1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file describes the target machine instruction set to the code generator.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
17 #include "llvm/Target/TargetInstrDesc.h"
18 #include "llvm/CodeGen/MachineFunction.h"
22 class InstrItineraryData;
25 class MachineMemOperand;
26 class MachineRegisterInfo;
30 class ScheduleHazardRecognizer;
33 class TargetRegisterClass;
34 class TargetRegisterInfo;
36 template<class T> class SmallVectorImpl;
39 //---------------------------------------------------------------------------
41 /// TargetInstrInfo - Interface to description of machine instruction set
43 class TargetInstrInfo {
44 const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
45 unsigned NumOpcodes; // Number of entries in the desc array
47 TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT
48 void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT
50 TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
51 virtual ~TargetInstrInfo();
53 unsigned getNumOpcodes() const { return NumOpcodes; }
55 /// get - Return the machine instruction descriptor that corresponds to the
56 /// specified instruction opcode.
58 const TargetInstrDesc &get(unsigned Opcode) const {
59 assert(Opcode < NumOpcodes && "Invalid opcode!");
60 return Descriptors[Opcode];
63 /// isTriviallyReMaterializable - Return true if the instruction is trivially
64 /// rematerializable, meaning it has no side effects and requires no operands
65 /// that aren't always available.
66 bool isTriviallyReMaterializable(const MachineInstr *MI,
67 AliasAnalysis *AA = 0) const {
68 return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
69 (MI->getDesc().isRematerializable() &&
70 (isReallyTriviallyReMaterializable(MI, AA) ||
71 isReallyTriviallyReMaterializableGeneric(MI, AA)));
75 /// isReallyTriviallyReMaterializable - For instructions with opcodes for
76 /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
77 /// specify whether the instruction is actually trivially rematerializable,
78 /// taking into consideration its operands. This predicate must return false
79 /// if the instruction has any side effects other than producing a value, or
80 /// if it requres any address registers that are not always available.
81 virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
82 AliasAnalysis *AA) const {
87 /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
88 /// for which the M_REMATERIALIZABLE flag is set and the target hook
89 /// isReallyTriviallyReMaterializable returns false, this function does
90 /// target-independent tests to determine if the instruction is really
91 /// trivially rematerializable.
92 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
93 AliasAnalysis *AA) const;
96 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
97 /// extension instruction. That is, it's like a copy where it's legal for the
98 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
99 /// true, then it's expected the pre-extension value is available as a subreg
100 /// of the result register. This also returns the sub-register index in
102 virtual bool isCoalescableExtInstr(const MachineInstr &MI,
103 unsigned &SrcReg, unsigned &DstReg,
104 unsigned &SubIdx) const {
108 /// isLoadFromStackSlot - If the specified machine instruction is a direct
109 /// load from a stack slot, return the virtual or physical register number of
110 /// the destination along with the FrameIndex of the loaded stack slot. If
111 /// not, return 0. This predicate must return 0 if the instruction has
112 /// any side effects other than loading from the stack slot.
113 virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
114 int &FrameIndex) const {
118 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
119 /// stack locations as well. This uses a heuristic so it isn't
120 /// reliable for correctness.
121 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
122 int &FrameIndex) const {
126 /// hasLoadFromStackSlot - If the specified machine instruction has
127 /// a load from a stack slot, return true along with the FrameIndex
128 /// of the loaded stack slot and the machine mem operand containing
129 /// the reference. If not, return false. Unlike
130 /// isLoadFromStackSlot, this returns true for any instructions that
131 /// loads from the stack. This is just a hint, as some cases may be
133 virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
134 const MachineMemOperand *&MMO,
135 int &FrameIndex) const {
139 /// isStoreToStackSlot - If the specified machine instruction is a direct
140 /// store to a stack slot, return the virtual or physical register number of
141 /// the source reg along with the FrameIndex of the loaded stack slot. If
142 /// not, return 0. This predicate must return 0 if the instruction has
143 /// any side effects other than storing to the stack slot.
