Fix include guards.
[oota-llvm.git] / include / llvm / MC / MCInstrDesc.h
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCRegisterInfo.h"
20 #include "llvm/Support/DataTypes.h"
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 // Machine Operand Flags and Description
26 //===----------------------------------------------------------------------===//
27
28 namespace MCOI {
29   // Operand constraints
30   enum OperandConstraint {
31     TIED_TO = 0,    // Must be allocated the same register as.
32     EARLY_CLOBBER   // Operand is an early clobber register operand
33   };
34
35   /// OperandFlags - These are flags set on operands, but should be considered
36   /// private, all access should go through the MCOperandInfo accessors.
37   /// See the accessors for a description of what these are.
38   enum OperandFlags {
39     LookupPtrRegClass = 0,
40     Predicate,
41     OptionalDef
42   };
43
44   /// Operand Type - Operands are tagged with one of the values of this enum.
45   enum OperandType {
46     OPERAND_UNKNOWN,
47     OPERAND_IMMEDIATE,
48     OPERAND_REGISTER,
49     OPERAND_MEMORY,
50     OPERAND_PCREL
51   };
52 }
53
54 /// MCOperandInfo - This holds information about one operand of a machine
55 /// instruction, indicating the register class for register operands, etc.
56 ///
57 class MCOperandInfo {
58 public:
59   /// RegClass - This specifies the register class enumeration of the operand
60   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
61   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
62   /// get a dynamic register class.
63   int16_t RegClass;
64
65   /// Flags - These are flags from the MCOI::OperandFlags enum.
66   uint8_t Flags;
67
68   /// OperandType - Information about the type of the operand.
69   uint8_t OperandType;
70
71   /// Lower 16 bits are used to specify which constraints are set. The higher 16
72   /// bits are used to specify the value of constraints (4 bits each).
73   uint32_t Constraints;
74   /// Currently no other information.
75
76   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
77   /// requires a callback to look up its register class.
78   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
79
80   /// isPredicate - Set if this is one of the operands that made up of
81   /// the predicate operand that controls an isPredicable() instruction.
82   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
83
84   /// isOptionalDef - Set if this operand is a optional def.
85   ///
86   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
87 };
88
89
90 //===----------------------------------------------------------------------===//
91 // Machine Instruction Flags and Description
92 //===----------------------------------------------------------------------===//
93
94 /// MCInstrDesc flags - These should be considered private to the
95 /// implementation of the MCInstrDesc class.  Clients should use the predicate
96 /// methods on MCInstrDesc, not use these directly.  These all correspond to
97 /// bitfields in the MCInstrDesc::Flags field.
98 namespace MCID {
99   enum {
100     Variadic = 0,
101     HasOptionalDef,
102     Pseudo,
103     Return,
104     Call,
105     Barrier,
106     Terminator,
107     Branch,
108     IndirectBranch,
109     Compare,
110     MoveImm,
111     Bitcast,
112     Select,
113     DelaySlot,
114     FoldableAsLoad,
115     MayLoad,
116     MayStore,
117     Predicable,
118     NotDuplicable,
119     UnmodeledSideEffects,
120     Commutable,
121     ConvertibleTo3Addr,
122     UsesCustomInserter,
123     HasPostISelHook,
124     Rematerializable,
125     CheapAsAMove,
126     ExtraSrcRegAllocReq,
127     ExtraDefRegAllocReq
128   };
129 }
130
131 /// MCInstrDesc - Describe properties that are true of each instruction in the
132 /// target description file.  This captures information about side effects,
133 /// register use and many other things.  There is one instance of this struct
134 /// for each target instruction class, and the MachineInstr class points to
135 /// this struct directly to describe itself.
136 class MCInstrDesc {
137 public:
138   unsigned short  Opcode;        // The opcode number
139   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
140   unsigned short  NumDefs;       // Num of args that are definitions
141   unsigned short  SchedClass;    // enum identifying instr sched class
142   unsigned short  Size;          // Number of bytes in encoding.
