Add TargetInstrInfo interface isAsCheapAsAMove.
[oota-llvm.git] / include / llvm / CodeGen / MachineInstr.h
1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/ilist.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/Support/ArrayRecycler.h"
32 #include "llvm/Target/TargetOpcodes.h"
33
34 namespace llvm {
35
36 template <typename T> class SmallVectorImpl;
37 class AliasAnalysis;
38 class TargetInstrInfo;
39 class TargetRegisterClass;
40 class TargetRegisterInfo;
41 class MachineFunction;
42 class MachineMemOperand;
43
44 //===----------------------------------------------------------------------===//
45 /// MachineInstr - Representation of each machine instruction.
46 ///
47 /// This class isn't a POD type, but it must have a trivial destructor. When a
48 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
49 /// without having their destructor called.
50 ///
51 class MachineInstr : public ilist_node<MachineInstr> {
52 public:
53   typedef MachineMemOperand **mmo_iterator;
54
55   /// Flags to specify different kinds of comments to output in
56   /// assembly code.  These flags carry semantic information not
57   /// otherwise easily derivable from the IR text.
58   ///
59   enum CommentFlag {
60     ReloadReuse = 0x1
61   };
62
63   enum MIFlag {
64     NoFlags      = 0,
65     FrameSetup   = 1 << 0,              // Instruction is used as a part of
66                                         // function frame setup code.
67     BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
68     BundledSucc  = 1 << 2               // Instruction has bundled successors.
69   };
70 private:
71   const MCInstrDesc *MCID;              // Instruction descriptor.
72   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
73
74   // Operands are allocated by an ArrayRecycler.
75   MachineOperand *Operands;             // Pointer to the first operand.
76   unsigned NumOperands;                 // Number of operands on instruction.
77   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
78   OperandCapacity CapOperands;          // Capacity of the Operands array.
79
80   uint8_t Flags;                        // Various bits of additional
81                                         // information about machine
82                                         // instruction.
83
84   uint8_t AsmPrinterFlags;              // Various bits of information used by
85                                         // the AsmPrinter to emit helpful
86                                         // comments.  This is *not* semantic
87                                         // information.  Do not use this for
88                                         // anything other than to convey comment
89                                         // information to AsmPrinter.
90
91   uint8_t NumMemRefs;                   // Information on memory references.
92   mmo_iterator MemRefs;
93
94   DebugLoc debugLoc;                    // Source line information.
95
96   MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
97   void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
98   // Use MachineFunction::DeleteMachineInstr() instead.
99   ~MachineInstr() LLVM_DELETED_FUNCTION;
100
101   // Intrusive list support
102   friend struct ilist_traits<MachineInstr>;
103   friend struct ilist_traits<MachineBasicBlock>;
104   void setParent(MachineBasicBlock *P) { Parent = P; }
105
106   /// MachineInstr ctor - This constructor creates a copy of the given
107   /// MachineInstr in the given MachineFunction.
108   MachineInstr(MachineFunction &, const MachineInstr &);
109
110   /// MachineInstr ctor - This constructor create a MachineInstr and add the
111   /// implicit operands.  It reserves space for number of operands specified by
112   /// MCInstrDesc.  An explicit DebugLoc is supplied.
113   MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
114                const DebugLoc dl, bool NoImp = false);
115
116   // MachineInstrs are pool-allocated and owned by MachineFunction.
117   friend class MachineFunction;
118
119 public:
120   const MachineBasicBlock* getParent() const { return Parent; }
121   MachineBasicBlock* getParent() { return Parent; }
122
123   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
124   ///
125   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
126
127   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
128   ///
129   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
130
131   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
132   ///
133   bool getAsmPrinterFlag(CommentFlag Flag) const {
134     return AsmPrinterFlags & Flag;
135   }
136
137   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
138   ///
139   void setAsmPrinterFlag(CommentFlag Flag) {
140     AsmPrinterFlags |= (uint8_t)Flag;
141   }
142
143   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
144   ///
145   void clearAsmPrinterFlag(CommentFlag Flag) {
146     AsmPrinterFlags &= ~Flag;
147   }
148
149   /// getFlags - Return the MI flags bitvector.
150   uint8_t getFlags() const {
151     return Flags;
152   }
153
154   /// getFlag - Return whether an MI flag is set.
155   bool getFlag(MIFlag Flag) const {
156     return Flags & Flag;
157   }
158
159   /// setFlag - Set a MI flag.
160   void setFlag(MIFlag Flag) {
161     Flags |= (uint8_t)Flag;
162   }
163
164   void setFlags(unsigned flags) {
165     // Filter out the automatically maintained flags.
166     unsigned Mask = BundledPred | BundledSucc;
167     Flags = (Flags & Mask) | (flags & ~Mask);
168   }
169
170   /// clearFlag - Clear a MI flag.
171   void clearFlag(MIFlag Flag) {
172     Flags &= ~((uint8_t)Flag);
173   }
174
175   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
176   /// in a bundle).
