RegisterPressure: Factor out liveness dead-def detection logic; NFCI
[oota-llvm.git] / include / llvm / CodeGen / RegAllocPBQP.h
1 //===-- RegAllocPBQP.h ------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PBQPBuilder interface, for classes which build PBQP
11 // instances to represent register allocation problems, and the RegAllocPBQP
12 // interface.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_CODEGEN_REGALLOCPBQP_H
17 #define LLVM_CODEGEN_REGALLOCPBQP_H
18
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/PBQP/CostAllocator.h"
21 #include "llvm/CodeGen/PBQP/ReductionRules.h"
22 #include "llvm/CodeGen/PBQPRAConstraint.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25 namespace llvm {
26
27 class raw_ostream;
28
29 namespace PBQP {
30 namespace RegAlloc {
31
32 /// @brief Spill option index.
33 inline unsigned getSpillOptionIdx() { return 0; }
34
35 /// \brief Metadata to speed allocatability test.
36 ///
37 /// Keeps track of the number of infinities in each row and column.
38 class MatrixMetadata {
39 private:
40   MatrixMetadata(const MatrixMetadata&);
41   void operator=(const MatrixMetadata&);
42 public:
43   MatrixMetadata(const Matrix& M)
44     : WorstRow(0), WorstCol(0),
45       UnsafeRows(new bool[M.getRows() - 1]()),
46       UnsafeCols(new bool[M.getCols() - 1]()) {
47
48     unsigned* ColCounts = new unsigned[M.getCols() - 1]();
49
50     for (unsigned i = 1; i < M.getRows(); ++i) {
51       unsigned RowCount = 0;
52       for (unsigned j = 1; j < M.getCols(); ++j) {
53         if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
54           ++RowCount;
55           ++ColCounts[j - 1];
56           UnsafeRows[i - 1] = true;
57           UnsafeCols[j - 1] = true;
58         }
59       }
60       WorstRow = std::max(WorstRow, RowCount);
61     }
62     unsigned WorstColCountForCurRow =
63       *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
64     WorstCol = std::max(WorstCol, WorstColCountForCurRow);
65     delete[] ColCounts;
66   }
67
68   unsigned getWorstRow() const { return WorstRow; }
69   unsigned getWorstCol() const { return WorstCol; }
70   const bool* getUnsafeRows() const { return UnsafeRows.get(); }
71   const bool* getUnsafeCols() const { return UnsafeCols.get(); }
72
73 private:
74   unsigned WorstRow, WorstCol;
75   std::unique_ptr<bool[]> UnsafeRows;
76   std::unique_ptr<bool[]> UnsafeCols;
77 };
78
79 /// \brief Holds a vector of the allowed physical regs for a vreg.
80 class AllowedRegVector {
81   friend hash_code hash_value(const AllowedRegVector &);
82 public:
83
84   AllowedRegVector() : NumOpts(0), Opts(nullptr) {}
85
86   AllowedRegVector(const std::vector<unsigned> &OptVec)
87     : NumOpts(OptVec.size()), Opts(new unsigned[NumOpts]) {
88     std::copy(OptVec.begin(), OptVec.end(), Opts.get());
89   }
90
91   AllowedRegVector(const AllowedRegVector &Other)
92     : NumOpts(Other.NumOpts), Opts(new unsigned[NumOpts]) {
93     std::copy(Other.Opts.get(), Other.Opts.get() + NumOpts, Opts.get());
94   }
95
96   AllowedRegVector(AllowedRegVector &&Other)
97     : NumOpts(std::move(Other.NumOpts)), Opts(std::move(Other.Opts)) {}
98
99   AllowedRegVector& operator=(const AllowedRegVector &Other) {
100     NumOpts = Other.NumOpts;
101     Opts.reset(new unsigned[NumOpts]);
102     std::copy(Other.Opts.get(), Other.Opts.get() + NumOpts, Opts.get());
103     return *this;
104   }
105
106   AllowedRegVector& operator=(AllowedRegVector &&Other) {
107     NumOpts = std::move(Other.NumOpts);
108     Opts = std::move(Other.Opts);
109     return *this;
110   }
111
112   unsigned size() const { return NumOpts; }
113   unsigned operator[](size_t I) const { return Opts[I]; }
114
115   bool operator==(const AllowedRegVector &Other) const {
116     if (NumOpts != Other.NumOpts)
117       return false;
118     return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
119   }
120
121   bool operator!=(const AllowedRegVector &Other) const {
122     return !(*this == Other);
123   }
124
125 private:
126   unsigned NumOpts;
127   std::unique_ptr<unsigned[]> Opts;
128 };
129
130 inline hash_code hash_value(const AllowedRegVector &OptRegs) {
131   unsigned *OStart = OptRegs.Opts.get();
132   unsigned *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
133   return hash_combine(OptRegs.NumOpts,
134                       hash_combine_range(OStart, OEnd));
135 }
136
137 /// \brief Holds graph-level metadata relevant to PBQP RA problems.
