1 //===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the SelectionDAG class, and transitively defines the
11 // SDNode class and subclasses.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
16 #define LLVM_CODEGEN_SELECTIONDAG_H
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 class MachineModuleInfo;
35 class MachineFunction;
36 class MachineConstantPoolValue;
37 class FunctionLoweringInfo;
39 template<> class ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
40 mutable SDNode Sentinel;
42 ilist_traits() : Sentinel(ISD::DELETED_NODE, SDVTList()) {}
44 SDNode *createSentinel() const {
47 static void destroySentinel(SDNode *) {}
49 static void deleteNode(SDNode *) {
50 assert(0 && "ilist_traits<SDNode> shouldn't see a deleteNode call!");
53 static void createNode(const SDNode &);
56 /// SelectionDAG class - This is used to represent a portion of an LLVM function
57 /// in a low-level Data Dependence DAG representation suitable for instruction
58 /// selection. This DAG is constructed as the first step of instruction
59 /// selection in order to allow implementation of machine specific optimizations
60 /// and code simplifications.
62 /// The representation used by the SelectionDAG is a target-independent
63 /// representation, which has some similarities to the GCC RTL representation,
64 /// but is significantly more simple, powerful, and is a graph form instead of a
70 FunctionLoweringInfo &FLI;
71 MachineModuleInfo *MMI;
73 /// EntryNode - The starting token.
76 /// Root - The root of the entire DAG.
79 /// AllNodes - A linked list of nodes in the current DAG.
80 ilist<SDNode> AllNodes;
82 /// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use
83 /// pool allocation with recycling.
84 typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
85 AlignOf<MostAlignedSDNode>::Alignment>
88 /// NodeAllocator - Pool allocation for nodes.
89 NodeAllocatorType NodeAllocator;
91 /// CSEMap - This structure is used to memoize nodes, automatically performing
92 /// CSE with existing nodes with a duplicate is requested.
93 FoldingSet<SDNode> CSEMap;
95 /// OperandAllocator - Pool allocation for machine-opcode SDNode operands.
96 BumpPtrAllocator OperandAllocator;
98 /// Allocator - Pool allocation for misc. objects that are created once per
100 BumpPtrAllocator Allocator;
102 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
103 void VerifyNode(SDNode *N);
106 SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli);
109 /// init - Prepare this SelectionDAG to process code in the given
112 void init(MachineFunction &mf, MachineModuleInfo *mmi);
114 /// clear - Clear state and free memory necessary to make this
115 /// SelectionDAG ready to process a new block.
119 MachineFunction &getMachineFunction() const { return *MF; }
120 const TargetMachine &getTarget() const;
121 TargetLowering &getTargetLoweringInfo() const { return TLI; }
122 FunctionLoweringInfo &getFunctionLoweringInfo() const { return FLI; }
123 MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
125 /// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
127 void viewGraph(const std::string &Title);
131 std::map<const SDNode *, std::string> NodeGraphAttrs;
134 /// clearGraphAttrs - Clear all previously defined node graph attributes.
135 /// Intended to be used from a debugging tool (eg. gdb).
136 void clearGraphAttrs();
138 /// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".)
140 void setGraphAttrs(const SDNode *N, const char *Attrs);
142 /// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".)
143 /// Used from getNodeAttributes.
144 const std::string getGraphAttrs(const SDNode *N) const;
146 /// setGraphColor - Convenience for setting node color attribute.
148 void setGraphColor(const SDNode *N, const char *Color);
150 typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
151 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
152 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
153 typedef ilist<SDNode>::iterator allnodes_iterator;
154 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
155 allnodes_iterator allnodes_end() { return AllNodes.end(); }
156 ilist<SDNode>::size_type allnodes_size() const {
157 return AllNodes.size();
160 /// getRoot - Return the root tag of the SelectionDAG.
162 const SDValue &getRoot() const { return Root; }
164 /// getEntryNode - Return the token chain corresponding to the entry of the
166 SDValue getEntryNode() const {
167 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
170 /// setRoot - Set the current root tag of the SelectionDAG.
172 const SDValue &setRoot(SDValue N) {
173 assert((!N.Val || N.getValueType() == MVT::Other) &&
174 "DAG root value is not a chain!");
178 /// Combine - This iterates over the nodes in the SelectionDAG, folding
179 /// certain types of nodes together, or eliminating superfluous nodes. When
180 /// the AfterLegalize argument is set to 'true', Combine takes care not to
181 /// generate any nodes that will be illegal on the target.