177   ///
178   /// A bundle looks like this before it's finalized:
179   ///   ----------------
180   ///   |      MI      |
181   ///   ----------------
182   ///          |
183   ///   ----------------
184   ///   |      MI    * |
185   ///   ----------------
186   ///          |
187   ///   ----------------
188   ///   |      MI    * |
189   ///   ----------------
190   /// In this case, the first MI starts a bundle but is not inside a bundle, the
191   /// next 2 MIs are considered "inside" the bundle.
192   ///
193   /// After a bundle is finalized, it looks like this:
194   ///   ----------------
195   ///   |    Bundle    |
196   ///   ----------------
197   ///          |
198   ///   ----------------
199   ///   |      MI    * |
200   ///   ----------------
201   ///          |
202   ///   ----------------
203   ///   |      MI    * |
204   ///   ----------------
205   ///          |
206   ///   ----------------
207   ///   |      MI    * |
208   ///   ----------------
209   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
210   /// a bundle, but the next three MIs are.
211   bool isInsideBundle() const {
212     return getFlag(BundledPred);
213   }
214
215   /// isBundled - Return true if this instruction part of a bundle. This is true
216   /// if either itself or its following instruction is marked "InsideBundle".
217   bool isBundled() const {
218     return isBundledWithPred() || isBundledWithSucc();
219   }
220
221   /// Return true if this instruction is part of a bundle, and it is not the
222   /// first instruction in the bundle.
223   bool isBundledWithPred() const { return getFlag(BundledPred); }
224
225   /// Return true if this instruction is part of a bundle, and it is not the
226   /// last instruction in the bundle.
227   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
228
229   /// Bundle this instruction with its predecessor. This can be an unbundled
230   /// instruction, or it can be the first instruction in a bundle.
231   void bundleWithPred();
232
233   /// Bundle this instruction with its successor. This can be an unbundled
234   /// instruction, or it can be the last instruction in a bundle.
235   void bundleWithSucc();
236
237   /// Break bundle above this instruction.
238   void unbundleFromPred();
239
240   /// Break bundle below this instruction.
241   void unbundleFromSucc();
242
243   /// getDebugLoc - Returns the debug location id of this MachineInstr.
244   ///
245   DebugLoc getDebugLoc() const { return debugLoc; }
246
247   /// getDebugVariable() - Return the debug variable referenced by
248   /// this DBG_VALUE instruction.
249   DIVariable getDebugVariable() const {
250     assert(isDebugValue() && "not a DBG_VALUE");
251     const MDNode *Var = getOperand(getNumOperands() - 1).getMetadata();
252     return DIVariable(Var);
253   }
254
255   /// emitError - Emit an error referring to the source location of this
256   /// instruction. This should only be used for inline assembly that is somehow
257   /// impossible to compile. Other errors should have been handled much
258   /// earlier.
259   ///
260   /// If this method returns, the caller should try to recover from the error.
261   ///
262   void emitError(StringRef Msg) const;
263
264   /// getDesc - Returns the target instruction descriptor of this
265   /// MachineInstr.
266   const MCInstrDesc &getDesc() const { return *MCID; }
267
268   /// getOpcode - Returns the opcode of this MachineInstr.
269   ///
270   int getOpcode() const { return MCID->Opcode; }
271
272   /// Access to explicit operands of the instruction.
273   ///
274   unsigned getNumOperands() const { return NumOperands; }
275
276   const MachineOperand& getOperand(unsigned i) const {
277     assert(i < getNumOperands() && "getOperand() out of range!");
278     return Operands[i];
279   }
280   MachineOperand& getOperand(unsigned i) {
281     assert(i < getNumOperands() && "getOperand() out of range!");
282     return Operands[i];
283   }
284
285   /// getNumExplicitOperands - Returns the number of non-implicit operands.
286   ///
287   unsigned getNumExplicitOperands() const;
288
289   /// iterator/begin/end - Iterate over all operands of a machine instruction.
290   typedef MachineOperand *mop_iterator;
291   typedef const MachineOperand *const_mop_iterator;
292
293   mop_iterator operands_begin() { return Operands; }
294   mop_iterator operands_end() { return Operands + NumOperands; }
295
296   const_mop_iterator operands_begin() const { return Operands; }
297   const_mop_iterator operands_end() const { return Operands + NumOperands; }
298
299   iterator_range<mop_iterator> operands() {
300     return iterator_range<mop_iterator>(operands_begin(), operands_end());
301   }
302   iterator_range<const_mop_iterator> operands() const {
303     return iterator_range<const_mop_iterator>(operands_begin(), operands_end());
304   }
305   iterator_range<mop_iterator> explicit_operands() {
306     return iterator_range<mop_iterator>(
307         operands_begin(), operands_begin() + getNumExplicitOperands());
308   }
309   iterator_range<const_mop_iterator> explicit_operands() const {
310     return iterator_range<const_mop_iterator>(
311         operands_begin(), operands_begin() + getNumExplicitOperands());
312   }
313   iterator_range<mop_iterator> implicit_operands() {
314     return iterator_range<mop_iterator>(explicit_operands().end(),
315                                         operands_end());
316   }
317   iterator_range<const_mop_iterator> implicit_operands() const {
318     return iterator_range<const_mop_iterator>(explicit_operands().end(),
319                                               operands_end());
320   }
321   iterator_range<mop_iterator> defs() {
322     return iterator_range<mop_iterator>(
323         operands_begin(), operands_begin() + getDesc().getNumDefs());
324   }
325   iterator_range<const_mop_iterator> defs() const {
326     return iterator_range<const_mop_iterator>(
327         operands_begin(), operands_begin() + getDesc().getNumDefs());
328   }
329   iterator_range<mop_iterator> uses() {
330     return iterator_range<mop_iterator>(
331         operands_begin() + getDesc().getNumDefs(), operands_end());
332   }
333   iterator_range<const_mop_iterator> uses() const {
334     return iterator_range<const_mop_iterator>(
335         operands_begin() + getDesc().getNumDefs(), operands_end());
336   }
337
338   /// Access to memory operands of the instruction
339   mmo_iterator memoperands_begin() const { return MemRefs; }
340   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
341   bool memoperands_empty() const { return NumMemRefs == 0; }
342
343   iterator_range<mmo_iterator>  memoperands() {
344     return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
345   }
346   iterator_range<mmo_iterator> memoperands() const {
347     return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
348   }
349
350   /// hasOneMemOperand - Return true if this instruction has exactly one
351   /// MachineMemOperand.
