1 //=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
11 // but for target-specific code rather than target-independent IR.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
16 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
28 inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
29 this->Roots.push_back(MBB);
32 extern template class DomTreeNodeBase<MachineBasicBlock>;
33 extern template class DominatorTreeBase<MachineBasicBlock>;
35 typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
37 //===-------------------------------------
38 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
39 /// compute a normal dominator tree.
41 class MachineDominatorTree : public MachineFunctionPass {
42 /// \brief Helper structure used to hold all the basic blocks
43 /// involved in the split of a critical edge.
45 MachineBasicBlock *FromBB;
46 MachineBasicBlock *ToBB;
47 MachineBasicBlock *NewBB;
50 /// \brief Pile up all the critical edges to be split.
51 /// The splitting of a critical edge is local and thus, it is possible
52 /// to apply several of those changes at the same time.
53 mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
54 /// \brief Remember all the basic blocks that are inserted during
56 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
57 /// field of all the elements of CriticalEdgesToSplit.
58 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
59 /// such as BB == elt.NewBB.
60 mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
62 /// \brief Apply all the recorded critical edges to the DT.
63 /// This updates the underlying DT information in a way that uses
64 /// the fast query path of DT as much as possible.
66 /// \post CriticalEdgesToSplit.empty().
67 void applySplitCriticalEdges() const;
70 static char ID; // Pass ID, replacement for typeid
71 DominatorTreeBase<MachineBasicBlock>* DT;
73 MachineDominatorTree();
75 ~MachineDominatorTree() override;
77 DominatorTreeBase<MachineBasicBlock> &getBase() {
78 applySplitCriticalEdges();
82 void getAnalysisUsage(AnalysisUsage &AU) const override;
84 /// getRoots - Return the root blocks of the current CFG. This may include
85 /// multiple blocks if we are computing post dominators. For forward
86 /// dominators, this will always be a single block (the entry node).
88 inline const std::vector<MachineBasicBlock*> &getRoots() const {
89 applySplitCriticalEdges();
90 return DT->getRoots();
93 inline MachineBasicBlock *getRoot() const {
94 applySplitCriticalEdges();
98 inline MachineDomTreeNode *getRootNode() const {
99 applySplitCriticalEdges();
100 return DT->getRootNode();
103 bool runOnMachineFunction(MachineFunction &F) override;
105 inline bool dominates(const MachineDomTreeNode* A,
106 const MachineDomTreeNode* B) const {
107 applySplitCriticalEdges();
108 return DT->dominates(A, B);
111 inline bool dominates(const MachineBasicBlock* A,
112 const MachineBasicBlock* B) const {
113 applySplitCriticalEdges();
114 return DT->dominates(A, B);
117 // dominates - Return true if A dominates B. This performs the
118 // special checks necessary if A and B are in the same basic block.
119 bool dominates(const MachineInstr *A, const MachineInstr *B) const {
120 applySplitCriticalEdges();
121 const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
122 if (BBA != BBB) return DT->dominates(BBA, BBB);
124 // Loop through the basic block until we find A or B.
125 MachineBasicBlock::const_iterator I = BBA->begin();
126 for (; &*I != A && &*I != B; ++I)
129 //if(!DT.IsPostDominators) {
130 // A dominates B if it is found first in the basic block.
133 // // A post-dominates B if B is found first in the basic block.
138 inline bool properlyDominates(const MachineDomTreeNode* A,
139 const MachineDomTreeNode* B) const {
140 applySplitCriticalEdges();
141 return DT->properlyDominates(A, B);
144 inline bool properlyDominates(const MachineBasicBlock* A,
145 const MachineBasicBlock* B) const {
146 applySplitCriticalEdges();
147 return DT->properlyDominates(A, B);
150 /// findNearestCommonDominator - Find nearest common dominator basic block
151 /// for basic block A and B. If there is no such block then return NULL.