182 void Combine(bool AfterLegalize, AliasAnalysis &AA, bool Fast);
184 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
185 /// only uses types natively supported by the target.
187 /// Note that this is an involved process that may invalidate pointers into
189 void LegalizeTypes();
191 /// Legalize - This transforms the SelectionDAG into a SelectionDAG that is
192 /// compatible with the target instruction selector, as indicated by the
193 /// TargetLowering object.
195 /// Note that this is an involved process that may invalidate pointers into
199 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
201 void RemoveDeadNodes();
203 /// DeleteNode - Remove the specified node from the system. This node must
204 /// have no referrers.
205 void DeleteNode(SDNode *N);
207 /// getVTList - Return an SDVTList that represents the list of values
209 SDVTList getVTList(MVT VT);
210 SDVTList getVTList(MVT VT1, MVT VT2);
211 SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3);
212 SDVTList getVTList(const MVT *VTs, unsigned NumVTs);
214 /// getNodeValueTypes - These are obsolete, use getVTList instead.
215 const MVT *getNodeValueTypes(MVT VT) {
216 return getVTList(VT).VTs;
218 const MVT *getNodeValueTypes(MVT VT1, MVT VT2) {
219 return getVTList(VT1, VT2).VTs;
221 const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3) {
222 return getVTList(VT1, VT2, VT3).VTs;
224 const MVT *getNodeValueTypes(const std::vector<MVT> &vtList) {
225 return getVTList(&vtList[0], (unsigned)vtList.size()).VTs;
229 //===--------------------------------------------------------------------===//
230 // Node creation methods.
232 SDValue getConstant(uint64_t Val, MVT VT, bool isTarget = false);
233 SDValue getConstant(const APInt &Val, MVT VT, bool isTarget = false);
234 SDValue getIntPtrConstant(uint64_t Val, bool isTarget = false);
235 SDValue getTargetConstant(uint64_t Val, MVT VT) {
236 return getConstant(Val, VT, true);
238 SDValue getTargetConstant(const APInt &Val, MVT VT) {
239 return getConstant(Val, VT, true);
241 SDValue getConstantFP(double Val, MVT VT, bool isTarget = false);
242 SDValue getConstantFP(const APFloat& Val, MVT VT, bool isTarget = false);
243 SDValue getTargetConstantFP(double Val, MVT VT) {
244 return getConstantFP(Val, VT, true);
246 SDValue getTargetConstantFP(const APFloat& Val, MVT VT) {
247 return getConstantFP(Val, VT, true);
249 SDValue getGlobalAddress(const GlobalValue *GV, MVT VT,
250 int offset = 0, bool isTargetGA = false);
251 SDValue getTargetGlobalAddress(const GlobalValue *GV, MVT VT,
253 return getGlobalAddress(GV, VT, offset, true);
255 SDValue getFrameIndex(int FI, MVT VT, bool isTarget = false);
256 SDValue getTargetFrameIndex(int FI, MVT VT) {
257 return getFrameIndex(FI, VT, true);
259 SDValue getJumpTable(int JTI, MVT VT, bool isTarget = false);
260 SDValue getTargetJumpTable(int JTI, MVT VT) {
261 return getJumpTable(JTI, VT, true);
263 SDValue getConstantPool(Constant *C, MVT VT,
264 unsigned Align = 0, int Offs = 0, bool isT=false);
265 SDValue getTargetConstantPool(Constant *C, MVT VT,
266 unsigned Align = 0, int Offset = 0) {
267 return getConstantPool(C, VT, Align, Offset, true);
269 SDValue getConstantPool(MachineConstantPoolValue *C, MVT VT,
270 unsigned Align = 0, int Offs = 0, bool isT=false);
271 SDValue getTargetConstantPool(MachineConstantPoolValue *C,
272 MVT VT, unsigned Align = 0,
274 return getConstantPool(C, VT, Align, Offset, true);
276 SDValue getBasicBlock(MachineBasicBlock *MBB);
277 SDValue getExternalSymbol(const char *Sym, MVT VT);
278 SDValue getTargetExternalSymbol(const char *Sym, MVT VT);
279 SDValue getArgFlags(ISD::ArgFlagsTy Flags);
280 SDValue getValueType(MVT);
281 SDValue getRegister(unsigned Reg, MVT VT);
282 SDValue getDbgStopPoint(SDValue Root, unsigned Line, unsigned Col,
283 const CompileUnitDesc *CU);
284 SDValue getLabel(unsigned Opcode, SDValue Root, unsigned LabelID);
286 SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N) {
287 return getNode(ISD::CopyToReg, MVT::Other, Chain,
288 getRegister(Reg, N.getValueType()), N);
291 // This version of the getCopyToReg method takes an extra operand, which
292 // indicates that there is potentially an incoming flag value (if Flag is not
293 // null) and that there should be a flag result.