352   bool hasOneMemOperand() const {
353     return NumMemRefs == 1;
354   }
355
356   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
357   /// queries but they are bundle aware.
358
359   enum QueryType {
360     IgnoreBundle,    // Ignore bundles
361     AnyInBundle,     // Return true if any instruction in bundle has property
362     AllInBundle      // Return true if all instructions in bundle have property
363   };
364
365   /// hasProperty - Return true if the instruction (or in the case of a bundle,
366   /// the instructions inside the bundle) has the specified property.
367   /// The first argument is the property being queried.
368   /// The second argument indicates whether the query should look inside
369   /// instruction bundles.
370   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
371     // Inline the fast path for unbundled or bundle-internal instructions.
372     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
373       return getDesc().getFlags() & (1 << MCFlag);
374
375     // If this is the first instruction in a bundle, take the slow path.
376     return hasPropertyInBundle(1 << MCFlag, Type);
377   }
378
379   /// isVariadic - Return true if this instruction can have a variable number of
380   /// operands.  In this case, the variable operands will be after the normal
381   /// operands but before the implicit definitions and uses (if any are
382   /// present).
383   bool isVariadic(QueryType Type = IgnoreBundle) const {
384     return hasProperty(MCID::Variadic, Type);
385   }
386
387   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
388   /// ARM instructions which can set condition code if 's' bit is set.
389   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
390     return hasProperty(MCID::HasOptionalDef, Type);
391   }
392
393   /// isPseudo - Return true if this is a pseudo instruction that doesn't
394   /// correspond to a real machine instruction.
395   ///
396   bool isPseudo(QueryType Type = IgnoreBundle) const {
397     return hasProperty(MCID::Pseudo, Type);
398   }
399
400   bool isReturn(QueryType Type = AnyInBundle) const {
401     return hasProperty(MCID::Return, Type);
402   }
403
404   bool isCall(QueryType Type = AnyInBundle) const {
405     return hasProperty(MCID::Call, Type);
406   }
407
408   /// isBarrier - Returns true if the specified instruction stops control flow
409   /// from executing the instruction immediately following it.  Examples include
410   /// unconditional branches and return instructions.
411   bool isBarrier(QueryType Type = AnyInBundle) const {
412     return hasProperty(MCID::Barrier, Type);
413   }
414
415   /// isTerminator - Returns true if this instruction part of the terminator for
416   /// a basic block.  Typically this is things like return and branch
417   /// instructions.
418   ///
419   /// Various passes use this to insert code into the bottom of a basic block,
420   /// but before control flow occurs.
421   bool isTerminator(QueryType Type = AnyInBundle) const {
422     return hasProperty(MCID::Terminator, Type);
423   }
424
425   /// isBranch - Returns true if this is a conditional, unconditional, or
426   /// indirect branch.  Predicates below can be used to discriminate between
427   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
428   /// get more information.
429   bool isBranch(QueryType Type = AnyInBundle) const {
430     return hasProperty(MCID::Branch, Type);
431   }
432
433   /// isIndirectBranch - Return true if this is an indirect branch, such as a
434   /// branch through a register.
435   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
436     return hasProperty(MCID::IndirectBranch, Type);
437   }
438
439   /// isConditionalBranch - Return true if this is a branch which may fall
440   /// through to the next instruction or may transfer control flow to some other
441   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
442   /// information about this branch.
443   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
444     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
445   }
446
447   /// isUnconditionalBranch - Return true if this is a branch which always
448   /// transfers control flow to some other block.  The
449   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
450   /// about this branch.
451   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
452     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
453   }
454
455   /// Return true if this instruction has a predicate operand that
456   /// controls execution.  It may be set to 'always', or may be set to other
457   /// values.   There are various methods in TargetInstrInfo that can be used to
458   /// control and modify the predicate in this instruction.
459   bool isPredicable(QueryType Type = AllInBundle) const {
460     // If it's a bundle than all bundled instructions must be predicable for this
461     // to return true.
