1 //===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the declaration of the BasicBlock class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_IR_BASICBLOCK_H
15 #define LLVM_IR_BASICBLOCK_H
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/IR/Instruction.h"
20 #include "llvm/IR/SymbolTableListTraits.h"
21 #include "llvm/Support/CBindingWrapping.h"
22 #include "llvm/Support/DataTypes.h"
34 struct SymbolTableListSentinelTraits<BasicBlock>
35 : public ilist_half_embedded_sentinel_traits<BasicBlock> {};
37 /// \brief LLVM Basic Block Representation
39 /// This represents a single basic block in LLVM. A basic block is simply a
40 /// container of instructions that execute sequentially. Basic blocks are Values
41 /// because they are referenced by instructions such as branches and switch
42 /// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
43 /// represents a label to which a branch can jump.
45 /// A well formed basic block is formed of a list of non-terminating
46 /// instructions followed by a single TerminatorInst instruction.
47 /// TerminatorInst's may not occur in the middle of basic blocks, and must
48 /// terminate the blocks. The BasicBlock class allows malformed basic blocks to
49 /// occur because it may be useful in the intermediate stage of constructing or
50 /// modifying a program. However, the verifier will ensure that basic blocks
51 /// are "well formed".
52 class BasicBlock : public Value, // Basic blocks are data objects also
53 public ilist_node_with_parent<BasicBlock, Function> {
54 friend class BlockAddress;
56 typedef SymbolTableList<Instruction> InstListType;
59 InstListType InstList;
62 void setParent(Function *parent);
63 friend class SymbolTableListTraits<BasicBlock>;
65 BasicBlock(const BasicBlock &) = delete;
66 void operator=(const BasicBlock &) = delete;
68 /// \brief Constructor.
70 /// If the function parameter is specified, the basic block is automatically
71 /// inserted at either the end of the function (if InsertBefore is null), or
72 /// before the specified basic block.
73 explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
74 Function *Parent = nullptr,
75 BasicBlock *InsertBefore = nullptr);
77 /// \brief Get the context in which this basic block lives.
78 LLVMContext &getContext() const;
80 /// Instruction iterators...
81 typedef InstListType::iterator iterator;
82 typedef InstListType::const_iterator const_iterator;
83 typedef InstListType::reverse_iterator reverse_iterator;
84 typedef InstListType::const_reverse_iterator const_reverse_iterator;
86 /// \brief Creates a new BasicBlock.
88 /// If the Parent parameter is specified, the basic block is automatically
89 /// inserted at either the end of the function (if InsertBefore is 0), or
90 /// before the specified basic block.
91 static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
92 Function *Parent = nullptr,
93 BasicBlock *InsertBefore = nullptr) {
94 return new BasicBlock(Context, Name, Parent, InsertBefore);
96 ~BasicBlock() override;
98 /// \brief Return the enclosing method, or null if none.
99 const Function *getParent() const { return Parent; }
100 Function *getParent() { return Parent; }
102 /// \brief Return the module owning the function this basic block belongs to,
103 /// or nullptr it the function does not have a module.
105 /// Note: this is undefined behavior if the block does not have a parent.
106 const Module *getModule() const;
109 /// \brief Returns the terminator instruction if the block is well formed or
110 /// null if the block is not well formed.
111 TerminatorInst *getTerminator();
112 const TerminatorInst *getTerminator() const;
114 /// \brief Returns the call instruction marked 'musttail' prior to the
115 /// terminating return instruction of this basic block, if such a call is
116 /// present. Otherwise, returns null.
117 CallInst *getTerminatingMustTailCall();
118 const CallInst *getTerminatingMustTailCall() const {
119 return const_cast<BasicBlock *>(this)->getTerminatingMustTailCall();
122 /// \brief Returns a pointer to the first instruction in this block that is
123 /// not a PHINode instruction.
125 /// When adding instructions to the beginning of the basic block, they should
126 /// be added before the returned value, not before the first instruction,
127 /// which might be PHI. Returns 0 is there's no non-PHI instruction.
128 Instruction* getFirstNonPHI();
129 const Instruction* getFirstNonPHI() const {
130 return const_cast<BasicBlock*>(this)->getFirstNonPHI();
133 /// \brief Returns a pointer to the first instruction in this block that is not
134 /// a PHINode or a debug intrinsic.