294 SDValue getCopyToReg(SDValue Chain, unsigned Reg, SDValue N,
296 const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
297 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag };
298 return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3);
301 // Similar to last getCopyToReg() except parameter Reg is a SDValue
302 SDValue getCopyToReg(SDValue Chain, SDValue Reg, SDValue N,
304 const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
305 SDValue Ops[] = { Chain, Reg, N, Flag };
306 return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3);
309 SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT) {
310 const MVT *VTs = getNodeValueTypes(VT, MVT::Other);
311 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
312 return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2);
315 // This version of the getCopyFromReg method takes an extra operand, which
316 // indicates that there is potentially an incoming flag value (if Flag is not
317 // null) and that there should be a flag result.
318 SDValue getCopyFromReg(SDValue Chain, unsigned Reg, MVT VT,
320 const MVT *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag);
321 SDValue Ops[] = { Chain, getRegister(Reg, VT), Flag };
322 return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.Val ? 3 : 2);
325 SDValue getCondCode(ISD::CondCode Cond);
327 /// getZeroExtendInReg - Return the expression required to zero extend the Op
328 /// value assuming it was the smaller SrcTy value.
329 SDValue getZeroExtendInReg(SDValue Op, MVT SrcTy);
331 /// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have
332 /// a flag result (to ensure it's not CSE'd).
333 SDValue getCALLSEQ_START(SDValue Chain, SDValue Op) {
334 const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
335 SDValue Ops[] = { Chain, Op };
336 return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2);
339 /// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a
340 /// flag result (to ensure it's not CSE'd).
341 SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
343 SDVTList NodeTys = getVTList(MVT::Other, MVT::Flag);
344 SmallVector<SDValue, 4> Ops;
345 Ops.push_back(Chain);
348 Ops.push_back(InFlag);
349 return getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0],
350 (unsigned)Ops.size() - (InFlag.Val == 0 ? 1 : 0));
353 /// getNode - Gets or creates the specified node.
355 SDValue getNode(unsigned Opcode, MVT VT);
356 SDValue getNode(unsigned Opcode, MVT VT, SDValue N);
357 SDValue getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2);
358 SDValue getNode(unsigned Opcode, MVT VT,
359 SDValue N1, SDValue N2, SDValue N3);
360 SDValue getNode(unsigned Opcode, MVT VT,
361 SDValue N1, SDValue N2, SDValue N3, SDValue N4);
362 SDValue getNode(unsigned Opcode, MVT VT,
363 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
365 SDValue getNode(unsigned Opcode, MVT VT,
366 const SDValue *Ops, unsigned NumOps);
367 SDValue getNode(unsigned Opcode, MVT VT,
368 const SDUse *Ops, unsigned NumOps);
369 SDValue getNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
370 const SDValue *Ops, unsigned NumOps);
371 SDValue getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs,
372 const SDValue *Ops, unsigned NumOps);
373 SDValue getNode(unsigned Opcode, SDVTList VTs);
374 SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N);
375 SDValue getNode(unsigned Opcode, SDVTList VTs, SDValue N1, SDValue N2);
376 SDValue getNode(unsigned Opcode, SDVTList VTs,
377 SDValue N1, SDValue N2, SDValue N3);
378 SDValue getNode(unsigned Opcode, SDVTList VTs,
379 SDValue N1, SDValue N2, SDValue N3, SDValue N4);
380 SDValue getNode(unsigned Opcode, SDVTList VTs,
381 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
383 SDValue getNode(unsigned Opcode, SDVTList VTs,
384 const SDValue *Ops, unsigned NumOps);
386 SDValue getMemcpy(SDValue Chain, SDValue Dst, SDValue Src,
387 SDValue Size, unsigned Align,
389 const Value *DstSV, uint64_t DstSVOff,
390 const Value *SrcSV, uint64_t SrcSVOff);
392 SDValue getMemmove(SDValue Chain, SDValue Dst, SDValue Src,
393 SDValue Size, unsigned Align,
394 const Value *DstSV, uint64_t DstOSVff,
395 const Value *SrcSV, uint64_t SrcSVOff);
397 SDValue getMemset(SDValue Chain, SDValue Dst, SDValue Src,
398 SDValue Size, unsigned Align,
399 const Value *DstSV, uint64_t DstSVOff);
401 /// getSetCC - Helper function to make it easier to build SetCC's if you just
402 /// have an ISD::CondCode instead of an SDValue.