462     return hasProperty(MCID::Predicable, Type);
463   }
464
465   /// isCompare - Return true if this instruction is a comparison.
466   bool isCompare(QueryType Type = IgnoreBundle) const {
467     return hasProperty(MCID::Compare, Type);
468   }
469
470   /// isMoveImmediate - Return true if this instruction is a move immediate
471   /// (including conditional moves) instruction.
472   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
473     return hasProperty(MCID::MoveImm, Type);
474   }
475
476   /// isBitcast - Return true if this instruction is a bitcast instruction.
477   ///
478   bool isBitcast(QueryType Type = IgnoreBundle) const {
479     return hasProperty(MCID::Bitcast, Type);
480   }
481
482   /// isSelect - Return true if this instruction is a select instruction.
483   ///
484   bool isSelect(QueryType Type = IgnoreBundle) const {
485     return hasProperty(MCID::Select, Type);
486   }
487
488   /// isNotDuplicable - Return true if this instruction cannot be safely
489   /// duplicated.  For example, if the instruction has a unique labels attached
490   /// to it, duplicating it would cause multiple definition errors.
491   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
492     return hasProperty(MCID::NotDuplicable, Type);
493   }
494
495   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
496   /// which must be filled by the code generator.
497   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
498     return hasProperty(MCID::DelaySlot, Type);
499   }
500
501   /// canFoldAsLoad - Return true for instructions that can be folded as
502   /// memory operands in other instructions. The most common use for this
503   /// is instructions that are simple loads from memory that don't modify
504   /// the loaded value in any way, but it can also be used for instructions
505   /// that can be expressed as constant-pool loads, such as V_SETALLONES
506   /// on x86, to allow them to be folded when it is beneficial.
507   /// This should only be set on instructions that return a value in their
508   /// only virtual register definition.
509   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
510     return hasProperty(MCID::FoldableAsLoad, Type);
511   }
512
513   //===--------------------------------------------------------------------===//
514   // Side Effect Analysis
515   //===--------------------------------------------------------------------===//
516
517   /// mayLoad - Return true if this instruction could possibly read memory.
518   /// Instructions with this flag set are not necessarily simple load
519   /// instructions, they may load a value and modify it, for example.
520   bool mayLoad(QueryType Type = AnyInBundle) const {
521     if (isInlineAsm()) {
522       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
523       if (ExtraInfo & InlineAsm::Extra_MayLoad)
524         return true;
525     }
526     return hasProperty(MCID::MayLoad, Type);
527   }
528
529
530   /// mayStore - Return true if this instruction could possibly modify memory.
531   /// Instructions with this flag set are not necessarily simple store
532   /// instructions, they may store a modified value based on their operands, or
533   /// may not actually modify anything, for example.
534   bool mayStore(QueryType Type = AnyInBundle) const {
535     if (isInlineAsm()) {
536       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
537       if (ExtraInfo & InlineAsm::Extra_MayStore)
538         return true;
539     }
540     return hasProperty(MCID::MayStore, Type);
541   }
542
543   //===--------------------------------------------------------------------===//
544   // Flags that indicate whether an instruction can be modified by a method.
545   //===--------------------------------------------------------------------===//
546
547   /// isCommutable - Return true if this may be a 2- or 3-address
548   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
549   /// result if Y and Z are exchanged.  If this flag is set, then the
550   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
551   /// instruction.
552   ///
553   /// Note that this flag may be set on instructions that are only commutable
554   /// sometimes.  In these cases, the call to commuteInstruction will fail.
555   /// Also note that some instructions require non-trivial modification to
556   /// commute them.
557   bool isCommutable(QueryType Type = IgnoreBundle) const {
558     return hasProperty(MCID::Commutable, Type);
559   }
560
561   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
562   /// which can be changed into a 3-address instruction if needed.  Doing this
563   /// transformation can be profitable in the register allocator, because it
564   /// means that the instruction can use a 2-address form if possible, but
565   /// degrade into a less efficient form if the source and dest register cannot
566   /// be assigned to the same register.  For example, this allows the x86
567   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
568   /// is the same speed as the shift but has bigger code size.
569   ///
570   /// If this returns true, then the target must implement the
571   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
572   /// is allowed to fail if the transformation isn't valid for this specific
573   /// instruction (e.g. shl reg, 4 on x86).
574   ///
575   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
576     return hasProperty(MCID::ConvertibleTo3Addr, Type);
577   }
578
579   /// usesCustomInsertionHook - Return true if this instruction requires
580   /// custom insertion support when the DAG scheduler is inserting it into a
581   /// machine basic block.  If this is true for the instruction, it basically
582   /// means that it is a pseudo instruction used at SelectionDAG time that is
583   /// expanded out into magic code by the target when MachineInstrs are formed.
584   ///
585   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
586   /// is used to insert this into the MachineBasicBlock.
587   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
588     return hasProperty(MCID::UsesCustomInserter, Type);
589   }
590
591   /// hasPostISelHook - Return true if this instruction requires *adjustment*
592   /// after instruction selection by calling a target hook. For example, this
593   /// can be used to fill in ARM 's' optional operand depending on whether
594   /// the conditional flag register is used.