152 inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
153 MachineBasicBlock *B) {
154 applySplitCriticalEdges();
155 return DT->findNearestCommonDominator(A, B);
158 inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
159 applySplitCriticalEdges();
160 return DT->getNode(BB);
163 /// getNode - return the (Post)DominatorTree node for the specified basic
164 /// block. This is the same as using operator[] on this class.
166 inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
167 applySplitCriticalEdges();
168 return DT->getNode(BB);
171 /// addNewBlock - Add a new node to the dominator tree information. This
172 /// creates a new node as a child of DomBB dominator node,linking it into
173 /// the children list of the immediate dominator.
174 inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
175 MachineBasicBlock *DomBB) {
176 applySplitCriticalEdges();
177 return DT->addNewBlock(BB, DomBB);
180 /// changeImmediateDominator - This method is used to update the dominator
181 /// tree information when a node's immediate dominator changes.
183 inline void changeImmediateDominator(MachineBasicBlock *N,
184 MachineBasicBlock* NewIDom) {
185 applySplitCriticalEdges();
186 DT->changeImmediateDominator(N, NewIDom);
189 inline void changeImmediateDominator(MachineDomTreeNode *N,
190 MachineDomTreeNode* NewIDom) {
191 applySplitCriticalEdges();
192 DT->changeImmediateDominator(N, NewIDom);
195 /// eraseNode - Removes a node from the dominator tree. Block must not
196 /// dominate any other blocks. Removes node from its immediate dominator's
197 /// children list. Deletes dominator node associated with basic block BB.
198 inline void eraseNode(MachineBasicBlock *BB) {
199 applySplitCriticalEdges();
203 /// splitBlock - BB is split and now it has one successor. Update dominator
204 /// tree to reflect this change.
205 inline void splitBlock(MachineBasicBlock* NewBB) {
206 applySplitCriticalEdges();
207 DT->splitBlock(NewBB);
210 /// isReachableFromEntry - Return true if A is dominated by the entry
211 /// block of the function containing it.
212 bool isReachableFromEntry(const MachineBasicBlock *A) {
213 applySplitCriticalEdges();
214 return DT->isReachableFromEntry(A);
217 void releaseMemory() override;
219 void print(raw_ostream &OS, const Module*) const override;
221 /// \brief Record that the critical edge (FromBB, ToBB) has been
222 /// split with NewBB.
223 /// This is best to use this method instead of directly update the
224 /// underlying information, because this helps mitigating the
225 /// number of time the DT information is invalidated.
227 /// \note Do not use this method with regular edges.
229 /// \note To benefit from the compile time improvement incurred by this
230 /// method, the users of this method have to limit the queries to the DT
231 /// interface between two edges splitting. In other words, they have to
232 /// pack the splitting of critical edges as much as possible.
233 void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
234 MachineBasicBlock *ToBB,
235 MachineBasicBlock *NewBB) {
236 bool Inserted = NewBBs.insert(NewBB).second;
239 "A basic block inserted via edge splitting cannot appear twice");
240 CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
244 //===-------------------------------------
245 /// DominatorTree GraphTraits specialization so the DominatorTree can be
246 /// iterable by generic graph iterators.
249 template <class Node, class ChildIterator>
250 struct MachineDomTreeGraphTraitsBase {
251 typedef Node NodeType;
252 typedef ChildIterator ChildIteratorType;
254 static NodeType *getEntryNode(NodeType *N) { return N; }
255 static inline ChildIteratorType child_begin(NodeType *N) {
258 static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }
261 template <class T> struct GraphTraits;
264 struct GraphTraits<MachineDomTreeNode *>
265 : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
266 MachineDomTreeNode::iterator> {};
269 struct GraphTraits<const MachineDomTreeNode *>
270 : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
271 MachineDomTreeNode::const_iterator> {
274 template <> struct GraphTraits<MachineDominatorTree*>
275 : public GraphTraits<MachineDomTreeNode *> {
276 static NodeType *getEntryNode(MachineDominatorTree *DT) {
277 return DT->getRootNode();