1 //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR. The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand. The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables. For example,
15 // you can do something like this:
18 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
19 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 // ... Pattern is matched and variables are bound ...
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
27 //===----------------------------------------------------------------------===//
29 #ifndef LLVM_SUPPORT_PATTERNMATCH_H
30 #define LLVM_SUPPORT_PATTERNMATCH_H
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/Support/CallSite.h"
39 namespace PatternMatch {
41 template<typename Val, typename Pattern>
42 bool match(Val *V, const Pattern &P) {
43 return const_cast<Pattern&>(P).match(V);
47 template<typename SubPattern_t>
49 SubPattern_t SubPattern;
51 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
53 template<typename OpTy>
55 return V->hasOneUse() && SubPattern.match(V);
60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
63 template<typename Class>
65 template<typename ITy>
66 bool match(ITy *V) { return isa<Class>(V); }
69 /// m_Value() - Match an arbitrary value and ignore it.
70 inline class_match<Value> m_Value() { return class_match<Value>(); }
71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
72 inline class_match<ConstantInt> m_ConstantInt() {
73 return class_match<ConstantInt>();
75 /// m_Undef() - Match an arbitrary undef constant.
76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
80 /// Matching combinators
81 template<typename LTy, typename RTy>
82 struct match_combine_or {
86 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
88 template<typename ITy>
98 template<typename LTy, typename RTy>
99 struct match_combine_and {
103 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
105 template<typename ITy>
114 /// Combine two pattern matchers matching L || R
115 template<typename LTy, typename RTy>
116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
117 return match_combine_or<LTy, RTy>(L, R);
120 /// Combine two pattern matchers matching L && R
121 template<typename LTy, typename RTy>
122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
123 return match_combine_and<LTy, RTy>(L, R);
127 template<typename ITy>
129 if (const Constant *C = dyn_cast<Constant>(V))
130 return C->isNullValue();
135 /// m_Zero() - Match an arbitrary zero/null constant. This includes
136 /// zero_initializer for vectors and ConstantPointerNull for pointers.
137 inline match_zero m_Zero() { return match_zero(); }
139 struct match_neg_zero {
140 template<typename ITy>
142 if (const Constant *C = dyn_cast<Constant>(V))
143 return C->isNegativeZeroValue();
148 /// m_NegZero() - Match an arbitrary zero/null constant. This includes
149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
150 /// floating point constants, this will match negative zero but not positive
152 inline match_neg_zero m_NegZero() { return match_neg_zero(); }
154 /// m_AnyZero() - Match an arbitrary zero/null constant. This includes
155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
156 /// floating point constants, this will match negative zero and positive zero
157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
158 return m_CombineOr(m_Zero(), m_NegZero());
163 apint_match(const APInt *&R) : Res(R) {}
164 template<typename ITy>
166 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
167 Res = &CI->getValue();
170 if (V->getType()->isVectorTy())
171 if (const Constant *C = dyn_cast<Constant>(V))
172 if (ConstantInt *CI =
173 dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
174 Res = &CI->getValue();
181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
182 /// specified pointer to the contained APInt.
183 inline apint_match m_APInt(const APInt *&Res) { return Res; }
186 template<int64_t Val>
187 struct constantint_match {
188 template<typename ITy>
190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
191 const APInt &CIV = CI->getValue();
193 return CIV == static_cast<uint64_t>(Val);
194 // If Val is negative, and CI is shorter than it, truncate to the right
195 // number of bits. If it is larger, then we have to sign extend. Just
196 // compare their negated values.
203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
204 template<int64_t Val>
205 inline constantint_match<Val> m_ConstantInt() {
206 return constantint_match<Val>();
209 /// cst_pred_ty - This helper class is used to match scalar and vector constants
210 /// that satisfy a specified predicate.