138 class GraphMetadata {
139 private:
140   typedef ValuePool<AllowedRegVector> AllowedRegVecPool;
141 public:
142
143   typedef AllowedRegVecPool::PoolRef AllowedRegVecRef;
144
145   GraphMetadata(MachineFunction &MF,
146                 LiveIntervals &LIS,
147                 MachineBlockFrequencyInfo &MBFI)
148     : MF(MF), LIS(LIS), MBFI(MBFI) {}
149
150   MachineFunction &MF;
151   LiveIntervals &LIS;
152   MachineBlockFrequencyInfo &MBFI;
153
154   void setNodeIdForVReg(unsigned VReg, GraphBase::NodeId NId) {
155     VRegToNodeId[VReg] = NId;
156   }
157
158   GraphBase::NodeId getNodeIdForVReg(unsigned VReg) const {
159     auto VRegItr = VRegToNodeId.find(VReg);
160     if (VRegItr == VRegToNodeId.end())
161       return GraphBase::invalidNodeId();
162     return VRegItr->second;
163   }
164
165   void eraseNodeIdForVReg(unsigned VReg) {
166     VRegToNodeId.erase(VReg);
167   }
168
169   AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
170     return AllowedRegVecs.getValue(std::move(Allowed));
171   }
172
173 private:
174   DenseMap<unsigned, GraphBase::NodeId> VRegToNodeId;
175   AllowedRegVecPool AllowedRegVecs;
176 };
177
178 /// \brief Holds solver state and other metadata relevant to each PBQP RA node.
179 class NodeMetadata {
180 public:
181   typedef RegAlloc::AllowedRegVector AllowedRegVector;
182
183   // The node's reduction state. The order in this enum is important,
184   // as it is assumed nodes can only progress up (i.e. towards being
185   // optimally reducible) when reducing the graph.
186   typedef enum {
187     Unprocessed,
188     NotProvablyAllocatable,
189     ConservativelyAllocatable,
190     OptimallyReducible
191   } ReductionState;
192
193   NodeMetadata()
194     : RS(Unprocessed), NumOpts(0), DeniedOpts(0), OptUnsafeEdges(nullptr),
195       VReg(0)
196 #ifndef NDEBUG
197       , everConservativelyAllocatable(false)
198 #endif
199       {}
200
201   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
202   // MSVC synthesizes move constructors properly.
203   NodeMetadata(const NodeMetadata &Other)
204     : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
205       OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
206       AllowedRegs(Other.AllowedRegs)
207 #ifndef NDEBUG
208       , everConservativelyAllocatable(Other.everConservativelyAllocatable)
209 #endif
210   {
211     if (NumOpts > 0) {
212       std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
213                 &OptUnsafeEdges[0]);
214     }
215   }
216
217   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
218   // MSVC synthesizes move constructors properly.
219   NodeMetadata(NodeMetadata &&Other)
220     : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
221       OptUnsafeEdges(std::move(Other.OptUnsafeEdges)), VReg(Other.VReg),
222       AllowedRegs(std::move(Other.AllowedRegs))
223 #ifndef NDEBUG
224       , everConservativelyAllocatable(Other.everConservativelyAllocatable)
225 #endif
226   {}
227
228   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
229   // MSVC synthesizes move constructors properly.
230   NodeMetadata& operator=(const NodeMetadata &Other) {
231     RS = Other.RS;
232     NumOpts = Other.NumOpts;
233     DeniedOpts = Other.DeniedOpts;
234     OptUnsafeEdges.reset(new unsigned[NumOpts]);
235     std::copy(Other.OptUnsafeEdges.get(), Other.OptUnsafeEdges.get() + NumOpts,
236               OptUnsafeEdges.get());
237     VReg = Other.VReg;
238     AllowedRegs = Other.AllowedRegs;
239 #ifndef NDEBUG
240     everConservativelyAllocatable = Other.everConservativelyAllocatable;
241 #endif
242     return *this;
243   }
244
245   // FIXME: Re-implementing default behavior to work around MSVC. Remove once
246   // MSVC synthesizes move constructors properly.