144 virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
145 int &FrameIndex) const {
149 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
150 /// stack locations as well. This uses a heuristic so it isn't
151 /// reliable for correctness.
152 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
153 int &FrameIndex) const {
157 /// hasStoreToStackSlot - If the specified machine instruction has a
158 /// store to a stack slot, return true along with the FrameIndex of
159 /// the loaded stack slot and the machine mem operand containing the
160 /// reference. If not, return false. Unlike isStoreToStackSlot,
161 /// this returns true for any instructions that stores to the
162 /// stack. This is just a hint, as some cases may be missed.
163 virtual bool hasStoreToStackSlot(const MachineInstr *MI,
164 const MachineMemOperand *&MMO,
165 int &FrameIndex) const {
169 /// reMaterialize - Re-issue the specified 'original' instruction at the
170 /// specific location targeting a new destination register.
171 /// The register in Orig->getOperand(0).getReg() will be substituted by
172 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
174 virtual void reMaterialize(MachineBasicBlock &MBB,
175 MachineBasicBlock::iterator MI,
176 unsigned DestReg, unsigned SubIdx,
177 const MachineInstr *Orig,
178 const TargetRegisterInfo &TRI) const = 0;
180 /// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
181 /// two-addrss instruction inserted by two-address pass.
182 virtual void scheduleTwoAddrSource(MachineInstr *SrcMI,
184 const TargetRegisterInfo &TRI) const {
188 /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
189 /// MachineFunction::CloneMachineInstr(), but the target may update operands
190 /// that are required to be unique.
192 /// The instruction must be duplicable as indicated by isNotDuplicable().
193 virtual MachineInstr *duplicate(MachineInstr *Orig,
194 MachineFunction &MF) const = 0;
196 /// convertToThreeAddress - This method must be implemented by targets that
197 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
198 /// may be able to convert a two-address instruction into one or more true
199 /// three-address instructions on demand. This allows the X86 target (for
200 /// example) to convert ADD and SHL instructions into LEA instructions if they
201 /// would require register copies due to two-addressness.
203 /// This method returns a null pointer if the transformation cannot be
204 /// performed, otherwise it returns the last new instruction.
206 virtual MachineInstr *
207 convertToThreeAddress(MachineFunction::iterator &MFI,
208 MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
212 /// commuteInstruction - If a target has any instructions that are
213 /// commutable but require converting to different instructions or making
214 /// non-trivial changes to commute them, this method can overloaded to do
215 /// that. The default implementation simply swaps the commutable operands.
216 /// If NewMI is false, MI is modified in place and returned; otherwise, a
217 /// new machine instruction is created and returned. Do not call this
218 /// method for a non-commutable instruction, but there may be some cases
219 /// where this method fails and returns null.
220 virtual MachineInstr *commuteInstruction(MachineInstr *MI,
221 bool NewMI = false) const = 0;
223 /// findCommutedOpIndices - If specified MI is commutable, return the two
224 /// operand indices that would swap value. Return false if the instruction
225 /// is not in a form which this routine understands.
226 virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
227 unsigned &SrcOpIdx2) const = 0;
229 /// produceSameValue - Return true if two machine instructions would produce
230 /// identical values. By default, this is only true when the two instructions
231 /// are deemed identical except for defs. If this function is called when the
232 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
233 /// aggressive checks.
234 virtual bool produceSameValue(const MachineInstr *MI0,
235 const MachineInstr *MI1,
236 const MachineRegisterInfo *MRI = 0) const = 0;
238 /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
239 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
240 /// implemented for a target). Upon success, this returns false and returns
241 /// with the following information in various cases:
243 /// 1. If this block ends with no branches (it just falls through to its succ)
244 /// just return false, leaving TBB/FBB null.
245 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
246 /// the destination block.
247 /// 3. If this block ends with a conditional branch and it falls through to a
248 /// successor block, it sets TBB to be the branch destination block and a
249 /// list of operands that evaluate the condition. These operands can be
250 /// passed to other TargetInstrInfo methods to create new branches.