143   unsigned        Flags;         // Flags identifying machine instr class
144   uint64_t        TSFlags;       // Target Specific Flag values
145   const uint16_t *ImplicitUses;  // Registers implicitly read by this instr
146   const uint16_t *ImplicitDefs;  // Registers implicitly defined by this instr
147   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
148
149   /// \brief Returns the value of the specific constraint if
150   /// it is set. Returns -1 if it is not set.
151   int getOperandConstraint(unsigned OpNum,
152                            MCOI::OperandConstraint Constraint) const {
153     if (OpNum < NumOperands &&
154         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
155       unsigned Pos = 16 + Constraint * 4;
156       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
157     }
158     return -1;
159   }
160
161   /// \brief Return the opcode number for this descriptor.
162   unsigned getOpcode() const {
163     return Opcode;
164   }
165
166   /// \brief Return the number of declared MachineOperands for this
167   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
168   /// instructions may have additional operands at the end of the list, and note
169   /// that the machine instruction may include implicit register def/uses as
170   /// well.
171   unsigned getNumOperands() const {
172     return NumOperands;
173   }
174
175   /// \brief Return the number of MachineOperands that are register
176   /// definitions.  Register definitions always occur at the start of the
177   /// machine operand list.  This is the number of "outs" in the .td file,
178   /// and does not include implicit defs.
179   unsigned getNumDefs() const {
180     return NumDefs;
181   }
182
183   /// \brief Return flags of this instruction.
184   unsigned getFlags() const { return Flags; }
185
186   /// \brief Return true if this instruction can have a variable number of
187   /// operands.  In this case, the variable operands will be after the normal
188   /// operands but before the implicit definitions and uses (if any are
189   /// present).
190   bool isVariadic() const {
191     return Flags & (1 << MCID::Variadic);
192   }
193
194   /// \brief Set if this instruction has an optional definition, e.g.
195   /// ARM instructions which can set condition code if 's' bit is set.
196   bool hasOptionalDef() const {
197     return Flags & (1 << MCID::HasOptionalDef);
198   }
199
200   /// \brief Return true if this is a pseudo instruction that doesn't
201   /// correspond to a real machine instruction.
202   ///
203   bool isPseudo() const {
204     return Flags & (1 << MCID::Pseudo);
205   }
206
207   /// \brief Return true if the instruction is a return.
208   bool isReturn() const {
209     return Flags & (1 << MCID::Return);
210   }
211
212   /// \brief  Return true if the instruction is a call.
213   bool isCall() const {
214     return Flags & (1 << MCID::Call);
215   }
216
217   /// \brief Returns true if the specified instruction stops control flow
218   /// from executing the instruction immediately following it.  Examples include
219   /// unconditional branches and return instructions.
220   bool isBarrier() const {
221     return Flags & (1 << MCID::Barrier);
222   }
223
224   /// \brief Returns true if this instruction part of the terminator for
225   /// a basic block.  Typically this is things like return and branch
226   /// instructions.
227   ///
228   /// Various passes use this to insert code into the bottom of a basic block,
229   /// but before control flow occurs.
230   bool isTerminator() const {
231     return Flags & (1 << MCID::Terminator);
232   }
233
234   /// \brief Returns true if this is a conditional, unconditional, or
235   /// indirect branch.  Predicates below can be used to discriminate between
236   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
237   /// get more information.
238   bool isBranch() const {
239     return Flags & (1 << MCID::Branch);
240   }
241
242   /// \brief Return true if this is an indirect branch, such as a
243   /// branch through a register.
244   bool isIndirectBranch() const {
245     return Flags & (1 << MCID::IndirectBranch);
246   }
247
248   /// \brief Return true if this is a branch which may fall
249   /// through to the next instruction or may transfer control flow to some other
250   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
251   /// information about this branch.
252   bool isConditionalBranch() const {
253     return isBranch() & !isBarrier() & !isIndirectBranch();
254   }
255
256   /// \brief Return true if this is a branch which always
257   /// transfers control flow to some other block.  The
258   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
259   /// about this branch.
260   bool isUnconditionalBranch() const {
261     return isBranch() & isBarrier() & !isIndirectBranch();
262   }
263
264   /// \brief Return true if this is a branch or an instruction which directly
265   /// writes to the program counter. Considered 'may' affect rather than
266   /// 'does' affect as things like predication are not taken into account.
