[C++11] More 'nullptr' conversion or in some cases just using a boolean check instead...
[oota-llvm.git] / include / llvm / IR / ConstantRange.h
1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value.  This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators.  When used with boolean values, the following are important
15 // ranges: :
16 //
17 //  [F, F) = {}     = Empty set
18 //  [T, F) = {T}
19 //  [F, T) = {F}
20 //  [T, T) = {F, T} = Full set
21 //
22 // The other integral ranges use min/max values for special range values. For
23 // example, for 8-bit types, it uses:
24 // [0, 0)     = {}       = Empty set
25 // [255, 255) = {0..255} = Full Set
26 //
27 // Note that ConstantRange can be used to represent either signed or
28 // unsigned ranges.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #ifndef LLVM_SUPPORT_CONSTANTRANGE_H
33 #define LLVM_SUPPORT_CONSTANTRANGE_H
34
35 #include "llvm/ADT/APInt.h"
36 #include "llvm/Support/DataTypes.h"
37
38 namespace llvm {
39
40 /// ConstantRange - This class represents an range of values.
41 ///
42 class ConstantRange {
43   APInt Lower, Upper;
44
45   // If we have move semantics, pass APInts by value and move them into place.
46   typedef APInt APIntMoveTy;
47
48 public:
49   /// Initialize a full (the default) or empty set for the specified bit width.
50   ///
51   explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
52
53   /// Initialize a range to hold the single specified value.
54   ///
55   ConstantRange(APIntMoveTy Value);
56
57   /// @brief Initialize a range of values explicitly. This will assert out if
58   /// Lower==Upper and Lower != Min or Max value for its type. It will also
59   /// assert out if the two APInt's are not the same bit width.
60   ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper);
61
62   /// makeICmpRegion - Produce the smallest range that contains all values that
63   /// might satisfy the comparison specified by Pred when compared to any value
64   /// contained within Other.
65   ///
66   /// Solves for range X in 'for all x in X, there exists a y in Y such that
67   /// icmp op x, y is true'. Every value that might make the comparison true
68   /// is included in the resulting range.
69   static ConstantRange makeICmpRegion(unsigned Pred,
70                                       const ConstantRange &Other);
71
72   /// getLower - Return the lower value for this range...
73   ///
74   const APInt &getLower() const { return Lower; }
75
76   /// getUpper - Return the upper value for this range...
77   ///
78   const APInt &getUpper() const { return Upper; }
79
80   /// getBitWidth - get the bit width of this ConstantRange
81   ///
82   uint32_t getBitWidth() const { return Lower.getBitWidth(); }
83
84   /// isFullSet - Return true if this set contains all of the elements possible
85   /// for this data-type
86   ///
87   bool isFullSet() const;
88
89   /// isEmptySet - Return true if this set contains no members.
90   ///
91   bool isEmptySet() const;
92
93   /// isWrappedSet - Return true if this set wraps around the top of the range,
94   /// for example: [100, 8)
95   ///
96   bool isWrappedSet() const;
97
98   /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
99   /// its bitwidth, for example: i8 [120, 140).
100   ///
101   bool isSignWrappedSet() const;
102
103   /// contains - Return true if the specified value is in the set.
104   ///
105   bool contains(const APInt &Val) const;
106
107   /// contains - Return true if the other range is a subset of this one.
108   ///
109   bool contains(const ConstantRange &CR) const;
110
111   /// getSingleElement - If this set contains a single element, return it,
112   /// otherwise return null.
113   ///
114   const APInt *getSingleElement() const {
115     if (Upper == Lower + 1)
116       return &Lower;
117     return nullptr;
118   }
119
120   /// isSingleElement - Return true if this set contains exactly one member.
121   ///
122   bool isSingleElement() const { return getSingleElement() != nullptr; }
123
124   /// getSetSize - Return the number of elements in this set.
125   ///
126   APInt getSetSize() const;
127
128   /// getUnsignedMax - Return the largest unsigned value contained in the
129   /// ConstantRange.
130   ///
131   APInt getUnsignedMax() const;
132
133   /// getUnsignedMin - Return the smallest unsigned value contained in the
134   /// ConstantRange.
135   ///
136   APInt getUnsignedMin() const;
137
138   /// getSignedMax - Return the largest signed value contained in the
139   /// ConstantRange.
140   ///
141   APInt getSignedMax() const;
142
143   /// getSignedMin - Return the smallest signed value contained in the
144   /// ConstantRange.
145   ///
146   APInt getSignedMin() const;
147
148   /// operator== - Return true if this range is equal to another range.
149   ///
150   bool operator==(const ConstantRange &CR) const {
151     return Lower == CR.Lower && Upper == CR.Upper;
152   }
153   bool operator!=(const ConstantRange &CR) const {
154     return !operator==(CR);
155   }
156
157   /// subtract - Subtract the specified constant from the endpoints of this
158   /// constant range.