211 template<typename Predicate>
212 struct cst_pred_ty : public Predicate {
213 template<typename ITy>
215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
216 return this->isValue(CI->getValue());
217 if (V->getType()->isVectorTy())
218 if (const Constant *C = dyn_cast<Constant>(V))
219 if (const ConstantInt *CI =
220 dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
221 return this->isValue(CI->getValue());
226 /// api_pred_ty - This helper class is used to match scalar and vector constants
227 /// that satisfy a specified predicate, and bind them to an APInt.
228 template<typename Predicate>
229 struct api_pred_ty : public Predicate {
231 api_pred_ty(const APInt *&R) : Res(R) {}
232 template<typename ITy>
234 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
235 if (this->isValue(CI->getValue())) {
236 Res = &CI->getValue();
239 if (V->getType()->isVectorTy())
240 if (const Constant *C = dyn_cast<Constant>(V))
241 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
242 if (this->isValue(CI->getValue())) {
243 Res = &CI->getValue();
253 bool isValue(const APInt &C) { return C == 1; }
256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
261 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
264 /// m_AllOnes() - Match an integer or vector with all bits set to true.
265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
269 bool isValue(const APInt &C) { return C.isSignBit(); }
272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
277 bool isValue(const APInt &C) { return C.isPowerOf2(); }
280 /// m_Power2() - Match an integer or vector power of 2.
281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
284 template<typename Class>
287 bind_ty(Class *&V) : VR(V) {}
289 template<typename ITy>
291 if (Class *CV = dyn_cast<Class>(V)) {
299 /// m_Value - Match a value, capturing it if we match.
300 inline bind_ty<Value> m_Value(Value *&V) { return V; }
302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
305 /// m_Constant - Match a Constant, capturing the value if we match.
306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
311 /// specificval_ty - Match a specified Value*.
312 struct specificval_ty {
314 specificval_ty(const Value *V) : Val(V) {}
316 template<typename ITy>
322 /// m_Specific - Match if we have a specific specified value.
323 inline specificval_ty m_Specific(const Value *V) { return V; }
325 /// Match a specified floating point value or vector of all elements of that
327 struct specific_fpval {
329 specific_fpval(double V) : Val(V) {}
331 template<typename ITy>
333 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
334 return CFP->isExactlyValue(Val);
335 if (V->getType()->isVectorTy())
336 if (const Constant *C = dyn_cast<Constant>(V))
337 if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
338 return CFP->isExactlyValue(Val);
343 /// Match a specific floating point value or vector with all elements equal to
345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
347 /// Match a float 1.0 or vector with all elements equal to 1.0.
348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
350 struct bind_const_intval_ty {
352 bind_const_intval_ty(uint64_t &V) : VR(V) {}
354 template<typename ITy>
356 if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
357 if (CV->getBitWidth() <= 64) {
358 VR = CV->getZExtValue();
365 /// m_ConstantInt - Match a ConstantInt and bind to its value. This does not
366 /// match ConstantInts wider than 64-bits.
367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
369 //===----------------------------------------------------------------------===//
370 // Matchers for specific binary operators.