267   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const {
268     if (isBranch() || isCall() || isReturn() || isIndirectBranch())
269       return true;
270     unsigned PC = RI.getProgramCounter();
271     if (PC == 0)
272       return false;
273     if (hasDefOfPhysReg(MI, PC, RI))
274       return true;
275     // A variadic instruction may define PC in the variable operand list.
276     // There's currently no indication of which entries in a variable
277     // list are defs and which are uses. While that's the case, this function
278     // needs to assume they're defs in order to be conservatively correct.
279     for (int i = NumOperands, e = MI.getNumOperands(); i != e; ++i) {
280       if (MI.getOperand(i).isReg() &&
281           RI.isSubRegisterEq(PC, MI.getOperand(i).getReg()))
282         return true;
283     }
284     return false;
285   }
286
287   /// \brief Return true if this instruction has a predicate operand
288   /// that controls execution. It may be set to 'always', or may be set to other
289   /// values. There are various methods in TargetInstrInfo that can be used to
290   /// control and modify the predicate in this instruction.
291   bool isPredicable() const {
292     return Flags & (1 << MCID::Predicable);
293   }
294
295   /// \brief Return true if this instruction is a comparison.
296   bool isCompare() const {
297     return Flags & (1 << MCID::Compare);
298   }
299
300   /// \brief Return true if this instruction is a move immediate
301   /// (including conditional moves) instruction.
302   bool isMoveImmediate() const {
303     return Flags & (1 << MCID::MoveImm);
304   }
305
306   /// \brief Return true if this instruction is a bitcast instruction.
307   bool isBitcast() const {
308     return Flags & (1 << MCID::Bitcast);
309   }
310
311   /// \brief Return true if this is a select instruction.
312   bool isSelect() const {
313     return Flags & (1 << MCID::Select);
314   }
315
316   /// \brief Return true if this instruction cannot be safely
317   /// duplicated.  For example, if the instruction has a unique labels attached
318   /// to it, duplicating it would cause multiple definition errors.
319   bool isNotDuplicable() const {
320     return Flags & (1 << MCID::NotDuplicable);
321   }
322
323   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
324   /// which must be filled by the code generator.
325   bool hasDelaySlot() const {
326     return Flags & (1 << MCID::DelaySlot);
327   }
328
329   /// canFoldAsLoad - Return true for instructions that can be folded as
330   /// memory operands in other instructions. The most common use for this
331   /// is instructions that are simple loads from memory that don't modify
332   /// the loaded value in any way, but it can also be used for instructions
333   /// that can be expressed as constant-pool loads, such as V_SETALLONES
334   /// on x86, to allow them to be folded when it is beneficial.
335   /// This should only be set on instructions that return a value in their
336   /// only virtual register definition.
337   bool canFoldAsLoad() const {
338     return Flags & (1 << MCID::FoldableAsLoad);
339   }
340
341   //===--------------------------------------------------------------------===//
342   // Side Effect Analysis
343   //===--------------------------------------------------------------------===//
344
345   /// \brief Return true if this instruction could possibly read memory.
346   /// Instructions with this flag set are not necessarily simple load
347   /// instructions, they may load a value and modify it, for example.
348   bool mayLoad() const {
349     return Flags & (1 << MCID::MayLoad);
350   }
351
352
353   /// \brief Return true if this instruction could possibly modify memory.
354   /// Instructions with this flag set are not necessarily simple store
355   /// instructions, they may store a modified value based on their operands, or
356   /// may not actually modify anything, for example.
357   bool mayStore() const {
358     return Flags & (1 << MCID::MayStore);
359   }
360
361   /// hasUnmodeledSideEffects - Return true if this instruction has side
362   /// effects that are not modeled by other flags.  This does not return true
363   /// for instructions whose effects are captured by:
364   ///
365   ///  1. Their operand list and implicit definition/use list.  Register use/def
366   ///     info is explicit for instructions.
367   ///  2. Memory accesses.  Use mayLoad/mayStore.
