Remove unnecessary include.
[oota-llvm.git] / include / llvm / Target / TargetRegisterInfo.h
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include <cassert>
23 #include <functional>
24
25 namespace llvm {
26
27 class BitVector;
28 class MachineFunction;
29 class MachineMove;
30 class RegScavenger;
31 template<class T> class SmallVectorImpl;
32
33 /// TargetRegisterDesc - This record contains all of the information known about
34 /// a particular register.  The AliasSet field (if not null) contains a pointer
35 /// to a Zero terminated array of registers that this register aliases.  This is
36 /// needed for architectures like X86 which have AL alias AX alias EAX.
37 /// Registers that this does not apply to simply should set this to null.
38 /// The SubRegs field is a zero terminated array of registers that are
39 /// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
40 /// The SuperRegs field is a zero terminated array of registers that are
41 /// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42 /// of AX.
43 ///
44 struct TargetRegisterDesc {
45   const char     *Name;         // Printable name for the reg (for debugging)
46   const unsigned *AliasSet;     // Register Alias Set, described above
47   const unsigned *SubRegs;      // Sub-register set, described above
48   const unsigned *SuperRegs;    // Super-register set, described above
49 };
50
51 class TargetRegisterClass {
52 public:
53   typedef const unsigned* iterator;
54   typedef const unsigned* const_iterator;
55
56   typedef const EVT* vt_iterator;
57   typedef const TargetRegisterClass* const * sc_iterator;
58 private:
59   unsigned ID;
60   const char *Name;
61   const vt_iterator VTs;
62   const sc_iterator SubClasses;
63   const sc_iterator SuperClasses;
64   const sc_iterator SubRegClasses;
65   const sc_iterator SuperRegClasses;
66   const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67   const int CopyCost;
68   const iterator RegsBegin, RegsEnd;
69   DenseSet<unsigned> RegSet;
70 public:
71   TargetRegisterClass(unsigned id,
72                       const char *name,
73                       const EVT *vts,
74                       const TargetRegisterClass * const *subcs,
75                       const TargetRegisterClass * const *supcs,
76                       const TargetRegisterClass * const *subregcs,
77                       const TargetRegisterClass * const *superregcs,
78                       unsigned RS, unsigned Al, int CC,
79                       iterator RB, iterator RE)
80     : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81     SubRegClasses(subregcs), SuperRegClasses(superregcs),
82     RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83       for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84         RegSet.insert(*I);
85     }
86   virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88   /// getID() - Return the register class ID number.
89   ///
90   unsigned getID() const { return ID; }
91
92   /// getName() - Return the register class name for debugging.
93   ///
94   const char *getName() const { return Name; }
95
96   /// begin/end - Return all of the registers in this class.
97   ///
98   iterator       begin() const { return RegsBegin; }
99   iterator         end() const { return RegsEnd; }
100
101   /// getNumRegs - Return the number of registers in this class.
102   ///
103   unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105   /// getRegister - Return the specified register in the class.
106   ///
107   unsigned getRegister(unsigned i) const {
108     assert(i < getNumRegs() && "Register number out of range!");
109     return RegsBegin[i];
110   }
111
112   /// contains - Return true if the specified register is included in this
113   /// register class.  This does not include virtual registers.
114   bool contains(unsigned Reg) const {
115     return RegSet.count(Reg);
116   }
117
118   /// contains - Return true if both registers are in this class.
119   bool contains(unsigned Reg1, unsigned Reg2) const {
120     return contains(Reg1) && contains(Reg2);
121   }
122
123   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
124   ///
125   bool hasType(EVT vt) const {
126     for(int i = 0; VTs[i].getSimpleVT().SimpleTy != MVT::Other; ++i)
127       if (VTs[i] == vt)
128         return true;
129     return false;
130   }
131
132   /// vt_begin / vt_end - Loop over all of the value types that can be
133   /// represented by values in this register class.
134   vt_iterator vt_begin() const {
135     return VTs;
136   }
137
138   vt_iterator vt_end() const {
139     vt_iterator I = VTs;
140     while (I->getSimpleVT().SimpleTy != MVT::Other) ++I;
141     return I;
142   }
143
144   /// subregclasses_begin / subregclasses_end - Loop over all of
145   /// the subreg register classes of this register class.