595   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
596     return hasProperty(MCID::HasPostISelHook, Type);
597   }
598
599   /// isRematerializable - Returns true if this instruction is a candidate for
600   /// remat.  This flag is deprecated, please don't use it anymore.  If this
601   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
602   /// verify the instruction is really rematable.
603   bool isRematerializable(QueryType Type = AllInBundle) const {
604     // It's only possible to re-mat a bundle if all bundled instructions are
605     // re-materializable.
606     return hasProperty(MCID::Rematerializable, Type);
607   }
608
609   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
610   /// less) than a move instruction. This is useful during certain types of
611   /// optimizations (e.g., remat during two-address conversion or machine licm)
612   /// where we would like to remat or hoist the instruction, but not if it costs
613   /// more than moving the instruction into the appropriate register. Note, we
614   /// are not marking copies from and to the same register class with this flag.
615   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
616     // Only returns true for a bundle if all bundled instructions are cheap.
617     return hasProperty(MCID::CheapAsAMove, Type);
618   }
619
620   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
621   /// have special register allocation requirements that are not captured by the
622   /// operand register classes. e.g. ARM::STRD's two source registers must be an
623   /// even / odd pair, ARM::STM registers have to be in ascending order.
624   /// Post-register allocation passes should not attempt to change allocations
625   /// for sources of instructions with this flag.
626   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
627     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
628   }
629
630   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
631   /// have special register allocation requirements that are not captured by the
632   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
633   /// even / odd pair, ARM::LDM registers have to be in ascending order.
634   /// Post-register allocation passes should not attempt to change allocations
635   /// for definitions of instructions with this flag.
636   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
637     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
638   }
639
640
641   enum MICheckType {
642     CheckDefs,      // Check all operands for equality
643     CheckKillDead,  // Check all operands including kill / dead markers
644     IgnoreDefs,     // Ignore all definitions
645     IgnoreVRegDefs  // Ignore virtual register definitions
646   };
647
648   /// isIdenticalTo - Return true if this instruction is identical to (same
649   /// opcode and same operands as) the specified instruction.
650   bool isIdenticalTo(const MachineInstr *Other,
651                      MICheckType Check = CheckDefs) const;
652
653   /// Unlink 'this' from the containing basic block, and return it without
654   /// deleting it.
655   ///
656   /// This function can not be used on bundled instructions, use
657   /// removeFromBundle() to remove individual instructions from a bundle.
658   MachineInstr *removeFromParent();
659
660   /// Unlink this instruction from its basic block and return it without
661   /// deleting it.
662   ///
663   /// If the instruction is part of a bundle, the other instructions in the
664   /// bundle remain bundled.
665   MachineInstr *removeFromBundle();
666
667   /// Unlink 'this' from the containing basic block and delete it.
668   ///
669   /// If this instruction is the header of a bundle, the whole bundle is erased.
670   /// This function can not be used for instructions inside a bundle, use
671   /// eraseFromBundle() to erase individual bundled instructions.
672   void eraseFromParent();
673
674   /// Unlink 'this' form its basic block and delete it.
675   ///
676   /// If the instruction is part of a bundle, the other instructions in the
677   /// bundle remain bundled.
678   void eraseFromBundle();
679
680   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
681   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
682
683   /// isLabel - Returns true if the MachineInstr represents a label.
684   ///
685   bool isLabel() const { return isEHLabel() || isGCLabel(); }
686   bool isCFIInstruction() const {
687     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
688   }
689
690   // True if the instruction represents a position in the function.
691   bool isPosition() const { return isLabel() || isCFIInstruction(); }
692
693   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
694   /// A DBG_VALUE is indirect iff the first operand is a register and
695   /// the second operand is an immediate.
696   bool isIndirectDebugValue() const {
697     return isDebugValue()
698       && getOperand(0).isReg()
699       && getOperand(1).isImm();
700   }
701
702   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
703   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
704   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
705   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
706   bool isMSInlineAsm() const { 
707     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
708   }
709   bool isStackAligningInlineAsm() const;
710   InlineAsm::AsmDialect getInlineAsmDialect() const;
711   bool isInsertSubreg() const {
712     return getOpcode() == TargetOpcode::INSERT_SUBREG;
713   }
714   bool isSubregToReg() const {
715     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
716   }
717   bool isRegSequence() const {
718     return getOpcode() == TargetOpcode::REG_SEQUENCE;
719   }
720   bool isBundle() const {
721     return getOpcode() == TargetOpcode::BUNDLE;
722   }
723   bool isCopy() const {
724     return getOpcode() == TargetOpcode::COPY;
725   }
726   bool isFullCopy() const {
727     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
728   }
729   bool isExtractSubreg() const {
730     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
731   }
732
733   /// isCopyLike - Return true if the instruction behaves like a copy.
734   /// This does not include native copy instructions.
735   bool isCopyLike() const {
736     return isCopy() || isSubregToReg();
737   }
738
739   /// isIdentityCopy - Return true is the instruction is an identity copy.
740   bool isIdentityCopy() const {
741     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
742       getOperand(0).getSubReg() == getOperand(1).getSubReg();
743   }
744
745   /// isTransient - Return true if this is a transient instruction that is
746   /// either very likely to be eliminated during register allocation (such as
747   /// copy-like instructions), or if this instruction doesn't have an
748   /// execution-time cost.
