1 //===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a base class that indicates that a specified class is a
11 // transformation pass implementation.
13 // Passes are designed this way so that it is possible to run passes in a cache
14 // and organizationally optimal order without having to specify it at the front
15 // end. This allows arbitrary passes to be strung together and have them
16 // executed as effeciently as possible.
18 // Passes should extend one of the classes below, depending on the guarantees
19 // that it can make about what will be modified as it is run. For example, most
20 // global optimizations should derive from FunctionPass, because they do not add
21 // or delete functions, they operate on the internals of the function.
23 // Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24 // bottom), so the APIs exposed by these files are also automatically available
25 // to all users of this file.
27 //===----------------------------------------------------------------------===//
32 #include "llvm/Support/DataTypes.h"
33 #include "llvm/Support/Streams.h"
48 class AnalysisResolver;
51 // AnalysisID - Use the PassInfo to identify a pass...
52 typedef const PassInfo* AnalysisID;
54 /// Different types of internal pass managers. External pass managers
55 /// (PassManager and FunctionPassManager) are not represented here.
56 /// Ordering of pass manager types is important here.
57 enum PassManagerType {
59 PMT_ModulePassManager = 1, /// MPPassManager
60 PMT_CallGraphPassManager, /// CGPassManager
61 PMT_FunctionPassManager, /// FPPassManager
62 PMT_LoopPassManager, /// LPPassManager
63 PMT_BasicBlockPassManager, /// BBPassManager
67 //===----------------------------------------------------------------------===//
68 /// Pass interface - Implemented by all 'passes'. Subclass this if you are an
69 /// interprocedural optimization or you do not fit into any of the more
70 /// constrained passes described below.
73 AnalysisResolver *Resolver; // Used to resolve analysis
76 void operator=(const Pass&); // DO NOT IMPLEMENT
77 Pass(const Pass &); // DO NOT IMPLEMENT
79 explicit Pass(intptr_t pid) : Resolver(0), PassID(pid) {
80 assert(pid && "pid cannot be 0");
82 explicit Pass(const void *pid) : Resolver(0), PassID((intptr_t)pid) {
83 assert(pid && "pid cannot be 0");
87 /// getPassName - Return a nice clean name for a pass. This usually
88 /// implemented in terms of the name that is registered by one of the
89 /// Registration templates, but can be overloaded directly.
91 virtual const char *getPassName() const;
93 /// getPassInfo - Return the PassInfo data structure that corresponds to this
94 /// pass... If the pass has not been registered, this will return null.
96 const PassInfo *getPassInfo() const;
98 /// print - Print out the internal state of the pass. This is called by
99 /// Analyze to print out the contents of an analysis. Otherwise it is not
100 /// necessary to implement this method. Beware that the module pointer MAY be
101 /// null. This automatically forwards to a virtual function that does not
102 /// provide the Module* in case the analysis doesn't need it it can just be
105 virtual void print(std::ostream &O, const Module *M) const;
106 void print(std::ostream *O, const Module *M) const { if (O) print(*O, M); }
107 void dump() const; // dump - call print(std::cerr, 0);
109 /// Each pass is responsible for assigning a pass manager to itself.
110 /// PMS is the stack of available pass manager.
111 virtual void assignPassManager(PMStack &,
112 PassManagerType = PMT_Unknown) {}
113 /// Check if available pass managers are suitable for this pass or not.
114 virtual void preparePassManager(PMStack &) {}
116 /// Return what kind of Pass Manager can manage this pass.
117 virtual PassManagerType getPotentialPassManagerType() const {
121 // Access AnalysisResolver
122 inline void setResolver(AnalysisResolver *AR) {
123 assert (!Resolver && "Resolver is already set");
126 inline AnalysisResolver *getResolver() {
130 /// getAnalysisUsage - This function should be overriden by passes that need
131 /// analysis information to do their job. If a pass specifies that it uses a
132 /// particular analysis result to this function, it can then use the
133 /// getAnalysis<AnalysisType>() function, below.
135 virtual void getAnalysisUsage(AnalysisUsage &) const {
136 // By default, no analysis results are used, all are invalidated.