159   ConstantRange subtract(const APInt &CI) const;
160
161   /// \brief Subtract the specified range from this range (aka relative
162   /// complement of the sets).
163   ConstantRange difference(const ConstantRange &CR) const;
164
165   /// intersectWith - Return the range that results from the intersection of
166   /// this range with another range.  The resultant range is guaranteed to
167   /// include all elements contained in both input ranges, and to have the
168   /// smallest possible set size that does so.  Because there may be two
169   /// intersections with the same set size, A.intersectWith(B) might not
170   /// be equal to B.intersectWith(A).
171   ///
172   ConstantRange intersectWith(const ConstantRange &CR) const;
173
174   /// unionWith - Return the range that results from the union of this range
175   /// with another range.  The resultant range is guaranteed to include the
176   /// elements of both sets, but may contain more.  For example, [3, 9) union
177   /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
178   /// in either set before.
179   ///
180   ConstantRange unionWith(const ConstantRange &CR) const;
181
182   /// zeroExtend - Return a new range in the specified integer type, which must
183   /// be strictly larger than the current type.  The returned range will
184   /// correspond to the possible range of values if the source range had been
185   /// zero extended to BitWidth.
186   ConstantRange zeroExtend(uint32_t BitWidth) const;
187
188   /// signExtend - Return a new range in the specified integer type, which must
189   /// be strictly larger than the current type.  The returned range will
190   /// correspond to the possible range of values if the source range had been
191   /// sign extended to BitWidth.
192   ConstantRange signExtend(uint32_t BitWidth) const;
193
194   /// truncate - Return a new range in the specified integer type, which must be
195   /// strictly smaller than the current type.  The returned range will
196   /// correspond to the possible range of values if the source range had been
197   /// truncated to the specified type.
198   ConstantRange truncate(uint32_t BitWidth) const;
199
200   /// zextOrTrunc - make this range have the bit width given by \p BitWidth. The
201   /// value is zero extended, truncated, or left alone to make it that width.
202   ConstantRange zextOrTrunc(uint32_t BitWidth) const;
203   
204   /// sextOrTrunc - make this range have the bit width given by \p BitWidth. The
205   /// value is sign extended, truncated, or left alone to make it that width.
206   ConstantRange sextOrTrunc(uint32_t BitWidth) const;
207
208   /// add - Return a new range representing the possible values resulting
209   /// from an addition of a value in this range and a value in \p Other.
210   ConstantRange add(const ConstantRange &Other) const;
211
212   /// sub - Return a new range representing the possible values resulting
213   /// from a subtraction of a value in this range and a value in \p Other.
214   ConstantRange sub(const ConstantRange &Other) const;
215
216   /// multiply - Return a new range representing the possible values resulting
217   /// from a multiplication of a value in this range and a value in \p Other.
218   /// TODO: This isn't fully implemented yet.
219   ConstantRange multiply(const ConstantRange &Other) const;
220
221   /// smax - Return a new range representing the possible values resulting
222   /// from a signed maximum of a value in this range and a value in \p Other.
223   ConstantRange smax(const ConstantRange &Other) const;
224
225   /// umax - Return a new range representing the possible values resulting
226   /// from an unsigned maximum of a value in this range and a value in \p Other.
227   ConstantRange umax(const ConstantRange &Other) const;
228
229   /// udiv - Return a new range representing the possible values resulting
230   /// from an unsigned division of a value in this range and a value in
231   /// \p Other.
232   ConstantRange udiv(const ConstantRange &Other) const;
233
234   /// binaryAnd - return a new range representing the possible values resulting
235   /// from a binary-and of a value in this range by a value in \p Other.
236   ConstantRange binaryAnd(const ConstantRange &Other) const;
237
238   /// binaryOr - return a new range representing the possible values resulting
239   /// from a binary-or of a value in this range by a value in \p Other.
240   ConstantRange binaryOr(const ConstantRange &Other) const;
241
242   /// shl - Return a new range representing the possible values resulting
243   /// from a left shift of a value in this range by a value in \p Other.
244   /// TODO: This isn't fully implemented yet.
245   ConstantRange shl(const ConstantRange &Other) const;
246
247   /// lshr - Return a new range representing the possible values resulting
248   /// from a logical right shift of a value in this range and a value in
249   /// \p Other.
250   ConstantRange lshr(const ConstantRange &Other) const;
251
252   /// inverse - Return a new range that is the logical not of the current set.
253   ///
254   ConstantRange inverse() const;
255   
256   /// print - Print out the bounds to a stream...
257   ///
258   void print(raw_ostream &OS) const;
259
260   /// dump - Allow printing from a debugger easily...
261   ///
262   void dump() const;
263 };
264
265 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
266   CR.print(OS);
267   return OS;
268 }
269
270 } // End llvm namespace
271
272 #endif