   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
59   /// such as BB == elt.NewBB.
60   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
61
62   /// \brief Apply all the recorded critical edges to the DT.
63   /// This updates the underlying DT information in a way that uses
64   /// the fast query path of DT as much as possible.
65   ///
66   /// \post CriticalEdgesToSplit.empty().
67   void applySplitCriticalEdges() const;
68
69 public:
70   static char ID; // Pass ID, replacement for typeid
71   DominatorTreeBase<MachineBasicBlock>* DT;
72
73   MachineDominatorTree();
74
75   ~MachineDominatorTree() override;
76
77   DominatorTreeBase<MachineBasicBlock> &getBase() {
78     applySplitCriticalEdges();
79     return *DT;
80   }
81
82   void getAnalysisUsage(AnalysisUsage &AU) const override;
83
84   /// getRoots -  Return the root blocks of the current CFG.  This may include
85   /// multiple blocks if we are computing post dominators.  For forward
86   /// dominators, this will always be a single block (the entry node).
87   ///
88   inline const std::vector<MachineBasicBlock*> &getRoots() const {
89     applySplitCriticalEdges();
90     return DT->getRoots();
91   }
92
93   inline MachineBasicBlock *getRoot() const {
94     applySplitCriticalEdges();
95     return DT->getRoot();
96   }
97
98   inline MachineDomTreeNode *getRootNode() const {
99     applySplitCriticalEdges();
100     return DT->getRootNode();
101   }
102
103   bool runOnMachineFunction(MachineFunction &F) override;
104
105   inline bool dominates(const MachineDomTreeNode* A,
106                         const MachineDomTreeNode* B) const {
107     applySplitCriticalEdges();
108     return DT->dominates(A, B);
109   }
110
111   inline bool dominates(const MachineBasicBlock* A,
112                         const MachineBasicBlock* B) const {
113     applySplitCriticalEdges();
114     return DT->dominates(A, B);
115   }
116
117   // dominates - Return true if A dominates B. This performs the
118   // special checks necessary if A and B are in the same basic block.
119   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
120     applySplitCriticalEdges();
121     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
122     if (BBA != BBB) return DT->dominates(BBA, BBB);
123
124     // Loop through the basic block until we find A or B.
125     MachineBasicBlock::const_iterator I = BBA->begin();
126     for (; &*I != A && &*I != B; ++I)
127       /*empty*/ ;
128
129     //if(!DT.IsPostDominators) {
130       // A dominates B if it is found first in the basic block.
131       return &*I == A;
132     //} else {
133     //  // A post-dominates B if B is found first in the basic block.
134     //  return &*I == B;
135     //}
136   }
137
138   inline bool properlyDominates(const MachineDomTreeNode* A,
139                                 const MachineDomTreeNode* B) const {
140     applySplitCriticalEdges();
141     return DT->properlyDominates(A, B);
142   }
143
144   inline bool properlyDominates(const MachineBasicBlock* A,
145                                 const MachineBasicBlock* B) const {
146     applySplitCriticalEdges();
147     return DT->properlyDominates(A, B);
148   }
149
150   /// findNearestCommonDominator - Find nearest common dominator basic block
151   /// for basic block A and B. If there is no such block then return NULL.
152   inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
153                                                        MachineBasicBlock *B) {
154     applySplitCriticalEdges();
155     return DT->findNearestCommonDominator(A, B);
156   }
157
158   inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
159     applySplitCriticalEdges();
160     return DT->getNode(BB);
161   }
162
163   /// getNode - return the (Post)DominatorTree node for the specified basic
164   /// block.  This is the same as using operator[] on this class.
165   ///
166   inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
167     applySplitCriticalEdges();
168     return DT->getNode(BB);
169   }
170
171   /// addNewBlock - Add a new node to the dominator tree information.  This
172   /// creates a new node as a child of DomBB dominator node,linking it into
173   /// the children list of the immediate dominator.