404 SDValue getSetCC(MVT VT, SDValue LHS, SDValue RHS,
405 ISD::CondCode Cond) {
406 return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond));
409 /// getVSetCC - Helper function to make it easier to build VSetCC's nodes
410 /// if you just have an ISD::CondCode instead of an SDValue.
412 SDValue getVSetCC(MVT VT, SDValue LHS, SDValue RHS,
413 ISD::CondCode Cond) {
414 return getNode(ISD::VSETCC, VT, LHS, RHS, getCondCode(Cond));
417 /// getSelectCC - Helper function to make it easier to build SelectCC's if you
418 /// just have an ISD::CondCode instead of an SDValue.
420 SDValue getSelectCC(SDValue LHS, SDValue RHS,
421 SDValue True, SDValue False, ISD::CondCode Cond) {
422 return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False,
426 /// getVAArg - VAArg produces a result and token chain, and takes a pointer
427 /// and a source value as input.
428 SDValue getVAArg(MVT VT, SDValue Chain, SDValue Ptr,
431 /// getAtomic - Gets a node for an atomic op, produces result and chain, takes
433 SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr,
434 SDValue Cmp, SDValue Swp, const Value* PtrVal,
435 unsigned Alignment=0);
437 /// getAtomic - Gets a node for an atomic op, produces result and chain, takes
439 SDValue getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr,
440 SDValue Val, const Value* PtrVal,
441 unsigned Alignment = 0);
443 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
444 /// Allowed to return something different (and simpler) if Simplify is true.
445 SDValue getMergeValues(const SDValue *Ops, unsigned NumOps,
446 bool Simplify = true);
448 /// getMergeValues - Create a MERGE_VALUES node from the given types and ops.
449 /// Allowed to return something different (and simpler) if Simplify is true.
450 /// May be faster than the above version if VTs is known and NumOps is large.
451 SDValue getMergeValues(SDVTList VTs, const SDValue *Ops, unsigned NumOps,
452 bool Simplify = true) {
453 if (Simplify && NumOps == 1)
455 return getNode(ISD::MERGE_VALUES, VTs, Ops, NumOps);
458 /// getLoad - Loads are not normal binary operators: their result type is not
459 /// determined by their operands, and they produce a value AND a token chain.
461 SDValue getLoad(MVT VT, SDValue Chain, SDValue Ptr,
462 const Value *SV, int SVOffset, bool isVolatile=false,
463 unsigned Alignment=0);
464 SDValue getExtLoad(ISD::LoadExtType ExtType, MVT VT,
465 SDValue Chain, SDValue Ptr, const Value *SV,
466 int SVOffset, MVT EVT, bool isVolatile=false,
467 unsigned Alignment=0);
468 SDValue getIndexedLoad(SDValue OrigLoad, SDValue Base,
469 SDValue Offset, ISD::MemIndexedMode AM);
470 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
471 MVT VT, SDValue Chain,
472 SDValue Ptr, SDValue Offset,
473 const Value *SV, int SVOffset, MVT EVT,
474 bool isVolatile=false, unsigned Alignment=0);
476 /// getStore - Helper function to build ISD::STORE nodes.
478 SDValue getStore(SDValue Chain, SDValue Val, SDValue Ptr,
479 const Value *SV, int SVOffset, bool isVolatile=false,
480 unsigned Alignment=0);
481 SDValue getTruncStore(SDValue Chain, SDValue Val, SDValue Ptr,
482 const Value *SV, int SVOffset, MVT TVT,
483 bool isVolatile=false, unsigned Alignment=0);
484 SDValue getIndexedStore(SDValue OrigStoe, SDValue Base,
485 SDValue Offset, ISD::MemIndexedMode AM);
487 // getSrcValue - Construct a node to track a Value* through the backend.
488 SDValue getSrcValue(const Value *v);
490 // getMemOperand - Construct a node to track a memory reference
491 // through the backend.
492 SDValue getMemOperand(const MachineMemOperand &MO);
494 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
495 /// specified operands. If the resultant node already exists in the DAG,
496 /// this does not modify the specified node, instead it returns the node that
497 /// already exists. If the resultant node does not exist in the DAG, the
498 /// input node is returned. As a degenerate case, if you specify the same
499 /// input operands as the node already has, the input node is returned.