749   bool isTransient() const {
750     switch(getOpcode()) {
751     default: return false;
752     // Copy-like instructions are usually eliminated during register allocation.
753     case TargetOpcode::PHI:
754     case TargetOpcode::COPY:
755     case TargetOpcode::INSERT_SUBREG:
756     case TargetOpcode::SUBREG_TO_REG:
757     case TargetOpcode::REG_SEQUENCE:
758     // Pseudo-instructions that don't produce any real output.
759     case TargetOpcode::IMPLICIT_DEF:
760     case TargetOpcode::KILL:
761     case TargetOpcode::CFI_INSTRUCTION:
762     case TargetOpcode::EH_LABEL:
763     case TargetOpcode::GC_LABEL:
764     case TargetOpcode::DBG_VALUE:
765       return true;
766     }
767   }
768
769   /// Return the number of instructions inside the MI bundle, excluding the
770   /// bundle header.
771   ///
772   /// This is the number of instructions that MachineBasicBlock::iterator
773   /// skips, 0 for unbundled instructions.
774   unsigned getBundleSize() const;
775
776   /// readsRegister - Return true if the MachineInstr reads the specified
777   /// register. If TargetRegisterInfo is passed, then it also checks if there
778   /// is a read of a super-register.
779   /// This does not count partial redefines of virtual registers as reads:
780   ///   %reg1024:6 = OP.
781   bool readsRegister(unsigned Reg,
782                      const TargetRegisterInfo *TRI = nullptr) const {
783     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
784   }
785
786   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
787   /// virtual register. Take into account that a partial define is a
788   /// read-modify-write operation.
789   bool readsVirtualRegister(unsigned Reg) const {
790     return readsWritesVirtualRegister(Reg).first;
791   }
792
793   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
794   /// indicating if this instruction reads or writes Reg. This also considers
795   /// partial defines.
796   /// If Ops is not null, all operand indices for Reg are added.
797   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
798                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
799
800   /// killsRegister - Return true if the MachineInstr kills the specified
801   /// register. If TargetRegisterInfo is passed, then it also checks if there is
802   /// a kill of a super-register.
803   bool killsRegister(unsigned Reg,
804                      const TargetRegisterInfo *TRI = nullptr) const {
805     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
806   }
807
808   /// definesRegister - Return true if the MachineInstr fully defines the
809   /// specified register. If TargetRegisterInfo is passed, then it also checks
810   /// if there is a def of a super-register.
811   /// NOTE: It's ignoring subreg indices on virtual registers.
812   bool definesRegister(unsigned Reg,
813                        const TargetRegisterInfo *TRI = nullptr) const {
814     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
815   }
816
817   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
818   /// or partially define) the specified register.
819   /// NOTE: It's ignoring subreg indices on virtual registers.
820   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
821     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
822   }
823
824   /// registerDefIsDead - Returns true if the register is dead in this machine
825   /// instruction. If TargetRegisterInfo is passed, then it also checks
826   /// if there is a dead def of a super-register.
827   bool registerDefIsDead(unsigned Reg,
828                          const TargetRegisterInfo *TRI = nullptr) const {
829     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
830   }
831
832   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
833   /// the specific register or -1 if it is not found. It further tightens
834   /// the search criteria to a use that kills the register if isKill is true.
835   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
836                                 const TargetRegisterInfo *TRI = nullptr) const;
837
838   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
839   /// a pointer to the MachineOperand rather than an index.
840   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
841                                       const TargetRegisterInfo *TRI = nullptr) {
842     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
843     return (Idx == -1) ? nullptr : &getOperand(Idx);
844   }
845
846   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
847   /// the specified register or -1 if it is not found. If isDead is true, defs
848   /// that are not dead are skipped. If Overlap is true, then it also looks for
849   /// defs that merely overlap the specified register. If TargetRegisterInfo is
850   /// non-null, then it also checks if there is a def of a super-register.
851   /// This may also return a register mask operand when Overlap is true.
852   int findRegisterDefOperandIdx(unsigned Reg,
853                                 bool isDead = false, bool Overlap = false,
854                                 const TargetRegisterInfo *TRI = nullptr) const;
855
856   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
857   /// a pointer to the MachineOperand rather than an index.
858   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
859                                       const TargetRegisterInfo *TRI = nullptr) {
860     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
861     return (Idx == -1) ? nullptr : &getOperand(Idx);
862   }
863
864   /// findFirstPredOperandIdx() - Find the index of the first operand in the
865   /// operand list that is used to represent the predicate. It returns -1 if
866   /// none is found.
867   int findFirstPredOperandIdx() const;
868
869   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
870   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
871   /// getOperand(OpIdx) does not belong to an inline asm operand group.
872   ///
873   /// If GroupNo is not NULL, it will receive the number of the operand group
874   /// containing OpIdx.
875   ///
876   /// The flag operand is an immediate that can be decoded with methods like
877   /// InlineAsm::hasRegClassConstraint().