146   sc_iterator subregclasses_begin() const {
147     return SubRegClasses;
148   }
149
150   sc_iterator subregclasses_end() const {
151     sc_iterator I = SubRegClasses;
152     while (*I != NULL) ++I;
153     return I;
154   }
155
156   /// getSubRegisterRegClass - Return the register class of subregisters with
157   /// index SubIdx, or NULL if no such class exists.
158   const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
159     assert(SubIdx>0 && "Invalid subregister index");
160     return SubRegClasses[SubIdx-1];
161   }
162
163   /// superregclasses_begin / superregclasses_end - Loop over all of
164   /// the superreg register classes of this register class.
165   sc_iterator superregclasses_begin() const {
166     return SuperRegClasses;
167   }
168
169   sc_iterator superregclasses_end() const {
170     sc_iterator I = SuperRegClasses;
171     while (*I != NULL) ++I;
172     return I;
173   }
174
175   /// hasSubClass - return true if the specified TargetRegisterClass
176   /// is a proper subset of this TargetRegisterClass.
177   bool hasSubClass(const TargetRegisterClass *cs) const {
178     for (int i = 0; SubClasses[i] != NULL; ++i)
179       if (SubClasses[i] == cs)
180         return true;
181     return false;
182   }
183
184   /// subclasses_begin / subclasses_end - Loop over all of the classes
185   /// that are proper subsets of this register class.
186   sc_iterator subclasses_begin() const {
187     return SubClasses;
188   }
189
190   sc_iterator subclasses_end() const {
191     sc_iterator I = SubClasses;
192     while (*I != NULL) ++I;
193     return I;
194   }
195
196   /// hasSuperClass - return true if the specified TargetRegisterClass is a
197   /// proper superset of this TargetRegisterClass.
198   bool hasSuperClass(const TargetRegisterClass *cs) const {
199     for (int i = 0; SuperClasses[i] != NULL; ++i)
200       if (SuperClasses[i] == cs)
201         return true;
202     return false;
203   }
204
205   /// superclasses_begin / superclasses_end - Loop over all of the classes
206   /// that are proper supersets of this register class.
207   sc_iterator superclasses_begin() const {
208     return SuperClasses;
209   }
210
211   sc_iterator superclasses_end() const {
212     sc_iterator I = SuperClasses;
213     while (*I != NULL) ++I;
214     return I;
215   }
216
217   /// isASubClass - return true if this TargetRegisterClass is a subset
218   /// class of at least one other TargetRegisterClass.
219   bool isASubClass() const {
220     return SuperClasses[0] != 0;
221   }
222
223   /// allocation_order_begin/end - These methods define a range of registers
224   /// which specify the registers in this class that are valid to register
225   /// allocate, and the preferred order to allocate them in.  For example,
226   /// callee saved registers should be at the end of the list, because it is
227   /// cheaper to allocate caller saved registers.
228   ///
229   /// These methods take a MachineFunction argument, which can be used to tune
230   /// the allocatable registers based on the characteristics of the function.
231   /// One simple example is that the frame pointer register can be used if
232   /// frame-pointer-elimination is performed.
233   ///
234   /// By default, these methods return all registers in the class.
235   ///
236   virtual iterator allocation_order_begin(const MachineFunction &MF) const {
237     return begin();
238   }
239   virtual iterator allocation_order_end(const MachineFunction &MF)   const {
240     return end();
241   }
242
243   /// getSize - Return the size of the register in bytes, which is also the size
244   /// of a stack slot allocated to hold a spilled copy of this register.
245   unsigned getSize() const { return RegSize; }
246
247   /// getAlignment - Return the minimum required alignment for a register of
248   /// this class.
249   unsigned getAlignment() const { return Alignment; }
250
251   /// getCopyCost - Return the cost of copying a value between two registers in
252   /// this class. A negative number means the register class is very expensive
253   /// to copy e.g. status flag register classes.
254   int getCopyCost() const { return CopyCost; }
255 };
256
257
258 /// TargetRegisterInfo base class - We assume that the target defines a static
259 /// array of TargetRegisterDesc objects that represent all of the machine
260 /// registers that the target has.  As such, we simply have to track a pointer
261 /// to this array so that we can turn register number into a register
262 /// descriptor.