247   NodeMetadata& operator=(NodeMetadata &&Other) {
248     RS = Other.RS;
249     NumOpts = Other.NumOpts;
250     DeniedOpts = Other.DeniedOpts;
251     OptUnsafeEdges = std::move(Other.OptUnsafeEdges);
252     VReg = Other.VReg;
253     AllowedRegs = std::move(Other.AllowedRegs);
254 #ifndef NDEBUG
255     everConservativelyAllocatable = Other.everConservativelyAllocatable;
256 #endif
257     return *this;
258   }
259
260   void setVReg(unsigned VReg) { this->VReg = VReg; }
261   unsigned getVReg() const { return VReg; }
262
263   void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
264     this->AllowedRegs = std::move(AllowedRegs);
265   }
266   const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
267
268   void setup(const Vector& Costs) {
269     NumOpts = Costs.getLength() - 1;
270     OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
271   }
272
273   ReductionState getReductionState() const { return RS; }
274   void setReductionState(ReductionState RS) {
275     assert(RS >= this->RS && "A node's reduction state can not be downgraded");
276     this->RS = RS;
277
278 #ifndef NDEBUG
279     // Remember this state to assert later that a non-infinite register
280     // option was available.
281     if (RS == ConservativelyAllocatable)
282       everConservativelyAllocatable = true;
283 #endif
284   }
285
286
287   void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
288     DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
289     const bool* UnsafeOpts =
290       Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
291     for (unsigned i = 0; i < NumOpts; ++i)
292       OptUnsafeEdges[i] += UnsafeOpts[i];
293   }
294
295   void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
296     DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
297     const bool* UnsafeOpts =
298       Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
299     for (unsigned i = 0; i < NumOpts; ++i)
300       OptUnsafeEdges[i] -= UnsafeOpts[i];
301   }
302
303   bool isConservativelyAllocatable() const {
304     return (DeniedOpts < NumOpts) ||
305       (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
306        &OptUnsafeEdges[NumOpts]);
307   }
308
309 #ifndef NDEBUG
310   bool wasConservativelyAllocatable() const {
311     return everConservativelyAllocatable;
312   }
313 #endif
314
315 private:
316   ReductionState RS;
317   unsigned NumOpts;
318   unsigned DeniedOpts;
319   std::unique_ptr<unsigned[]> OptUnsafeEdges;
320   unsigned VReg;
321   GraphMetadata::AllowedRegVecRef AllowedRegs;
322
323 #ifndef NDEBUG
324   bool everConservativelyAllocatable;
325 #endif
326 };
327
328 class RegAllocSolverImpl {
329 private:
330   typedef MDMatrix<MatrixMetadata> RAMatrix;
331 public:
332   typedef PBQP::Vector RawVector;
333   typedef PBQP::Matrix RawMatrix;
334   typedef PBQP::Vector Vector;
335   typedef RAMatrix     Matrix;
336   typedef PBQP::PoolCostAllocator<Vector, Matrix> CostAllocator;
337
338   typedef GraphBase::NodeId NodeId;
339   typedef GraphBase::EdgeId EdgeId;
340
341   typedef RegAlloc::NodeMetadata NodeMetadata;
342   struct EdgeMetadata { };
343   typedef RegAlloc::GraphMetadata GraphMetadata;
344
345   typedef PBQP::Graph<RegAllocSolverImpl> Graph;
346
347   RegAllocSolverImpl(Graph &G) : G(G) {}
348
349   Solution solve() {
350     G.setSolver(*this);
351     Solution S;
352     setup();
353     S = backpropagate(G, reduce());
354     G.unsetSolver();
355     return S;
356   }
357
358   void handleAddNode(NodeId NId) {
359     assert(G.getNodeCosts(NId).getLength() > 1 &&
360            "PBQP Graph should not contain single or zero-option nodes");
361     G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
362   }
363   void handleRemoveNode(NodeId NId) {}
364   void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
365
366   void handleAddEdge(EdgeId EId) {
367     handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
368     handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
369   }
370
371   void handleRemoveEdge(EdgeId EId) {
372     handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
373     handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
374   }
375
376   void handleDisconnectEdge(EdgeId EId, NodeId NId) {
377     NodeMetadata& NMd = G.getNodeMetadata(NId);
378     const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
379     NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
380     promote(NId, NMd);
381   }
382
383   void handleReconnectEdge(EdgeId EId, NodeId NId) {
384     NodeMetadata& NMd = G.getNodeMetadata(NId);
385     const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
386     NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
387   }
388
389   void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
390     NodeId N1Id = G.getEdgeNode1Id(EId);
391     NodeId N2Id = G.getEdgeNode2Id(EId);
392     NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
393     NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
394     bool Transpose = N1Id != G.getEdgeNode1Id(EId);
395
396     // Metadata are computed incrementally. First, update them
397     // by removing the old cost.