500 SDValue UpdateNodeOperands(SDValue N, SDValue Op);
501 SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2);
502 SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
504 SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
505 SDValue Op3, SDValue Op4);
506 SDValue UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
507 SDValue Op3, SDValue Op4, SDValue Op5);
508 SDValue UpdateNodeOperands(SDValue N,
509 const SDValue *Ops, unsigned NumOps);
511 /// SelectNodeTo - These are used for target selectors to *mutate* the
512 /// specified node to have the specified return type, Target opcode, and
513 /// operands. Note that target opcodes are stored as
514 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
515 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT);
516 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDValue Op1);
517 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
518 SDValue Op1, SDValue Op2);
519 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
520 SDValue Op1, SDValue Op2, SDValue Op3);
521 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
522 const SDValue *Ops, unsigned NumOps);
523 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2);
524 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
525 MVT VT2, const SDValue *Ops, unsigned NumOps);
526 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
527 MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
528 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
529 MVT VT2, SDValue Op1);
530 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
531 MVT VT2, SDValue Op1, SDValue Op2);
532 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
533 MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
534 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
535 const SDValue *Ops, unsigned NumOps);
537 /// MorphNodeTo - These *mutate* the specified node to have the specified
538 /// return type, opcode, and operands.
539 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT);
540 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1);
541 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
542 SDValue Op1, SDValue Op2);
543 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
544 SDValue Op1, SDValue Op2, SDValue Op3);
545 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT,
546 const SDValue *Ops, unsigned NumOps);
547 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2);
548 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
549 MVT VT2, const SDValue *Ops, unsigned NumOps);
550 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
551 MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps);
552 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
553 MVT VT2, SDValue Op1);
554 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
555 MVT VT2, SDValue Op1, SDValue Op2);
556 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1,
557 MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
558 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
559 const SDValue *Ops, unsigned NumOps);
561 /// getTargetNode - These are used for target selectors to create a new node
562 /// with specified return type(s), target opcode, and operands.
564 /// Note that getTargetNode returns the resultant node. If there is already a
565 /// node of the specified opcode and operands, it returns that node instead of
567 SDNode *getTargetNode(unsigned Opcode, MVT VT);
568 SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1);
569 SDNode *getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2);
570 SDNode *getTargetNode(unsigned Opcode, MVT VT,
571 SDValue Op1, SDValue Op2, SDValue Op3);
572 SDNode *getTargetNode(unsigned Opcode, MVT VT,
573 const SDValue *Ops, unsigned NumOps);
574 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2);
575 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1);
576 SDNode *getTargetNode(unsigned Opcode, MVT VT1,
577 MVT VT2, SDValue Op1, SDValue Op2);
578 SDNode *getTargetNode(unsigned Opcode, MVT VT1,
579 MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
580 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
581 const SDValue *Ops, unsigned NumOps);
582 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
583 SDValue Op1, SDValue Op2);
584 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
585 SDValue Op1, SDValue Op2, SDValue Op3);
586 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
587 const SDValue *Ops, unsigned NumOps);
588 SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4,
589 const SDValue *Ops, unsigned NumOps);
590 SDNode *getTargetNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
591 const SDValue *Ops, unsigned NumOps);
593 /// getNodeIfExists - Get the specified node if it's already available, or
594 /// else return NULL.
595 SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs,
596 const SDValue *Ops, unsigned NumOps);
598 /// DAGUpdateListener - Clients of various APIs that cause global effects on
599 /// the DAG can optionally implement this interface. This allows the clients
600 /// to handle the various sorts of updates that happen.
601 class DAGUpdateListener {
603 virtual ~DAGUpdateListener();
605 /// NodeDeleted - The node N that was deleted and, if E is not null, an
606 /// equivalent node E that replaced it.
607 virtual void NodeDeleted(SDNode *N, SDNode *E) = 0;
609 /// NodeUpdated - The node N that was updated.
610 virtual void NodeUpdated(SDNode *N) = 0;
613 /// RemoveDeadNode - Remove the specified node from the system. If any of its
614 /// operands then becomes dead, remove them as well. Inform UpdateListener
615 /// for each node deleted.
616 void RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener = 0);
618 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
619 /// given list, and any nodes that become unreachable as a result.
620 void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
621 DAGUpdateListener *UpdateListener = 0);
623 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
624 /// This can cause recursive merging of nodes in the DAG. Use the first
625 /// version if 'From' is known to have a single result, use the second
626 /// if you have two nodes with identical results, use the third otherwise.