139 /// releaseMemory() - This member can be implemented by a pass if it wants to
140 /// be able to release its memory when it is no longer needed. The default
141 /// behavior of passes is to hold onto memory for the entire duration of their
142 /// lifetime (which is the entire compile time). For pipelined passes, this
143 /// is not a big deal because that memory gets recycled every time the pass is
144 /// invoked on another program unit. For IP passes, it is more important to
145 /// free memory when it is unused.
147 /// Optionally implement this function to release pass memory when it is no
150 virtual void releaseMemory() {}
152 /// verifyAnalysis() - This member can be implemented by a analysis pass to
153 /// check state of analysis information.
154 virtual void verifyAnalysis() const {}
156 // dumpPassStructure - Implement the -debug-passes=PassStructure option
157 virtual void dumpPassStructure(unsigned Offset = 0);
159 template<typename AnalysisClass>
160 static const PassInfo *getClassPassInfo() {
161 return lookupPassInfo(intptr_t(&AnalysisClass::ID));
164 // lookupPassInfo - Return the pass info object for the specified pass class,
165 // or null if it is not known.
166 static const PassInfo *lookupPassInfo(intptr_t TI);
168 /// getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to
169 /// get analysis information that might be around, for example to update it.
170 /// This is different than getAnalysis in that it can fail (if the analysis
171 /// results haven't been computed), so should only be used if you can handle
172 /// the case when the analysis is not available. This method is often used by
173 /// transformation APIs to update analysis results for a pass automatically as
174 /// the transform is performed.
176 template<typename AnalysisType> AnalysisType *
177 getAnalysisIfAvailable() const; // Defined in PassAnalysisSupport.h
179 /// mustPreserveAnalysisID - This method serves the same function as
180 /// getAnalysisIfAvailable, but works if you just have an AnalysisID. This
181 /// obviously cannot give you a properly typed instance of the class if you
182 /// don't have the class name available (use getAnalysisIfAvailable if you
183 /// do), but it can tell you if you need to preserve the pass at least.
185 bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
187 /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
188 /// to the analysis information that they claim to use by overriding the
189 /// getAnalysisUsage function.
191 template<typename AnalysisType>
192 AnalysisType &getAnalysis() const; // Defined in PassAnalysisSupport.h
194 template<typename AnalysisType>
195 AnalysisType &getAnalysis(Function &F); // Defined in PassanalysisSupport.h
197 template<typename AnalysisType>
198 AnalysisType &getAnalysisID(const PassInfo *PI) const;
200 template<typename AnalysisType>
201 AnalysisType &getAnalysisID(const PassInfo *PI, Function &F);
204 inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
205 P.print(OS, 0); return OS;
208 //===----------------------------------------------------------------------===//
209 /// ModulePass class - This class is used to implement unstructured
210 /// interprocedural optimizations and analyses. ModulePasses may do anything
211 /// they want to the program.
213 class ModulePass : public Pass {
215 /// runOnModule - Virtual method overriden by subclasses to process the module
216 /// being operated on.
217 virtual bool runOnModule(Module &M) = 0;
219 virtual void assignPassManager(PMStack &PMS,
220 PassManagerType T = PMT_ModulePassManager);
222 /// Return what kind of Pass Manager can manage this pass.
223 virtual PassManagerType getPotentialPassManagerType() const {
224 return PMT_ModulePassManager;
227 explicit ModulePass(intptr_t pid) : Pass(pid) {}
228 explicit ModulePass(const void *pid) : Pass(pid) {}
229 // Force out-of-line virtual method.
230 virtual ~ModulePass();
234 //===----------------------------------------------------------------------===//
235 /// ImmutablePass class - This class is used to provide information that does
236 /// not need to be run. This is useful for things like target information and
237 /// "basic" versions of AnalysisGroups.
239 class ImmutablePass : public ModulePass {
241 /// initializePass - This method may be overriden by immutable passes to allow
242 /// them to perform various initialization actions they require. This is
243 /// primarily because an ImmutablePass can "require" another ImmutablePass,
244 /// and if it does, the overloaded version of initializePass may get access to
245 /// these passes with getAnalysis<>.
247 virtual void initializePass() {}
249 /// ImmutablePasses are never run.