373 template<typename LHS_t, typename RHS_t, unsigned Opcode>
374 struct BinaryOp_match {
378 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
380 template<typename OpTy>
381 bool match(OpTy *V) {
382 if (V->getValueID() == Value::InstructionVal + Opcode) {
383 BinaryOperator *I = cast<BinaryOperator>(V);
384 return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
387 return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
388 R.match(CE->getOperand(1));
393 template<typename LHS, typename RHS>
394 inline BinaryOp_match<LHS, RHS, Instruction::Add>
395 m_Add(const LHS &L, const RHS &R) {
396 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
399 template<typename LHS, typename RHS>
400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
401 m_FAdd(const LHS &L, const RHS &R) {
402 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
405 template<typename LHS, typename RHS>
406 inline BinaryOp_match<LHS, RHS, Instruction::Sub>
407 m_Sub(const LHS &L, const RHS &R) {
408 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
411 template<typename LHS, typename RHS>
412 inline BinaryOp_match<LHS, RHS, Instruction::FSub>
413 m_FSub(const LHS &L, const RHS &R) {
414 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
417 template<typename LHS, typename RHS>
418 inline BinaryOp_match<LHS, RHS, Instruction::Mul>
419 m_Mul(const LHS &L, const RHS &R) {
420 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
423 template<typename LHS, typename RHS>
424 inline BinaryOp_match<LHS, RHS, Instruction::FMul>
425 m_FMul(const LHS &L, const RHS &R) {
426 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
429 template<typename LHS, typename RHS>
430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
431 m_UDiv(const LHS &L, const RHS &R) {
432 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
435 template<typename LHS, typename RHS>
436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
437 m_SDiv(const LHS &L, const RHS &R) {
438 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
441 template<typename LHS, typename RHS>
442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
443 m_FDiv(const LHS &L, const RHS &R) {
444 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
447 template<typename LHS, typename RHS>
448 inline BinaryOp_match<LHS, RHS, Instruction::URem>
449 m_URem(const LHS &L, const RHS &R) {
450 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
453 template<typename LHS, typename RHS>
454 inline BinaryOp_match<LHS, RHS, Instruction::SRem>
455 m_SRem(const LHS &L, const RHS &R) {
456 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
459 template<typename LHS, typename RHS>
460 inline BinaryOp_match<LHS, RHS, Instruction::FRem>
461 m_FRem(const LHS &L, const RHS &R) {
462 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
465 template<typename LHS, typename RHS>
466 inline BinaryOp_match<LHS, RHS, Instruction::And>
467 m_And(const LHS &L, const RHS &R) {
468 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
471 template<typename LHS, typename RHS>
472 inline BinaryOp_match<LHS, RHS, Instruction::Or>
473 m_Or(const LHS &L, const RHS &R) {
474 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
477 template<typename LHS, typename RHS>
478 inline BinaryOp_match<LHS, RHS, Instruction::Xor>
479 m_Xor(const LHS &L, const RHS &R) {
480 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
483 template<typename LHS, typename RHS>
484 inline BinaryOp_match<LHS, RHS, Instruction::Shl>
485 m_Shl(const LHS &L, const RHS &R) {
486 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
489 template<typename LHS, typename RHS>
490 inline BinaryOp_match<LHS, RHS, Instruction::LShr>
491 m_LShr(const LHS &L, const RHS &R) {
492 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
495 template<typename LHS, typename RHS>
496 inline BinaryOp_match<LHS, RHS, Instruction::AShr>
497 m_AShr(const LHS &L, const RHS &R) {
498 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
501 //===----------------------------------------------------------------------===//
502 // Class that matches two different binary ops.
504 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
505 struct BinOp2_match {
509 BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
511 template<typename OpTy>
512 bool match(OpTy *V) {
513 if (V->getValueID() == Value::InstructionVal + Opc1 ||
514 V->getValueID() == Value::InstructionVal + Opc2) {
515 BinaryOperator *I = cast<BinaryOperator>(V);
516 return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
519 return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
520 L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
525 /// m_Shr - Matches LShr or AShr.
526 template<typename LHS, typename RHS>
527 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
528 m_Shr(const LHS &L, const RHS &R) {
529 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
532 /// m_LogicalShift - Matches LShr or Shl.
533 template<typename LHS, typename RHS>
534 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
535 m_LogicalShift(const LHS &L, const RHS &R) {
536 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
539 /// m_IDiv - Matches UDiv and SDiv.
540 template<typename LHS, typename RHS>
541 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
542 m_IDiv(const LHS &L, const RHS &R) {
543 return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
546 //===----------------------------------------------------------------------===//
547 // Class that matches exact binary ops.