251 /// 4. If this block ends with a conditional branch followed by an
252 /// unconditional branch, it returns the 'true' destination in TBB, the
253 /// 'false' destination in FBB, and a list of operands that evaluate the
254 /// condition. These operands can be passed to other TargetInstrInfo
255 /// methods to create new branches.
257 /// Note that RemoveBranch and InsertBranch must be implemented to support
258 /// cases where this method returns success.
260 /// If AllowModify is true, then this routine is allowed to modify the basic
261 /// block (e.g. delete instructions after the unconditional branch).
263 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
264 MachineBasicBlock *&FBB,
265 SmallVectorImpl<MachineOperand> &Cond,
266 bool AllowModify = false) const {
270 /// RemoveBranch - Remove the branching code at the end of the specific MBB.
271 /// This is only invoked in cases where AnalyzeBranch returns success. It
272 /// returns the number of instructions that were removed.
273 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
274 assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
278 /// InsertBranch - Insert branch code into the end of the specified
279 /// MachineBasicBlock. The operands to this method are the same as those
280 /// returned by AnalyzeBranch. This is only invoked in cases where
281 /// AnalyzeBranch returns success. It returns the number of instructions
284 /// It is also invoked by tail merging to add unconditional branches in
285 /// cases where AnalyzeBranch doesn't apply because there was no original
286 /// branch to analyze. At least this much must be implemented, else tail
287 /// merging needs to be disabled.
288 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
289 MachineBasicBlock *FBB,
290 const SmallVectorImpl<MachineOperand> &Cond,
292 assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
296 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
297 /// after it, replacing it with an unconditional branch to NewDest. This is
298 /// used by the tail merging pass.
299 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
300 MachineBasicBlock *NewDest) const = 0;
302 /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
303 /// block at the specified instruction (i.e. instruction would be the start
304 /// of a new basic block).
305 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
306 MachineBasicBlock::iterator MBBI) const {
310 /// isProfitableToIfCvt - Return true if it's profitable to predicate
311 /// instructions with accumulated instruction latency of "NumCycles"
312 /// of the specified basic block, where the probability of the instructions
313 /// being executed is given by Probability, and Confidence is a measure
314 /// of our confidence that it will be properly predicted.
316 bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
317 unsigned ExtraPredCycles,
318 float Probability, float Confidence) const {
322 /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
323 /// checks for the case where two basic blocks from true and false path
324 /// of a if-then-else (diamond) are predicated on mutally exclusive
325 /// predicates, where the probability of the true path being taken is given
326 /// by Probability, and Confidence is a measure of our confidence that it
327 /// will be properly predicted.
329 isProfitableToIfCvt(MachineBasicBlock &TMBB,
330 unsigned NumTCycles, unsigned ExtraTCycles,
331 MachineBasicBlock &FMBB,
332 unsigned NumFCycles, unsigned ExtraFCycles,
333 float Probability, float Confidence) const {
337 /// isProfitableToDupForIfCvt - Return true if it's profitable for
338 /// if-converter to duplicate instructions of specified accumulated
339 /// instruction latencies in the specified MBB to enable if-conversion.
340 /// The probability of the instructions being executed is given by
341 /// Probability, and Confidence is a measure of our confidence that it
342 /// will be properly predicted.
344 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
345 float Probability, float Confidence) const {
349 /// copyPhysReg - Emit instructions to copy a pair of physical registers.
350 virtual void copyPhysReg(MachineBasicBlock &MBB,
351 MachineBasicBlock::iterator MI, DebugLoc DL,
352 unsigned DestReg, unsigned SrcReg,
353 bool KillSrc) const {
354 assert(0 && "Target didn't implement TargetInstrInfo::copyPhysReg!");
357 /// storeRegToStackSlot - Store the specified register of the given register
358 /// class to the specified stack frame index. The store instruction is to be
359 /// added to the given machine basic block before the specified machine
360 /// instruction. If isKill is true, the register operand is the last use and
361 /// must be marked kill.