878   ///
879   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
880
881   /// getRegClassConstraint - Compute the static register class constraint for
882   /// operand OpIdx.  For normal instructions, this is derived from the
883   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
884   ///
885   /// Returns NULL if the static register classs constraint cannot be
886   /// determined.
887   ///
888   const TargetRegisterClass*
889   getRegClassConstraint(unsigned OpIdx,
890                         const TargetInstrInfo *TII,
891                         const TargetRegisterInfo *TRI) const;
892
893   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
894   /// the given \p CurRC.
895   /// If \p ExploreBundle is set and MI is part of a bundle, all the
896   /// instructions inside the bundle will be taken into account. In other words,
897   /// this method accumulates all the constrains of the operand of this MI and
898   /// the related bundle if MI is a bundle or inside a bundle.
899   ///
900   /// Returns the register class that statisfies both \p CurRC and the
901   /// constraints set by MI. Returns NULL if such a register class does not
902   /// exist.
903   ///
904   /// \pre CurRC must not be NULL.
905   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
906       unsigned Reg, const TargetRegisterClass *CurRC,
907       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
908       bool ExploreBundle = false) const;
909
910   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
911   /// to the given \p CurRC.
912   ///
913   /// Returns the register class that statisfies both \p CurRC and the
914   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
915   /// does not exist.
916   ///
917   /// \pre CurRC must not be NULL.
918   /// \pre The operand at \p OpIdx must be a register.
919   const TargetRegisterClass *
920   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
921                               const TargetInstrInfo *TII,
922                               const TargetRegisterInfo *TRI) const;
923
924   /// tieOperands - Add a tie between the register operands at DefIdx and
925   /// UseIdx. The tie will cause the register allocator to ensure that the two
926   /// operands are assigned the same physical register.
927   ///
928   /// Tied operands are managed automatically for explicit operands in the
929   /// MCInstrDesc. This method is for exceptional cases like inline asm.
930   void tieOperands(unsigned DefIdx, unsigned UseIdx);
931
932   /// findTiedOperandIdx - Given the index of a tied register operand, find the
933   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
934   /// index of the tied operand which must exist.
935   unsigned findTiedOperandIdx(unsigned OpIdx) const;
936
937   /// isRegTiedToUseOperand - Given the index of a register def operand,
938   /// check if the register def is tied to a source operand, due to either
939   /// two-address elimination or inline assembly constraints. Returns the
940   /// first tied use operand index by reference if UseOpIdx is not null.
941   bool isRegTiedToUseOperand(unsigned DefOpIdx,
942                              unsigned *UseOpIdx = nullptr) const {
943     const MachineOperand &MO = getOperand(DefOpIdx);
944     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
945       return false;
946     if (UseOpIdx)
947       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
948     return true;
949   }
950
951   /// isRegTiedToDefOperand - Return true if the use operand of the specified
952   /// index is tied to a def operand. It also returns the def operand index by
953   /// reference if DefOpIdx is not null.
954   bool isRegTiedToDefOperand(unsigned UseOpIdx,
955                              unsigned *DefOpIdx = nullptr) const {
956     const MachineOperand &MO = getOperand(UseOpIdx);
957     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
958       return false;
959     if (DefOpIdx)
960       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
961     return true;
962   }
963
964   /// clearKillInfo - Clears kill flags on all operands.
965   ///
966   void clearKillInfo();
967
968   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
969   /// properly composing subreg indices where necessary.
970   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
971                           const TargetRegisterInfo &RegInfo);
972
973   /// addRegisterKilled - We have determined MI kills a register. Look for the
974   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
975   /// add a implicit operand if it's not found. Returns true if the operand
976   /// exists / is added.
977   bool addRegisterKilled(unsigned IncomingReg,
978                          const TargetRegisterInfo *RegInfo,
979                          bool AddIfNotFound = false);
980
981   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
982   /// provided, this includes super-register kills.
983   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
984
985   /// addRegisterDead - We have determined MI defined a register without a use.
986   /// Look for the operand that defines it and mark it as IsDead. If
987   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
988   /// true if the operand exists / is added.
989   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
990                        bool AddIfNotFound = false);
991
992   /// addRegisterDefined - We have determined MI defines a register. Make sure
993   /// there is an operand defining Reg.
994   void addRegisterDefined(unsigned Reg,
995                           const TargetRegisterInfo *RegInfo = nullptr);
996
997   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
998   /// dead except those in the UsedRegs list.
999   ///
1000   /// On instructions with register mask operands, also add implicit-def
1001   /// operands for all registers in UsedRegs.
1002   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1003                              const TargetRegisterInfo &TRI);
1004
1005   /// isSafeToMove - Return true if it is safe to move this instruction. If
1006   /// SawStore is set to true, it means that there is a store (or call) between
1007   /// the instruction's location and its intended destination.
1008   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
1009                     bool &SawStore) const;
1010
1011   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1012   /// or volatile memory reference, or if the information describing the memory
1013   /// reference is not available. Return false if it is known to have no
1014   /// ordered or volatile memory references.