628 /// These methods all take an optional UpdateListener, which (if not null) is
629 /// informed about nodes that are deleted and modified due to recursive
630 /// changes in the dag.
632 void ReplaceAllUsesWith(SDValue From, SDValue Op,
633 DAGUpdateListener *UpdateListener = 0);
634 void ReplaceAllUsesWith(SDNode *From, SDNode *To,
635 DAGUpdateListener *UpdateListener = 0);
636 void ReplaceAllUsesWith(SDNode *From, const SDValue *To,
637 DAGUpdateListener *UpdateListener = 0);
639 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
640 /// uses of other values produced by From.Val alone.
641 void ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
642 DAGUpdateListener *UpdateListener = 0);
644 /// ReplaceAllUsesOfValuesWith - Like ReplaceAllUsesOfValueWith, but
645 /// for multiple values at once. This correctly handles the case where
646 /// there is an overlap between the From values and the To values.
647 void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
649 DAGUpdateListener *UpdateListener = 0);
651 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
652 /// based on their topological order. It returns the maximum id and a vector
653 /// of the SDNodes* in assigned order by reference.
654 unsigned AssignTopologicalOrder(std::vector<SDNode*> &TopOrder);
656 /// isCommutativeBinOp - Returns true if the opcode is a commutative binary
658 static bool isCommutativeBinOp(unsigned Opcode) {
659 // FIXME: This should get its info from the td file, so that we can include
674 case ISD::ADDE: return true;
675 default: return false;
681 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
682 /// specified value type. If minAlign is specified, the slot size will have
683 /// at least that alignment.
684 SDValue CreateStackTemporary(MVT VT, unsigned minAlign = 1);
686 /// FoldSetCC - Constant fold a setcc to true or false.
687 SDValue FoldSetCC(MVT VT, SDValue N1,
688 SDValue N2, ISD::CondCode Cond);
690 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
691 /// use this predicate to simplify operations downstream.
692 bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
694 /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We
695 /// use this predicate to simplify operations downstream. Op and Mask are
696 /// known to be the same type.
697 bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
700 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
701 /// known to be either zero or one and return them in the KnownZero/KnownOne
702 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
703 /// processing. Targets can implement the computeMaskedBitsForTargetNode
704 /// method in the TargetLowering class to allow target nodes to be understood.
705 void ComputeMaskedBits(SDValue Op, const APInt &Mask, APInt &KnownZero,
706 APInt &KnownOne, unsigned Depth = 0) const;
708 /// ComputeNumSignBits - Return the number of times the sign bit of the
709 /// register is replicated into the other bits. We know that at least 1 bit
710 /// is always equal to the sign bit (itself), but other cases can give us
711 /// information. For example, immediately after an "SRA X, 2", we know that
712 /// the top 3 bits are all equal to each other, so we return 3. Targets can
713 /// implement the ComputeNumSignBitsForTarget method in the TargetLowering
714 /// class to allow target nodes to be understood.
715 unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
717 /// isVerifiedDebugInfoDesc - Returns true if the specified SDValue has
718 /// been verified as a debug information descriptor.
719 bool isVerifiedDebugInfoDesc(SDValue Op) const;
721 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
722 /// element of the result of the vector shuffle.
723 SDValue getShuffleScalarElt(const SDNode *N, unsigned Idx);
726 void RemoveNodeFromCSEMaps(SDNode *N);
727 SDNode *AddNonLeafNodeToCSEMaps(SDNode *N);
728 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
729 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
731 SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops, unsigned NumOps,
734 void DeleteNodeNotInCSEMaps(SDNode *N);
736 unsigned getMVTAlignment(MVT MemoryVT) const;
738 void allnodes_clear();
740 // List of non-single value types.
741 std::vector<SDVTList> VTList;
743 // Maps to auto-CSE operations.
744 std::vector<CondCodeSDNode*> CondCodeNodes;
746 std::vector<SDNode*> ValueTypeNodes;
747 std::map<MVT, SDNode*, MVT::compareRawBits> ExtendedValueTypeNodes;
748 StringMap<SDNode*> ExternalSymbols;
749 StringMap<SDNode*> TargetExternalSymbols;
752 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
753 typedef SelectionDAG::allnodes_iterator nodes_iterator;
754 static nodes_iterator nodes_begin(SelectionDAG *G) {
755 return G->allnodes_begin();
757 static nodes_iterator nodes_end(SelectionDAG *G) {
758 return G->allnodes_end();
762 } // end namespace llvm