362 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
363 MachineBasicBlock::iterator MI,
364 unsigned SrcReg, bool isKill, int FrameIndex,
365 const TargetRegisterClass *RC,
366 const TargetRegisterInfo *TRI) const {
367 assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
370 /// loadRegFromStackSlot - Load the specified register of the given register
371 /// class from the specified stack frame index. The load instruction is to be
372 /// added to the given machine basic block before the specified machine
374 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
375 MachineBasicBlock::iterator MI,
376 unsigned DestReg, int FrameIndex,
377 const TargetRegisterClass *RC,
378 const TargetRegisterInfo *TRI) const {
379 assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
382 /// emitFrameIndexDebugValue - Emit a target-dependent form of
383 /// DBG_VALUE encoding the address of a frame index. Addresses would
384 /// normally be lowered the same way as other addresses on the target,
385 /// e.g. in load instructions. For targets that do not support this
386 /// the debug info is simply lost.
387 /// If you add this for a target you should handle this DBG_VALUE in the
388 /// target-specific AsmPrinter code as well; you will probably get invalid
389 /// assembly output if you don't.
390 virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
398 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
399 /// slot into the specified machine instruction for the specified operand(s).
400 /// If this is possible, a new instruction is returned with the specified
401 /// operand folded, otherwise NULL is returned.
402 /// The new instruction is inserted before MI, and the client is responsible
403 /// for removing the old instruction.
404 MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
405 const SmallVectorImpl<unsigned> &Ops,
406 int FrameIndex) const;
408 /// foldMemoryOperand - Same as the previous version except it allows folding
409 /// of any load and store from / to any address, not just from a specific
411 MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
412 const SmallVectorImpl<unsigned> &Ops,
413 MachineInstr* LoadMI) const;
416 /// foldMemoryOperandImpl - Target-dependent implementation for
417 /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
418 /// take care of adding a MachineMemOperand to the newly created instruction.
419 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
421 const SmallVectorImpl<unsigned> &Ops,
422 int FrameIndex) const {
426 /// foldMemoryOperandImpl - Target-dependent implementation for
427 /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
428 /// take care of adding a MachineMemOperand to the newly created instruction.
429 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
431 const SmallVectorImpl<unsigned> &Ops,
432 MachineInstr* LoadMI) const {
437 /// canFoldMemoryOperand - Returns true for the specified load / store if
438 /// folding is possible.
440 bool canFoldMemoryOperand(const MachineInstr *MI,
441 const SmallVectorImpl<unsigned> &Ops) const =0;
443 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
444 /// a store or a load and a store into two or more instruction. If this is
445 /// possible, returns true as well as the new instructions by reference.
446 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
447 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
448 SmallVectorImpl<MachineInstr*> &NewMIs) const{
452 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
453 SmallVectorImpl<SDNode*> &NewNodes) const {
457 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
458 /// instruction after load / store are unfolded from an instruction of the
459 /// specified opcode. It returns zero if the specified unfolding is not
460 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
461 /// index of the operand which will hold the register holding the loaded
463 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
464 bool UnfoldLoad, bool UnfoldStore,
465 unsigned *LoadRegIndex = 0) const {
469 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
470 /// to determine if two loads are loading from the same base address. It
471 /// should only return true if the base pointers are the same and the
472 /// only differences between the two addresses are the offset. It also returns
473 /// the offsets by reference.
474 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
475 int64_t &Offset1, int64_t &Offset2) const {
479 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
480 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
481 /// be scheduled togther. On some targets if two loads are loading from
482 /// addresses in the same cache line, it's better if they are scheduled
483 /// together. This function takes two integers that represent the load offsets
484 /// from the common base address. It returns true if it decides it's desirable
485 /// to schedule the two loads together. "NumLoads" is the number of loads that
486 /// have already been scheduled after Load1.