251 bool runOnModule(Module &) { return false; }
253 explicit ImmutablePass(intptr_t pid) : ModulePass(pid) {}
254 explicit ImmutablePass(const void *pid)
257 // Force out-of-line virtual method.
258 virtual ~ImmutablePass();
261 //===----------------------------------------------------------------------===//
262 /// FunctionPass class - This class is used to implement most global
263 /// optimizations. Optimizations should subclass this class if they meet the
264 /// following constraints:
266 /// 1. Optimizations are organized globally, i.e., a function at a time
267 /// 2. Optimizing a function does not cause the addition or removal of any
268 /// functions in the module
270 class FunctionPass : public Pass {
272 explicit FunctionPass(intptr_t pid) : Pass(pid) {}
273 explicit FunctionPass(const void *pid) : Pass(pid) {}
275 /// doInitialization - Virtual method overridden by subclasses to do
276 /// any necessary per-module initialization.
278 virtual bool doInitialization(Module &) { return false; }
280 /// runOnFunction - Virtual method overriden by subclasses to do the
281 /// per-function processing of the pass.
283 virtual bool runOnFunction(Function &F) = 0;
285 /// doFinalization - Virtual method overriden by subclasses to do any post
286 /// processing needed after all passes have run.
288 virtual bool doFinalization(Module &) { return false; }
290 /// runOnModule - On a module, we run this pass by initializing,
291 /// ronOnFunction'ing once for every function in the module, then by
294 virtual bool runOnModule(Module &M);
296 /// run - On a function, we simply initialize, run the function, then
299 bool run(Function &F);
301 virtual void assignPassManager(PMStack &PMS,
302 PassManagerType T = PMT_FunctionPassManager);
304 /// Return what kind of Pass Manager can manage this pass.
305 virtual PassManagerType getPotentialPassManagerType() const {
306 return PMT_FunctionPassManager;
312 //===----------------------------------------------------------------------===//
313 /// BasicBlockPass class - This class is used to implement most local
314 /// optimizations. Optimizations should subclass this class if they
315 /// meet the following constraints:
316 /// 1. Optimizations are local, operating on either a basic block or
317 /// instruction at a time.
318 /// 2. Optimizations do not modify the CFG of the contained function, or any
319 /// other basic block in the function.
320 /// 3. Optimizations conform to all of the constraints of FunctionPasses.
322 class BasicBlockPass : public Pass {
324 explicit BasicBlockPass(intptr_t pid) : Pass(pid) {}
325 explicit BasicBlockPass(const void *pid) : Pass(pid) {}
327 /// doInitialization - Virtual method overridden by subclasses to do
328 /// any necessary per-module initialization.
330 virtual bool doInitialization(Module &) { return false; }
332 /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
333 /// to do any necessary per-function initialization.
335 virtual bool doInitialization(Function &) { return false; }
337 /// runOnBasicBlock - Virtual method overriden by subclasses to do the
338 /// per-basicblock processing of the pass.
340 virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
342 /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
343 /// do any post processing needed after all passes have run.
345 virtual bool doFinalization(Function &) { return false; }
347 /// doFinalization - Virtual method overriden by subclasses to do any post
348 /// processing needed after all passes have run.
350 virtual bool doFinalization(Module &) { return false; }
353 // To run this pass on a function, we simply call runOnBasicBlock once for
356 bool runOnFunction(Function &F);
358 virtual void assignPassManager(PMStack &PMS,
359 PassManagerType T = PMT_BasicBlockPassManager);
361 /// Return what kind of Pass Manager can manage this pass.
362 virtual PassManagerType getPotentialPassManagerType() const {
363 return PMT_BasicBlockPassManager;
367 /// If the user specifies the -time-passes argument on an LLVM tool command line
368 /// then the value of this boolean will be true, otherwise false.
369 /// @brief This is the storage for the -time-passes option.
370 extern bool TimePassesIsEnabled;
372 } // End llvm namespace
374 // Include support files that contain important APIs commonly used by Passes,
375 // but that we want to separate out to make it easier to read the header files.
377 #include "llvm/PassSupport.h"
378 #include "llvm/PassAnalysisSupport.h"