368   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
369   ///
370   /// Examples of side effects would be modifying 'invisible' machine state like
371   /// a control register, flushing a cache, modifying a register invisible to
372   /// LLVM, etc.
373   ///
374   bool hasUnmodeledSideEffects() const {
375     return Flags & (1 << MCID::UnmodeledSideEffects);
376   }
377
378   //===--------------------------------------------------------------------===//
379   // Flags that indicate whether an instruction can be modified by a method.
380   //===--------------------------------------------------------------------===//
381
382   /// isCommutable - Return true if this may be a 2- or 3-address
383   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
384   /// result if Y and Z are exchanged.  If this flag is set, then the
385   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
386   /// instruction.
387   ///
388   /// Note that this flag may be set on instructions that are only commutable
389   /// sometimes.  In these cases, the call to commuteInstruction will fail.
390   /// Also note that some instructions require non-trivial modification to
391   /// commute them.
392   bool isCommutable() const {
393     return Flags & (1 << MCID::Commutable);
394   }
395
396   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
397   /// which can be changed into a 3-address instruction if needed.  Doing this
398   /// transformation can be profitable in the register allocator, because it
399   /// means that the instruction can use a 2-address form if possible, but
400   /// degrade into a less efficient form if the source and dest register cannot
401   /// be assigned to the same register.  For example, this allows the x86
402   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
403   /// is the same speed as the shift but has bigger code size.
404   ///
405   /// If this returns true, then the target must implement the
406   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
407   /// is allowed to fail if the transformation isn't valid for this specific
408   /// instruction (e.g. shl reg, 4 on x86).
409   ///
410   bool isConvertibleTo3Addr() const {
411     return Flags & (1 << MCID::ConvertibleTo3Addr);
412   }
413
414   /// usesCustomInsertionHook - Return true if this instruction requires
415   /// custom insertion support when the DAG scheduler is inserting it into a
416   /// machine basic block.  If this is true for the instruction, it basically
417   /// means that it is a pseudo instruction used at SelectionDAG time that is
418   /// expanded out into magic code by the target when MachineInstrs are formed.
419   ///
420   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
421   /// is used to insert this into the MachineBasicBlock.
422   bool usesCustomInsertionHook() const {
423     return Flags & (1 << MCID::UsesCustomInserter);
424   }
425
426   /// hasPostISelHook - Return true if this instruction requires *adjustment*
427   /// after instruction selection by calling a target hook. For example, this
428   /// can be used to fill in ARM 's' optional operand depending on whether
429   /// the conditional flag register is used.
430   bool hasPostISelHook() const {
431     return Flags & (1 << MCID::HasPostISelHook);
432   }
433
434   /// isRematerializable - Returns true if this instruction is a candidate for
435   /// remat.  This flag is deprecated, please don't use it anymore.  If this
436   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
437   /// verify the instruction is really rematable.
438   bool isRematerializable() const {
439     return Flags & (1 << MCID::Rematerializable);
440   }
441
442   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
443   /// less) than a move instruction. This is useful during certain types of
444   /// optimizations (e.g., remat during two-address conversion or machine licm)
445   /// where we would like to remat or hoist the instruction, but not if it costs
446   /// more than moving the instruction into the appropriate register. Note, we
447   /// are not marking copies from and to the same register class with this flag.
448   bool isAsCheapAsAMove() const {
449     return Flags & (1 << MCID::CheapAsAMove);
450   }
451
452   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
453   /// have special register allocation requirements that are not captured by the
454   /// operand register classes. e.g. ARM::STRD's two source registers must be an
455   /// even / odd pair, ARM::STM registers have to be in ascending order.
456   /// Post-register allocation passes should not attempt to change allocations
457   /// for sources of instructions with this flag.
458   bool hasExtraSrcRegAllocReq() const {
459     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
460   }
461
462   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
463   /// have special register allocation requirements that are not captured by the
464   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
465   /// even / odd pair, ARM::LDM registers have to be in ascending order.
466   /// Post-register allocation passes should not attempt to change allocations
467   /// for definitions of instructions with this flag.