549 template<typename SubPattern_t>
551 SubPattern_t SubPattern;
553 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
555 template<typename OpTy>
556 bool match(OpTy *V) {
557 if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
558 return PEO->isExact() && SubPattern.match(V);
564 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
566 //===----------------------------------------------------------------------===//
567 // Matchers for CmpInst classes
570 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
571 struct CmpClass_match {
572 PredicateTy &Predicate;
576 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
577 : Predicate(Pred), L(LHS), R(RHS) {}
579 template<typename OpTy>
580 bool match(OpTy *V) {
581 if (Class *I = dyn_cast<Class>(V))
582 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
583 Predicate = I->getPredicate();
590 template<typename LHS, typename RHS>
591 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
592 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
593 return CmpClass_match<LHS, RHS,
594 ICmpInst, ICmpInst::Predicate>(Pred, L, R);
597 template<typename LHS, typename RHS>
598 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
599 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
600 return CmpClass_match<LHS, RHS,
601 FCmpInst, FCmpInst::Predicate>(Pred, L, R);
604 //===----------------------------------------------------------------------===//
605 // Matchers for SelectInst classes
608 template<typename Cond_t, typename LHS_t, typename RHS_t>
609 struct SelectClass_match {
614 SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
616 : C(Cond), L(LHS), R(RHS) {}
618 template<typename OpTy>
619 bool match(OpTy *V) {
620 if (SelectInst *I = dyn_cast<SelectInst>(V))
621 return C.match(I->getOperand(0)) &&
622 L.match(I->getOperand(1)) &&
623 R.match(I->getOperand(2));
628 template<typename Cond, typename LHS, typename RHS>
629 inline SelectClass_match<Cond, LHS, RHS>
630 m_Select(const Cond &C, const LHS &L, const RHS &R) {
631 return SelectClass_match<Cond, LHS, RHS>(C, L, R);
634 /// m_SelectCst - This matches a select of two constants, e.g.:
635 /// m_SelectCst<-1, 0>(m_Value(V))
636 template<int64_t L, int64_t R, typename Cond>
637 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
638 m_SelectCst(const Cond &C) {
639 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
643 //===----------------------------------------------------------------------===//
644 // Matchers for CastInst classes
647 template<typename Op_t, unsigned Opcode>
648 struct CastClass_match {
651 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
653 template<typename OpTy>
654 bool match(OpTy *V) {
655 if (Operator *O = dyn_cast<Operator>(V))
656 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
662 template<typename OpTy>
663 inline CastClass_match<OpTy, Instruction::BitCast>
664 m_BitCast(const OpTy &Op) {
665 return CastClass_match<OpTy, Instruction::BitCast>(Op);
669 template<typename OpTy>
670 inline CastClass_match<OpTy, Instruction::PtrToInt>
671 m_PtrToInt(const OpTy &Op) {
672 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
676 template<typename OpTy>
677 inline CastClass_match<OpTy, Instruction::Trunc>
678 m_Trunc(const OpTy &Op) {
679 return CastClass_match<OpTy, Instruction::Trunc>(Op);
683 template<typename OpTy>
684 inline CastClass_match<OpTy, Instruction::SExt>
685 m_SExt(const OpTy &Op) {
686 return CastClass_match<OpTy, Instruction::SExt>(Op);
690 template<typename OpTy>
691 inline CastClass_match<OpTy, Instruction::ZExt>
692 m_ZExt(const OpTy &Op) {
693 return CastClass_match<OpTy, Instruction::ZExt>(Op);
697 //===----------------------------------------------------------------------===//
698 // Matchers for unary operators
701 template<typename LHS_t>
705 not_match(const LHS_t &LHS) : L(LHS) {}
707 template<typename OpTy>
708 bool match(OpTy *V) {
709 if (Operator *O = dyn_cast<Operator>(V))
710 if (O->getOpcode() == Instruction::Xor)
711 return matchIfNot(O->getOperand(0), O->getOperand(1));
715 bool matchIfNot(Value *LHS, Value *RHS) {
716 return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
718 isa<ConstantVector>(RHS)) &&
719 cast<Constant>(RHS)->isAllOnesValue() &&
724 template<typename LHS>
725 inline not_match<LHS> m_Not(const LHS &L) { return L; }
728 template<typename LHS_t>
732 neg_match(const LHS_t &LHS) : L(LHS) {}
734 template<typename OpTy>
735 bool match(OpTy *V) {
736 if (Operator *O = dyn_cast<Operator>(V))
737 if (O->getOpcode() == Instruction::Sub)
738 return matchIfNeg(O->getOperand(0), O->getOperand(1));
742 bool matchIfNeg(Value *LHS, Value *RHS) {
743 return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
744 isa<ConstantAggregateZero>(LHS)) &&
749 /// m_Neg - Match an integer negate.