174   inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
175                                          MachineBasicBlock *DomBB) {
176     applySplitCriticalEdges();
177     return DT->addNewBlock(BB, DomBB);
178   }
179
180   /// changeImmediateDominator - This method is used to update the dominator
181   /// tree information when a node's immediate dominator changes.
182   ///
183   inline void changeImmediateDominator(MachineBasicBlock *N,
184                                        MachineBasicBlock* NewIDom) {
185     applySplitCriticalEdges();
186     DT->changeImmediateDominator(N, NewIDom);
187   }
188
189   inline void changeImmediateDominator(MachineDomTreeNode *N,
190                                        MachineDomTreeNode* NewIDom) {
191     applySplitCriticalEdges();
192     DT->changeImmediateDominator(N, NewIDom);
193   }
194
195   /// eraseNode - Removes a node from  the dominator tree. Block must not
196   /// dominate any other blocks. Removes node from its immediate dominator's
197   /// children list. Deletes dominator node associated with basic block BB.
198   inline void eraseNode(MachineBasicBlock *BB) {
199     applySplitCriticalEdges();
200     DT->eraseNode(BB);
201   }
202
203   /// splitBlock - BB is split and now it has one successor. Update dominator
204   /// tree to reflect this change.
205   inline void splitBlock(MachineBasicBlock* NewBB) {
206     applySplitCriticalEdges();
207     DT->splitBlock(NewBB);
208   }
209
210   /// isReachableFromEntry - Return true if A is dominated by the entry
211   /// block of the function containing it.
212   bool isReachableFromEntry(const MachineBasicBlock *A) {
213     applySplitCriticalEdges();
214     return DT->isReachableFromEntry(A);
215   }
216
217   void releaseMemory() override;
218
219   void print(raw_ostream &OS, const Module*) const override;
220
221   /// \brief Record that the critical edge (FromBB, ToBB) has been
222   /// split with NewBB.
223   /// This is best to use this method instead of directly update the
224   /// underlying information, because this helps mitigating the
225   /// number of time the DT information is invalidated.
226   ///
227   /// \note Do not use this method with regular edges.
228   ///
229   /// \note To benefit from the compile time improvement incurred by this
230   /// method, the users of this method have to limit the queries to the DT
231   /// interface between two edges splitting. In other words, they have to
232   /// pack the splitting of critical edges as much as possible.
233   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
234                               MachineBasicBlock *ToBB,
235                               MachineBasicBlock *NewBB) {
236     bool Inserted = NewBBs.insert(NewBB).second;
237     (void)Inserted;
238     assert(Inserted &&
239            "A basic block inserted via edge splitting cannot appear twice");
240     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
241   }
242 };
243
244 //===-------------------------------------
245 /// DominatorTree GraphTraits specialization so the DominatorTree can be
246 /// iterable by generic graph iterators.
247 ///
248
249 template <class Node, class ChildIterator>
250 struct MachineDomTreeGraphTraitsBase {
251   typedef Node NodeType;
252   typedef ChildIterator ChildIteratorType;
253
254   static NodeType *getEntryNode(NodeType *N) { return N; }
255   static inline ChildIteratorType child_begin(NodeType *N) {
256     return N->begin();
257   }
258   static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }
259 };
260
261 template <class T> struct GraphTraits;
262
263 template <>
264 struct GraphTraits<MachineDomTreeNode *>
265     : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
266                                            MachineDomTreeNode::iterator> {};
267
268 template <>
269 struct GraphTraits<const MachineDomTreeNode *>
270     : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
271                                            MachineDomTreeNode::const_iterator> {
272 };
273
274 template <> struct GraphTraits<MachineDominatorTree*>
275   : public GraphTraits<MachineDomTreeNode *> {
276   static NodeType *getEntryNode(MachineDominatorTree *DT) {
277     return DT->getRootNode();
278   }
279 };
280
281 }
282
283 #endif