398     const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
399     N1Md.handleRemoveEdge(OldMMd, Transpose);
400     N2Md.handleRemoveEdge(OldMMd, !Transpose);
401
402     // And update now the metadata with the new cost.
403     const MatrixMetadata& MMd = NewCosts.getMetadata();
404     N1Md.handleAddEdge(MMd, Transpose);
405     N2Md.handleAddEdge(MMd, !Transpose);
406
407     // As the metadata may have changed with the update, the nodes may have
408     // become ConservativelyAllocatable or OptimallyReducible.
409     promote(N1Id, N1Md);
410     promote(N2Id, N2Md);
411   }
412
413 private:
414
415   void promote(NodeId NId, NodeMetadata& NMd) {
416     if (G.getNodeDegree(NId) == 3) {
417       // This node is becoming optimally reducible.
418       moveToOptimallyReducibleNodes(NId);
419     } else if (NMd.getReductionState() ==
420                NodeMetadata::NotProvablyAllocatable &&
421                NMd.isConservativelyAllocatable()) {
422       // This node just became conservatively allocatable.
423       moveToConservativelyAllocatableNodes(NId);
424     }
425   }
426
427   void removeFromCurrentSet(NodeId NId) {
428     switch (G.getNodeMetadata(NId).getReductionState()) {
429     case NodeMetadata::Unprocessed: break;
430     case NodeMetadata::OptimallyReducible:
431       assert(OptimallyReducibleNodes.find(NId) !=
432              OptimallyReducibleNodes.end() &&
433              "Node not in optimally reducible set.");
434       OptimallyReducibleNodes.erase(NId);
435       break;
436     case NodeMetadata::ConservativelyAllocatable:
437       assert(ConservativelyAllocatableNodes.find(NId) !=
438              ConservativelyAllocatableNodes.end() &&
439              "Node not in conservatively allocatable set.");
440       ConservativelyAllocatableNodes.erase(NId);
441       break;
442     case NodeMetadata::NotProvablyAllocatable:
443       assert(NotProvablyAllocatableNodes.find(NId) !=
444              NotProvablyAllocatableNodes.end() &&
445              "Node not in not-provably-allocatable set.");
446       NotProvablyAllocatableNodes.erase(NId);
447       break;
448     }
449   }
450
451   void moveToOptimallyReducibleNodes(NodeId NId) {
452     removeFromCurrentSet(NId);
453     OptimallyReducibleNodes.insert(NId);
454     G.getNodeMetadata(NId).setReductionState(
455       NodeMetadata::OptimallyReducible);
456   }
457
458   void moveToConservativelyAllocatableNodes(NodeId NId) {
459     removeFromCurrentSet(NId);
460     ConservativelyAllocatableNodes.insert(NId);
461     G.getNodeMetadata(NId).setReductionState(
462       NodeMetadata::ConservativelyAllocatable);
463   }
464
465   void moveToNotProvablyAllocatableNodes(NodeId NId) {
466     removeFromCurrentSet(NId);
467     NotProvablyAllocatableNodes.insert(NId);
468     G.getNodeMetadata(NId).setReductionState(
469       NodeMetadata::NotProvablyAllocatable);
470   }
471
472   void setup() {
473     // Set up worklists.
