Spelling fix.
[oota-llvm.git] / include / llvm / Target / TargetInstrItineraries.h
1 //===-- llvm/Target/TargetInstrItineraries.h - Scheduling -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the structures used for instruction
11 // itineraries, stages, and operand reads/writes.  This is used by
12 // schedulers to determine instruction stages and latencies.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_TARGET_TARGETINSTRITINERARIES_H
17 #define LLVM_TARGET_TARGETINSTRITINERARIES_H
18
19 #include <algorithm>
20
21 namespace llvm {
22
23 //===----------------------------------------------------------------------===//
24 /// Instruction stage - These values represent a non-pipelined step in
25 /// the execution of an instruction.  Cycles represents the number of
26 /// discrete time slots needed to complete the stage.  Units represent
27 /// the choice of functional units that can be used to complete the
28 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
29 /// cycles should elapse from the start of this stage to the start of
30 /// the next stage in the itinerary. A value of -1 indicates that the
31 /// next stage should start immediately after the current one.
32 /// For example:
33 ///
34 ///   { 1, x, -1 }
35 ///      indicates that the stage occupies FU x for 1 cycle and that
36 ///      the next stage starts immediately after this one.
37 ///
38 ///   { 2, x|y, 1 }
39 ///      indicates that the stage occupies either FU x or FU y for 2
40 ///      consecuative cycles and that the next stage starts one cycle
41 ///      after this stage starts. That is, the stage requirements
42 ///      overlap in time.
43 ///
44 ///   { 1, x, 0 }
45 ///      indicates that the stage occupies FU x for 1 cycle and that
46 ///      the next stage starts in this same cycle. This can be used to
47 ///      indicate that the instruction requires multiple stages at the
48 ///      same time.
49 ///
50 /// FU reservation can be of two different kinds:
51 ///  - FUs which instruction actually requires
52 ///  - FUs which instruction just reserves. Reserved unit is not available for
53 ///    execution of other instruction. However, several instructions can reserve
54 ///    the same unit several times.
55 /// Such two types of units reservation is used to model instruction domain
56 /// change stalls, FUs using the same resource (e.g. same register file), etc.
57
58 struct InstrStage {
59   enum ReservationKinds {
60     Required = 0,
61     Reserved = 1
62   };
63
64   unsigned Cycles_;  ///< Length of stage in machine cycles
65   unsigned Units_;   ///< Choice of functional units
66   int NextCycles_;   ///< Number of machine cycles to next stage
67   ReservationKinds Kind_; ///< Kind of the FU reservation
68
69   /// getCycles - returns the number of cycles the stage is occupied
70   unsigned getCycles() const {
71     return Cycles_;
72   }
73
74   /// getUnits - returns the choice of FUs
75   unsigned getUnits() const {
76     return Units_;
77   }
78
79   ReservationKinds getReservationKind() const {
80     return Kind_;
81   }
82
83   /// getNextCycles - returns the number of cycles from the start of
84   /// this stage to the start of the next stage in the itinerary
85   unsigned getNextCycles() const {
86     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
87   }
88 };
89
90
91 //===----------------------------------------------------------------------===//
92 /// Instruction itinerary - An itinerary represents the scheduling
93 /// information for an instruction. This includes a set of stages
94 /// occupies by the instruction, and the pipeline cycle in which
95 /// operands are read and written.
96 ///
97 struct InstrItinerary {
98   unsigned NumMicroOps;        ///< # of micro-ops, 0 means it's variable
99   unsigned FirstStage;         ///< Index of first stage in itinerary
100   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
101   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
102   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
103 };
104
105
106 //===----------------------------------------------------------------------===//
107 /// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
108 /// used by a target.
109 ///
110 class InstrItineraryData {
111 public:
112   const InstrStage     *Stages;         ///< Array of stages selected
113   const unsigned       *OperandCycles;  ///< Array of operand cycles selected
114   const InstrItinerary *Itineraries;    ///< Array of itineraries selected
115
116   /// Ctors.
117   ///
118   InstrItineraryData() : Stages(0), OperandCycles(0), Itineraries(0) {}
119   InstrItineraryData(const InstrStage *S, const unsigned *OS,
120                      const InstrItinerary *I)
121     : Stages(S), OperandCycles(OS), Itineraries(I) {}
122   
123   /// isEmpty - Returns true if there are no itineraries.
124   ///
125   bool isEmpty() const { return Itineraries == 0; }
126
127   /// isEndMarker - Returns true if the index is for the end marker
128   /// itinerary.
129   ///
130   bool isEndMarker(unsigned ItinClassIndx) const {
131     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
132             (Itineraries[ItinClassIndx].LastStage == ~0U));
133   }
134
135   /// beginStage - Return the first stage of the itinerary.
136   /// 
137   const InstrStage *beginStage(unsigned ItinClassIndx) const {
138     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
139     return Stages + StageIdx;
140   }
141
142   /// endStage - Return the last+1 stage of the itinerary.
143   /// 
144   const InstrStage *endStage(unsigned ItinClassIndx) const {
145     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
146     return Stages + StageIdx;
147   }
148
149   /// getStageLatency - Return the total stage latency of the given
150   /// class.  The latency is the maximum completion time for any stage
151   /// in the itinerary.
152   ///
153   unsigned getStageLatency(unsigned ItinClassIndx) const {
154     // If the target doesn't provide itinerary information, use a
155     // simple non-zero default value for all instructions.
156     if (isEmpty())
157       return 1;
158
159     // Calculate the maximum completion time for any stage.
160     unsigned Latency = 0, StartCycle = 0;
161     for (const InstrStage *IS = beginStage(ItinClassIndx),
162            *E = endStage(ItinClassIndx); IS != E; ++IS) {
163       Latency = std::max(Latency, StartCycle + IS->getCycles());
164       StartCycle += IS->getNextCycles();
165     }
166
167     return Latency;
168   }
169
170   /// getOperandCycle - Return the cycle for the given class and
171   /// operand. Return -1 if no cycle is specified for the operand.
172   ///
173   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
174     if (isEmpty())
175       return -1;
176
177     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
178     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
179     if ((FirstIdx + OperandIdx) >= LastIdx)
180       return -1;
181
182     return (int)OperandCycles[FirstIdx + OperandIdx];
183   }
184
185   /// isMicroCoded - Return true if the instructions in the given class decode
186   /// to more than one micro-ops.
187   bool isMicroCoded(unsigned ItinClassIndx) const {
188     if (isEmpty())
189       return false;
190     return Itineraries[ItinClassIndx].NumMicroOps != 1;
191   }
192 };
193
194
195 } // End llvm namespace
196
197 #endif