750 template<typename LHS>
751 inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
754 template<typename LHS_t>
758 fneg_match(const LHS_t &LHS) : L(LHS) {}
760 template<typename OpTy>
761 bool match(OpTy *V) {
762 if (Operator *O = dyn_cast<Operator>(V))
763 if (O->getOpcode() == Instruction::FSub)
764 return matchIfFNeg(O->getOperand(0), O->getOperand(1));
768 bool matchIfFNeg(Value *LHS, Value *RHS) {
769 if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
770 return C->isNegativeZeroValue() && L.match(RHS);
775 /// m_FNeg - Match a floating point negate.
776 template<typename LHS>
777 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
780 //===----------------------------------------------------------------------===//
781 // Matchers for control flow.
786 br_match(BasicBlock *&Succ)
790 template<typename OpTy>
791 bool match(OpTy *V) {
792 if (BranchInst *BI = dyn_cast<BranchInst>(V))
793 if (BI->isUnconditional()) {
794 Succ = BI->getSuccessor(0);
801 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
803 template<typename Cond_t>
807 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
808 : Cond(C), T(t), F(f) {
811 template<typename OpTy>
812 bool match(OpTy *V) {
813 if (BranchInst *BI = dyn_cast<BranchInst>(V))
814 if (BI->isConditional() && Cond.match(BI->getCondition())) {
815 T = BI->getSuccessor(0);
816 F = BI->getSuccessor(1);
823 template<typename Cond_t>
824 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
825 return brc_match<Cond_t>(C, T, F);
829 //===----------------------------------------------------------------------===//
830 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
833 template<typename LHS_t, typename RHS_t, typename Pred_t>
834 struct MaxMin_match {
838 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
841 template<typename OpTy>
842 bool match(OpTy *V) {
843 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
844 SelectInst *SI = dyn_cast<SelectInst>(V);
847 ICmpInst *Cmp = dyn_cast<ICmpInst>(SI->getCondition());
850 // At this point we have a select conditioned on a comparison. Check that
851 // it is the values returned by the select that are being compared.
852 Value *TrueVal = SI->getTrueValue();
853 Value *FalseVal = SI->getFalseValue();
854 Value *LHS = Cmp->getOperand(0);
855 Value *RHS = Cmp->getOperand(1);
856 if ((TrueVal != LHS || FalseVal != RHS) &&
857 (TrueVal != RHS || FalseVal != LHS))
859 ICmpInst::Predicate Pred = LHS == TrueVal ?
860 Cmp->getPredicate() : Cmp->getSwappedPredicate();
861 // Does "(x pred y) ? x : y" represent the desired max/min operation?
862 if (!Pred_t::match(Pred))
864 // It does! Bind the operands.
865 return L.match(LHS) && R.match(RHS);
869 /// smax_pred_ty - Helper class for identifying signed max predicates.
870 struct smax_pred_ty {
871 static bool match(ICmpInst::Predicate Pred) {
872 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
876 /// smin_pred_ty - Helper class for identifying signed min predicates.
877 struct smin_pred_ty {
878 static bool match(ICmpInst::Predicate Pred) {
879 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
883 /// umax_pred_ty - Helper class for identifying unsigned max predicates.
884 struct umax_pred_ty {
885 static bool match(ICmpInst::Predicate Pred) {
886 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
890 /// umin_pred_ty - Helper class for identifying unsigned min predicates.