474     for (auto NId : G.nodeIds()) {
475       if (G.getNodeDegree(NId) < 3)
476         moveToOptimallyReducibleNodes(NId);
477       else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
478         moveToConservativelyAllocatableNodes(NId);
479       else
480         moveToNotProvablyAllocatableNodes(NId);
481     }
482   }
483
484   // Compute a reduction order for the graph by iteratively applying PBQP
485   // reduction rules. Locally optimal rules are applied whenever possible (R0,
486   // R1, R2). If no locally-optimal rules apply then any conservatively
487   // allocatable node is reduced. Finally, if no conservatively allocatable
488   // node exists then the node with the lowest spill-cost:degree ratio is
489   // selected.
490   std::vector<GraphBase::NodeId> reduce() {
491     assert(!G.empty() && "Cannot reduce empty graph.");
492
493     typedef GraphBase::NodeId NodeId;
494     std::vector<NodeId> NodeStack;
495
496     // Consume worklists.
497     while (true) {
498       if (!OptimallyReducibleNodes.empty()) {
499         NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
500         NodeId NId = *NItr;
501         OptimallyReducibleNodes.erase(NItr);
502         NodeStack.push_back(NId);
503         switch (G.getNodeDegree(NId)) {
504         case 0:
505           break;
506         case 1:
507           applyR1(G, NId);
508           break;
509         case 2:
510           applyR2(G, NId);
511           break;
512         default: llvm_unreachable("Not an optimally reducible node.");
513         }
514       } else if (!ConservativelyAllocatableNodes.empty()) {
515         // Conservatively allocatable nodes will never spill. For now just
516         // take the first node in the set and push it on the stack. When we
517         // start optimizing more heavily for register preferencing, it may
518         // would be better to push nodes with lower 'expected' or worst-case
519         // register costs first (since early nodes are the most
520         // constrained).
521         NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
522         NodeId NId = *NItr;
523         ConservativelyAllocatableNodes.erase(NItr);
524         NodeStack.push_back(NId);
525         G.disconnectAllNeighborsFromNode(NId);
526
527       } else if (!NotProvablyAllocatableNodes.empty()) {
528         NodeSet::iterator NItr =
529           std::min_element(NotProvablyAllocatableNodes.begin(),
530                            NotProvablyAllocatableNodes.end(),
531                            SpillCostComparator(G));
532         NodeId NId = *NItr;
533         NotProvablyAllocatableNodes.erase(NItr);
534         NodeStack.push_back(NId);
535         G.disconnectAllNeighborsFromNode(NId);
536       } else
537         break;
538     }
539
540     return NodeStack;
541   }
542
543   class SpillCostComparator {
544   public:
545     SpillCostComparator(const Graph& G) : G(G) {}
546     bool operator()(NodeId N1Id, NodeId N2Id) {
547       PBQPNum N1SC = G.getNodeCosts(N1Id)[0];
548       PBQPNum N2SC = G.getNodeCosts(N2Id)[0];
549       if (N1SC == N2SC)
550         return G.getNodeDegree(N1Id) < G.getNodeDegree(N2Id);
551       return N1SC < N2SC;
552     }
553   private:
554     const Graph& G;
555   };
556
557   Graph& G;
558   typedef std::set<NodeId> NodeSet;
559   NodeSet OptimallyReducibleNodes;
560   NodeSet ConservativelyAllocatableNodes;
561   NodeSet NotProvablyAllocatableNodes;
562 };
563
564 class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
565 private:
566   typedef PBQP::Graph<RegAllocSolverImpl> BaseT;
567 public:
568   PBQPRAGraph(GraphMetadata Metadata) : BaseT(Metadata) {}
569
570   /// @brief Dump this graph to dbgs().
571   void dump() const;
572
573   /// @brief Dump this graph to an output stream.
574   /// @param OS Output stream to print on.
575   void dump(raw_ostream &OS) const;
576
577   /// @brief Print a representation of this graph in DOT format.
578   /// @param OS Output stream to print on.
579   void printDot(raw_ostream &OS) const;
580 };
581
582 inline Solution solve(PBQPRAGraph& G) {
583   if (G.empty())
584     return Solution();
585   RegAllocSolverImpl RegAllocSolver(G);
586   return RegAllocSolver.solve();
587 }
588
589 } // namespace RegAlloc
590 } // namespace PBQP
591
592 /// @brief Create a PBQP register allocator instance.
593 FunctionPass *
594 createPBQPRegisterAllocator(char *customPassID = nullptr);
595
596 } // namespace llvm
597
598 #endif /* LLVM_CODEGEN_REGALLOCPBQP_H */