1015   bool hasOrderedMemoryRef() const;
1016
1017   /// isInvariantLoad - Return true if this instruction is loading from a
1018   /// location whose value is invariant across the function.  For example,
1019   /// loading a value from the constant pool or from the argument area of
1020   /// a function if it does not change.  This should only return true of *all*
1021   /// loads the instruction does are invariant (if it does multiple loads).
1022   bool isInvariantLoad(AliasAnalysis *AA) const;
1023
1024   /// isConstantValuePHI - If the specified instruction is a PHI that always
1025   /// merges together the same virtual register, return the register, otherwise
1026   /// return 0.
1027   unsigned isConstantValuePHI() const;
1028
1029   /// hasUnmodeledSideEffects - Return true if this instruction has side
1030   /// effects that are not modeled by mayLoad / mayStore, etc.
1031   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1032   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1033   /// INLINEASM instruction, in which case the side effect property is encoded
1034   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1035   ///
1036   bool hasUnmodeledSideEffects() const;
1037
1038   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1039   ///
1040   bool allDefsAreDead() const;
1041
1042   /// copyImplicitOps - Copy implicit register operands from specified
1043   /// instruction to this instruction.
1044   void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
1045
1046   //
1047   // Debugging support
1048   //
1049   void print(raw_ostream &OS, const TargetMachine *TM = nullptr,
1050              bool SkipOpers = false) const;
1051   void dump() const;
1052
1053   //===--------------------------------------------------------------------===//
1054   // Accessors used to build up machine instructions.
1055
1056   /// Add the specified operand to the instruction.  If it is an implicit
1057   /// operand, it is added to the end of the operand list.  If it is an
1058   /// explicit operand it is added at the end of the explicit operand list
1059   /// (before the first implicit operand).
1060   ///
1061   /// MF must be the machine function that was used to allocate this
1062   /// instruction.
1063   ///
1064   /// MachineInstrBuilder provides a more convenient interface for creating
1065   /// instructions and adding operands.
1066   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1067
1068   /// Add an operand without providing an MF reference. This only works for
1069   /// instructions that are inserted in a basic block.
1070   ///
1071   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1072   /// preferred.
1073   void addOperand(const MachineOperand &Op);
1074
1075   /// setDesc - Replace the instruction descriptor (thus opcode) of
1076   /// the current instruction with a new one.
1077   ///
1078   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1079
1080   /// setDebugLoc - Replace current source information with new such.
1081   /// Avoid using this, the constructor argument is preferable.
1082   ///
1083   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1084
1085   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
1086   /// fewer operand than it started with.
1087   ///
1088   void RemoveOperand(unsigned i);
1089
1090   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
1091   /// This function should be used only occasionally. The setMemRefs function
1092   /// is the primary method for setting up a MachineInstr's MemRefs list.
1093   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1094
1095   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
1096   /// list. This does not transfer ownership.
1097   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1098     MemRefs = NewMemRefs;
1099     NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
1100     assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
1101   }
1102
1103 private:
1104   /// getRegInfo - If this instruction is embedded into a MachineFunction,
1105   /// return the MachineRegisterInfo object for the current function, otherwise
1106   /// return null.
1107   MachineRegisterInfo *getRegInfo();
1108
1109   /// untieRegOperand - Break any tie involving OpIdx.
1110   void untieRegOperand(unsigned OpIdx) {
1111     MachineOperand &MO = getOperand(OpIdx);
1112     if (MO.isReg() && MO.isTied()) {
1113       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1114       MO.TiedTo = 0;
1115     }
1116   }
1117
1118   /// addImplicitDefUseOperands - Add all implicit def and use operands to
1119   /// this instruction.
1120   void addImplicitDefUseOperands(MachineFunction &MF);
1121
1122   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
1123   /// this instruction from their respective use lists.  This requires that the
1124   /// operands already be on their use lists.
1125   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1126
1127   /// AddRegOperandsToUseLists - Add all of the register operands in
1128   /// this instruction from their respective use lists.  This requires that the
1129   /// operands not be on their use lists yet.
1130   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1131
1132   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
1133   /// bundle.
1134   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1135
1136   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1137   /// this MI and the given operand index \p OpIdx.
1138   /// If the related operand does not constrained Reg, this returns CurRC.
1139   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1140       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1141       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1142 };
1143
1144 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
1145 /// MachineInstr* by *value* of the instruction rather than by pointer value.
1146 /// The hashing and equality testing functions ignore definitions so this is
1147 /// useful for CSE, etc.
1148 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1149   static inline MachineInstr *getEmptyKey() {
1150     return nullptr;
1151   }
1152
1153   static inline MachineInstr *getTombstoneKey() {
1154     return reinterpret_cast<MachineInstr*>(-1);
1155   }
1156
1157   static unsigned getHashValue(const MachineInstr* const &MI);
1158
1159   static bool isEqual(const MachineInstr* const &LHS,
1160                       const MachineInstr* const &RHS) {
1161     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1162         LHS == getEmptyKey() || LHS == getTombstoneKey())
1163       return LHS == RHS;
1164     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
1165   }
1166 };
1167
1168 //===----------------------------------------------------------------------===//
1169 // Debugging Support
1170
1171 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1172   MI.print(OS);
1173   return OS;
1174 }
1175
1176 } // End llvm namespace
1177
1178 #endif