891 struct umin_pred_ty {
892 static bool match(ICmpInst::Predicate Pred) {
893 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
897 template<typename LHS, typename RHS>
898 inline MaxMin_match<LHS, RHS, smax_pred_ty>
899 m_SMax(const LHS &L, const RHS &R) {
900 return MaxMin_match<LHS, RHS, smax_pred_ty>(L, R);
903 template<typename LHS, typename RHS>
904 inline MaxMin_match<LHS, RHS, smin_pred_ty>
905 m_SMin(const LHS &L, const RHS &R) {
906 return MaxMin_match<LHS, RHS, smin_pred_ty>(L, R);
909 template<typename LHS, typename RHS>
910 inline MaxMin_match<LHS, RHS, umax_pred_ty>
911 m_UMax(const LHS &L, const RHS &R) {
912 return MaxMin_match<LHS, RHS, umax_pred_ty>(L, R);
915 template<typename LHS, typename RHS>
916 inline MaxMin_match<LHS, RHS, umin_pred_ty>
917 m_UMin(const LHS &L, const RHS &R) {
918 return MaxMin_match<LHS, RHS, umin_pred_ty>(L, R);
921 template<typename Opnd_t>
922 struct Argument_match {
925 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
927 template<typename OpTy>
928 bool match(OpTy *V) {
930 return CS.isCall() && Val.match(CS.getArgument(OpI));
934 /// Match an argument
935 template<unsigned OpI, typename Opnd_t>
936 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
937 return Argument_match<Opnd_t>(OpI, Op);
940 /// Intrinsic matchers.
941 struct IntrinsicID_match {
943 IntrinsicID_match(unsigned IntrID) : ID(IntrID) { }
945 template<typename OpTy>
946 bool match(OpTy *V) {
947 IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
948 return II && II->getIntrinsicID() == ID;
952 /// Intrinsic matches are combinations of ID matchers, and argument
953 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
954 /// them with lower arity matchers. Here's some convenient typedefs for up to
955 /// several arguments, and more can be added as needed
956 template <typename T0 = void, typename T1 = void, typename T2 = void,
957 typename T3 = void, typename T4 = void, typename T5 = void,
958 typename T6 = void, typename T7 = void, typename T8 = void,
959 typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
960 template <typename T0>
961 struct m_Intrinsic_Ty<T0> {
962 typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
964 template <typename T0, typename T1>
965 struct m_Intrinsic_Ty<T0, T1> {
966 typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
967 Argument_match<T1> > Ty;
969 template <typename T0, typename T1, typename T2>
970 struct m_Intrinsic_Ty<T0, T1, T2> {
971 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
972 Argument_match<T2> > Ty;
974 template <typename T0, typename T1, typename T2, typename T3>
975 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
976 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
977 Argument_match<T3> > Ty;
980 /// Match intrinsic calls like this:
981 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
982 template <unsigned IntrID>
983 inline IntrinsicID_match
984 m_Intrinsic() { return IntrinsicID_match(IntrID); }
986 template<unsigned IntrID, typename T0>
987 inline typename m_Intrinsic_Ty<T0>::Ty
988 m_Intrinsic(const T0 &Op0) {
989 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
992 template<unsigned IntrID, typename T0, typename T1>
993 inline typename m_Intrinsic_Ty<T0, T1>::Ty
994 m_Intrinsic(const T0 &Op0, const T1 &Op1) {
995 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
998 template<unsigned IntrID, typename T0, typename T1, typename T2>
999 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1000 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1001 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1004 template<unsigned IntrID, typename T0, typename T1, typename T2, typename T3>
1005 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1006 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1007 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1010 // Helper intrinsic matching specializations
1011 template<typename Opnd0>
1012 inline typename m_Intrinsic_Ty<Opnd0>::Ty
1013 m_BSwap(const Opnd0 &Op0) {
1014 return m_Intrinsic<Intrinsic::bswap>(Op0);
1017 } // end namespace PatternMatch
1018 } // end namespace llvm