468   bool hasExtraDefRegAllocReq() const {
469     return Flags & (1 << MCID::ExtraDefRegAllocReq);
470   }
471
472
473   /// getImplicitUses - Return a list of registers that are potentially
474   /// read by any instance of this machine instruction.  For example, on X86,
475   /// the "adc" instruction adds two register operands and adds the carry bit in
476   /// from the flags register.  In this case, the instruction is marked as
477   /// implicitly reading the flags.  Likewise, the variable shift instruction on
478   /// X86 is marked as implicitly reading the 'CL' register, which it always
479   /// does.
480   ///
481   /// This method returns null if the instruction has no implicit uses.
482   const uint16_t *getImplicitUses() const {
483     return ImplicitUses;
484   }
485
486   /// \brief Return the number of implicit uses this instruction has.
487   unsigned getNumImplicitUses() const {
488     if (ImplicitUses == 0) return 0;
489     unsigned i = 0;
490     for (; ImplicitUses[i]; ++i) /*empty*/;
491     return i;
492   }
493
494   /// getImplicitDefs - Return a list of registers that are potentially
495   /// written by any instance of this machine instruction.  For example, on X86,
496   /// many instructions implicitly set the flags register.  In this case, they
497   /// are marked as setting the FLAGS.  Likewise, many instructions always
498   /// deposit their result in a physical register.  For example, the X86 divide
499   /// instruction always deposits the quotient and remainder in the EAX/EDX
500   /// registers.  For that instruction, this will return a list containing the
501   /// EAX/EDX/EFLAGS registers.
502   ///
503   /// This method returns null if the instruction has no implicit defs.
504   const uint16_t *getImplicitDefs() const {
505     return ImplicitDefs;
506   }
507
508   /// \brief Return the number of implicit defs this instruct has.
509   unsigned getNumImplicitDefs() const {
510     if (ImplicitDefs == 0) return 0;
511     unsigned i = 0;
512     for (; ImplicitDefs[i]; ++i) /*empty*/;
513     return i;
514   }
515
516   /// \brief Return true if this instruction implicitly
517   /// uses the specified physical register.
518   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
519     if (const uint16_t *ImpUses = ImplicitUses)
520       for (; *ImpUses; ++ImpUses)
521         if (*ImpUses == Reg) return true;
522     return false;
523   }
524
525   /// \brief Return true if this instruction implicitly
526   /// defines the specified physical register.
527   bool hasImplicitDefOfPhysReg(unsigned Reg,
528                                const MCRegisterInfo *MRI = 0) const {
529     if (const uint16_t *ImpDefs = ImplicitDefs)
530       for (; *ImpDefs; ++ImpDefs)
531         if (*ImpDefs == Reg || (MRI && MRI->isSubRegister(Reg, *ImpDefs)))
532             return true;
533     return false;
534   }
535
536   /// \brief Return true if this instruction defines the specified physical
537   /// register, either explicitly or implicitly.
538   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
539                        const MCRegisterInfo &RI) const {
540     for (int i = 0, e = NumDefs; i != e; ++i)
541       if (MI.getOperand(i).isReg() &&
542           RI.isSubRegisterEq(Reg, MI.getOperand(i).getReg()))
543         return true;
544     return hasImplicitDefOfPhysReg(Reg, &RI);
545   }
546
547   /// \brief Return the scheduling class for this instruction.  The
548   /// scheduling class is an index into the InstrItineraryData table.  This
549   /// returns zero if there is no known scheduling information for the
550   /// instruction.
551   unsigned getSchedClass() const {
552     return SchedClass;
553   }
554
555   /// \brief Return the number of bytes in the encoding of this instruction,
556   /// or zero if the encoding size cannot be known from the opcode.
557   unsigned getSize() const {
558     return Size;
559   }
560
561   /// \brief Find the index of the first operand in the
562   /// operand list that is used to represent the predicate. It returns -1 if
563   /// none is found.
564   int findFirstPredOperandIdx() const {
565     if (isPredicable()) {
566       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
567         if (OpInfo[i].isPredicate())
568           return i;
569     }
570     return -1;
571   }
572 };
573
574 } // end namespace llvm
575
576 #endif