135 Instruction* getFirstNonPHIOrDbg();
136 const Instruction* getFirstNonPHIOrDbg() const {
137 return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg();
140 /// \brief Returns a pointer to the first instruction in this block that is not
141 /// a PHINode, a debug intrinsic, or a lifetime intrinsic.
142 Instruction* getFirstNonPHIOrDbgOrLifetime();
143 const Instruction* getFirstNonPHIOrDbgOrLifetime() const {
144 return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();
147 /// \brief Returns an iterator to the first instruction in this block that is
148 /// suitable for inserting a non-PHI instruction.
150 /// In particular, it skips all PHIs and LandingPad instructions.
151 iterator getFirstInsertionPt();
152 const_iterator getFirstInsertionPt() const {
153 return const_cast<BasicBlock*>(this)->getFirstInsertionPt();
156 /// \brief Unlink 'this' from the containing function, but do not delete it.
157 void removeFromParent();
159 /// \brief Unlink 'this' from the containing function and delete it.
161 // \returns an iterator pointing to the element after the erased one.
162 SymbolTableList<BasicBlock>::iterator eraseFromParent();
164 /// \brief Unlink this basic block from its current function and insert it
165 /// into the function that \p MovePos lives in, right before \p MovePos.
166 void moveBefore(BasicBlock *MovePos);
168 /// \brief Unlink this basic block from its current function and insert it
169 /// right after \p MovePos in the function \p MovePos lives in.
170 void moveAfter(BasicBlock *MovePos);
172 /// \brief Insert unlinked basic block into a function.
174 /// Inserts an unlinked basic block into \c Parent. If \c InsertBefore is
175 /// provided, inserts before that basic block, otherwise inserts at the end.
177 /// \pre \a getParent() is \c nullptr.
178 void insertInto(Function *Parent, BasicBlock *InsertBefore = nullptr);
180 /// \brief Return the predecessor of this block if it has a single predecessor
181 /// block. Otherwise return a null pointer.
182 BasicBlock *getSinglePredecessor();
183 const BasicBlock *getSinglePredecessor() const {
184 return const_cast<BasicBlock*>(this)->getSinglePredecessor();
187 /// \brief Return the predecessor of this block if it has a unique predecessor
188 /// block. Otherwise return a null pointer.
190 /// Note that unique predecessor doesn't mean single edge, there can be
191 /// multiple edges from the unique predecessor to this block (for example a
192 /// switch statement with multiple cases having the same destination).
193 BasicBlock *getUniquePredecessor();
194 const BasicBlock *getUniquePredecessor() const {
195 return const_cast<BasicBlock*>(this)->getUniquePredecessor();
198 /// \brief Return the successor of this block if it has a single successor.
199 /// Otherwise return a null pointer.
201 /// This method is analogous to getSinglePredecessor above.
202 BasicBlock *getSingleSuccessor();
203 const BasicBlock *getSingleSuccessor() const {
204 return const_cast<BasicBlock*>(this)->getSingleSuccessor();
207 /// \brief Return the successor of this block if it has a unique successor.
208 /// Otherwise return a null pointer.
210 /// This method is analogous to getUniquePredecessor above.
211 BasicBlock *getUniqueSuccessor();
212 const BasicBlock *getUniqueSuccessor() const {
213 return const_cast<BasicBlock*>(this)->getUniqueSuccessor();
216 //===--------------------------------------------------------------------===//
217 /// Instruction iterator methods
219 inline iterator begin() { return InstList.begin(); }
220 inline const_iterator begin() const { return InstList.begin(); }
221 inline iterator end () { return InstList.end(); }
222 inline const_iterator end () const { return InstList.end(); }
224 inline reverse_iterator rbegin() { return InstList.rbegin(); }
225 inline const_reverse_iterator rbegin() const { return InstList.rbegin(); }
226 inline reverse_iterator rend () { return InstList.rend(); }
227 inline const_reverse_iterator rend () const { return InstList.rend(); }
229 inline size_t size() const { return InstList.size(); }
230 inline bool empty() const { return InstList.empty(); }
231 inline const Instruction &front() const { return InstList.front(); }
232 inline Instruction &front() { return InstList.front(); }
233 inline const Instruction &back() const { return InstList.back(); }
234 inline Instruction &back() { return InstList.back(); }
236 /// \brief Return the underlying instruction list container.