487 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
488 int64_t Offset1, int64_t Offset2,
489 unsigned NumLoads) const {
493 /// ReverseBranchCondition - Reverses the branch condition of the specified
494 /// condition list, returning false on success and true if it cannot be
497 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
501 /// insertNoop - Insert a noop into the instruction stream at the specified
503 virtual void insertNoop(MachineBasicBlock &MBB,
504 MachineBasicBlock::iterator MI) const;
507 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
508 virtual void getNoopForMachoTarget(MCInst &NopInst) const {
509 // Default to just using 'nop' string.
513 /// isPredicated - Returns true if the instruction is already predicated.
515 virtual bool isPredicated(const MachineInstr *MI) const {
519 /// isUnpredicatedTerminator - Returns true if the instruction is a
520 /// terminator instruction that has not been predicated.
521 virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
523 /// PredicateInstruction - Convert the instruction into a predicated
524 /// instruction. It returns true if the operation was successful.
526 bool PredicateInstruction(MachineInstr *MI,
527 const SmallVectorImpl<MachineOperand> &Pred) const = 0;
529 /// SubsumesPredicate - Returns true if the first specified predicate
530 /// subsumes the second, e.g. GE subsumes GT.
532 bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
533 const SmallVectorImpl<MachineOperand> &Pred2) const {
537 /// DefinesPredicate - If the specified instruction defines any predicate
538 /// or condition code register(s) used for predication, returns true as well
539 /// as the definition predicate(s) by reference.
540 virtual bool DefinesPredicate(MachineInstr *MI,
541 std::vector<MachineOperand> &Pred) const {
545 /// isPredicable - Return true if the specified instruction can be predicated.
546 /// By default, this returns true for every instruction with a
547 /// PredicateOperand.
548 virtual bool isPredicable(MachineInstr *MI) const {
549 return MI->getDesc().isPredicable();
552 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
553 /// instruction that defines the specified register class.
554 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
558 /// isSchedulingBoundary - Test if the given instruction should be
559 /// considered a scheduling boundary. This primarily includes labels and
561 virtual bool isSchedulingBoundary(const MachineInstr *MI,
562 const MachineBasicBlock *MBB,
563 const MachineFunction &MF) const = 0;
565 /// Measure the specified inline asm to determine an approximation of its
567 virtual unsigned getInlineAsmLength(const char *Str,
568 const MCAsmInfo &MAI) const;
570 /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
571 /// use for this target when scheduling the machine instructions before
572 /// register allocation.
573 virtual ScheduleHazardRecognizer*
574 CreateTargetHazardRecognizer(const TargetMachine *TM,
575 const ScheduleDAG *DAG) const = 0;
577 /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
578 /// recognizer to use for this target when scheduling the machine instructions
579 /// after register allocation.
580 virtual ScheduleHazardRecognizer*
581 CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
582 const ScheduleDAG *DAG) const = 0;
584 /// AnalyzeCompare - For a comparison instruction, return the source register
585 /// in SrcReg and the value it compares against in CmpValue. Return true if
586 /// the comparison instruction can be analyzed.
587 virtual bool AnalyzeCompare(const MachineInstr *MI,
588 unsigned &SrcReg, int &Mask, int &Value) const {
592 /// OptimizeCompareInstr - See if the comparison instruction can be converted
593 /// into something more efficient. E.g., on ARM most instructions can set the
594 /// flags register, obviating the need for a separate CMP.
595 virtual bool OptimizeCompareInstr(MachineInstr *CmpInstr,
596 unsigned SrcReg, int Mask, int Value,
597 const MachineRegisterInfo *MRI) const {
601 /// FoldImmediate - 'Reg' is known to be defined by a move immediate
602 /// instruction, try to fold the immediate into the use instruction.
603 virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
604 unsigned Reg, MachineRegisterInfo *MRI) const {
608 /// getNumMicroOps - Return the number of u-operations the given machine
609 /// instruction will be decoded to on the target cpu.
610 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
611 const MachineInstr *MI) const;
613 /// isZeroCost - Return true for pseudo instructions that don't consume any
614 /// machine resources in their current form. These are common cases that the
615 /// scheduler should consider free, rather than conservatively handling them
616 /// as instructions with no itinerary.