238 /// Currently you need to access the underlying instruction list container
239 /// directly if you want to modify it.
240 const InstListType &getInstList() const { return InstList; }
241 InstListType &getInstList() { return InstList; }
243 /// \brief Returns a pointer to a member of the instruction list.
244 static InstListType BasicBlock::*getSublistAccess(Instruction*) {
245 return &BasicBlock::InstList;
248 /// \brief Returns a pointer to the symbol table if one exists.
249 ValueSymbolTable *getValueSymbolTable();
251 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
252 static inline bool classof(const Value *V) {
253 return V->getValueID() == Value::BasicBlockVal;
256 /// \brief Cause all subinstructions to "let go" of all the references that
257 /// said subinstructions are maintaining.
259 /// This allows one to 'delete' a whole class at a time, even though there may
260 /// be circular references... first all references are dropped, and all use
261 /// counts go to zero. Then everything is delete'd for real. Note that no
262 /// operations are valid on an object that has "dropped all references",
263 /// except operator delete.
264 void dropAllReferences();
266 /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer
267 /// able to reach it.
269 /// This is actually not used to update the Predecessor list, but is actually
270 /// used to update the PHI nodes that reside in the block. Note that this
271 /// should be called while the predecessor still refers to this block.
272 void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false);
274 bool canSplitPredecessors() const;
276 /// \brief Split the basic block into two basic blocks at the specified
279 /// Note that all instructions BEFORE the specified iterator stay as part of
280 /// the original basic block, an unconditional branch is added to the original
281 /// BB, and the rest of the instructions in the BB are moved to the new BB,
282 /// including the old terminator. The newly formed BasicBlock is returned.
283 /// This function invalidates the specified iterator.
285 /// Note that this only works on well formed basic blocks (must have a
286 /// terminator), and 'I' must not be the end of instruction list (which would
287 /// cause a degenerate basic block to be formed, having a terminator inside of
288 /// the basic block).
290 /// Also note that this doesn't preserve any passes. To split blocks while
291 /// keeping loop information consistent, use the SplitBlock utility function.
292 BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "");
293 BasicBlock *splitBasicBlock(Instruction *I, const Twine &BBName = "") {
294 return splitBasicBlock(I->getIterator(), BBName);
297 /// \brief Returns true if there are any uses of this basic block other than
298 /// direct branches, switches, etc. to it.
299 bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; }
301 /// \brief Update all phi nodes in this basic block's successors to refer to
302 /// basic block \p New instead of to it.
303 void replaceSuccessorsPhiUsesWith(BasicBlock *New);
305 /// \brief Return true if this basic block is an exception handling block.
306 bool isEHPad() const { return getFirstNonPHI()->isEHPad(); }
308 /// \brief Return true if this basic block is a landing pad.
310 /// Being a ``landing pad'' means that the basic block is the destination of
311 /// the 'unwind' edge of an invoke instruction.
312 bool isLandingPad() const;
314 /// \brief Return the landingpad instruction associated with the landing pad.
315 LandingPadInst *getLandingPadInst();
316 const LandingPadInst *getLandingPadInst() const;
319 /// \brief Increment the internal refcount of the number of BlockAddresses
320 /// referencing this BasicBlock by \p Amt.
322 /// This is almost always 0, sometimes one possibly, but almost never 2, and
323 /// inconceivably 3 or more.
324 void AdjustBlockAddressRefCount(int Amt) {
325 setValueSubclassData(getSubclassDataFromValue()+Amt);
326 assert((int)(signed char)getSubclassDataFromValue() >= 0 &&
327 "Refcount wrap-around");
329 /// \brief Shadow Value::setValueSubclassData with a private forwarding method
330 /// so that any future subclasses cannot accidentally use it.
331 void setValueSubclassData(unsigned short D) {
332 Value::setValueSubclassData(D);
336 // Create wrappers for C Binding types (see CBindingWrapping.h).
337 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(BasicBlock, LLVMBasicBlockRef)
339 } // End llvm namespace