617 bool isZeroCost(unsigned Opcode) const {
618 return Opcode <= TargetOpcode::COPY;
621 /// getOperandLatency - Compute and return the use operand latency of a given
622 /// pair of def and use.
623 /// In most cases, the static scheduling itinerary was enough to determine the
624 /// operand latency. But it may not be possible for instructions with variable
625 /// number of defs / uses.
626 virtual int getOperandLatency(const InstrItineraryData *ItinData,
627 const MachineInstr *DefMI, unsigned DefIdx,
628 const MachineInstr *UseMI, unsigned UseIdx) const;
630 virtual int getOperandLatency(const InstrItineraryData *ItinData,
631 SDNode *DefNode, unsigned DefIdx,
632 SDNode *UseNode, unsigned UseIdx) const;
634 /// getInstrLatency - Compute the instruction latency of a given instruction.
635 /// If the instruction has higher cost when predicated, it's returned via
637 virtual int getInstrLatency(const InstrItineraryData *ItinData,
638 const MachineInstr *MI,
639 unsigned *PredCost = 0) const;
641 virtual int getInstrLatency(const InstrItineraryData *ItinData,
644 /// isHighLatencyDef - Return true if this opcode has high latency to its
646 virtual bool isHighLatencyDef(int opc) const { return false; }
648 /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
649 /// and an use in the current loop, return true if the target considered
650 /// it 'high'. This is used by optimization passes such as machine LICM to
651 /// determine whether it makes sense to hoist an instruction out even in
652 /// high register pressure situation.
654 bool hasHighOperandLatency(const InstrItineraryData *ItinData,
655 const MachineRegisterInfo *MRI,
656 const MachineInstr *DefMI, unsigned DefIdx,
657 const MachineInstr *UseMI, unsigned UseIdx) const {
661 /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
662 /// if the target considered it 'low'.
664 bool hasLowDefLatency(const InstrItineraryData *ItinData,
665 const MachineInstr *DefMI, unsigned DefIdx) const;
668 /// TargetInstrInfoImpl - This is the default implementation of
669 /// TargetInstrInfo, which just provides a couple of default implementations
670 /// for various methods. This separated out because it is implemented in
671 /// libcodegen, not in libtarget.
672 class TargetInstrInfoImpl : public TargetInstrInfo {
674 TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
675 : TargetInstrInfo(desc, NumOpcodes) {}
677 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
678 MachineBasicBlock *NewDest) const;
679 virtual MachineInstr *commuteInstruction(MachineInstr *MI,
680 bool NewMI = false) const;
681 virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
682 unsigned &SrcOpIdx2) const;
683 virtual bool canFoldMemoryOperand(const MachineInstr *MI,
684 const SmallVectorImpl<unsigned> &Ops) const;
685 virtual bool PredicateInstruction(MachineInstr *MI,
686 const SmallVectorImpl<MachineOperand> &Pred) const;
687 virtual void reMaterialize(MachineBasicBlock &MBB,
688 MachineBasicBlock::iterator MI,
689 unsigned DestReg, unsigned SubReg,
690 const MachineInstr *Orig,
691 const TargetRegisterInfo &TRI) const;
692 virtual MachineInstr *duplicate(MachineInstr *Orig,
693 MachineFunction &MF) const;
694 virtual bool produceSameValue(const MachineInstr *MI0,
695 const MachineInstr *MI1,
696 const MachineRegisterInfo *MRI) const;
697 virtual bool isSchedulingBoundary(const MachineInstr *MI,
698 const MachineBasicBlock *MBB,
699 const MachineFunction &MF) const;
701 bool usePreRAHazardRecognizer() const;
703 virtual ScheduleHazardRecognizer *
704 CreateTargetHazardRecognizer(const TargetMachine*, const ScheduleDAG*) const;
706 virtual ScheduleHazardRecognizer *
707 CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
708 const ScheduleDAG*) const;
711 } // End llvm namespace