263 ///
264 class TargetRegisterInfo {
265 protected:
266   const unsigned* SubregHash;
267   const unsigned SubregHashSize;
268   const unsigned* AliasesHash;
269   const unsigned AliasesHashSize;
270 public:
271   typedef const TargetRegisterClass * const * regclass_iterator;
272 private:
273   const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
274   const char *const *SubRegIndexNames;        // Names of subreg indexes.
275   unsigned NumRegs;                           // Number of entries in the array
276
277   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
278
279   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
280
281 protected:
282   TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
283                      regclass_iterator RegClassBegin,
284                      regclass_iterator RegClassEnd,
285                      const char *const *subregindexnames,
286                      int CallFrameSetupOpcode = -1,
287                      int CallFrameDestroyOpcode = -1,
288                      const unsigned* subregs = 0,
289                      const unsigned subregsize = 0,
290                      const unsigned* aliases = 0,
291                      const unsigned aliasessize = 0);
292   virtual ~TargetRegisterInfo();
293 public:
294
295   enum {                        // Define some target independent constants
296     /// NoRegister - This physical register is not a real target register.  It
297     /// is useful as a sentinal.
298     NoRegister = 0,
299
300     /// FirstVirtualRegister - This is the first register number that is
301     /// considered to be a 'virtual' register, which is part of the SSA
302     /// namespace.  This must be the same for all targets, which means that each
303     /// target is limited to this fixed number of registers.
304     FirstVirtualRegister = 1024
305   };
306
307   /// isPhysicalRegister - Return true if the specified register number is in
308   /// the physical register namespace.
309   static bool isPhysicalRegister(unsigned Reg) {
310     assert(Reg && "this is not a register!");
311     return Reg < FirstVirtualRegister;
312   }
313
314   /// isVirtualRegister - Return true if the specified register number is in
315   /// the virtual register namespace.
316   static bool isVirtualRegister(unsigned Reg) {
317     assert(Reg && "this is not a register!");
318     return Reg >= FirstVirtualRegister;
319   }
320
321   /// getMinimalPhysRegClass - Returns the Register Class of a physical
322   /// register of the given type, picking the most sub register class of
323   /// the right type that contains this physreg.
324   const TargetRegisterClass *
325     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
326
327   /// getAllocatableSet - Returns a bitset indexed by register number
328   /// indicating if a register is allocatable or not. If a register class is
329   /// specified, returns the subset for the class.
330   BitVector getAllocatableSet(const MachineFunction &MF,
331                               const TargetRegisterClass *RC = NULL) const;
332
333   const TargetRegisterDesc &operator[](unsigned RegNo) const {
334     assert(RegNo < NumRegs &&
335            "Attempting to access record for invalid register number!");
336     return Desc[RegNo];
337   }
338
339   /// Provide a get method, equivalent to [], but more useful if we have a
340   /// pointer to this object.
341   ///
342   const TargetRegisterDesc &get(unsigned RegNo) const {
343     return operator[](RegNo);
344   }
345
346   /// getAliasSet - Return the set of registers aliased by the specified
347   /// register, or a null list of there are none.  The list returned is zero
348   /// terminated.
349   ///
350   const unsigned *getAliasSet(unsigned RegNo) const {
351     return get(RegNo).AliasSet;
352   }
353
354   /// getSubRegisters - Return the list of registers that are sub-registers of
355   /// the specified register, or a null list of there are none. The list
356   /// returned is zero terminated and sorted according to super-sub register
357   /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
358   ///
359   const unsigned *getSubRegisters(unsigned RegNo) const {
360     return get(RegNo).SubRegs;
361   }
362
363   /// getSuperRegisters - Return the list of registers that are super-registers
364   /// of the specified register, or a null list of there are none. The list
365   /// returned is zero terminated and sorted according to super-sub register
366   /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
367   ///
368   const unsigned *getSuperRegisters(unsigned RegNo) const {
369     return get(RegNo).SuperRegs;
370   }
371
372   /// getName - Return the human-readable symbolic target-specific name for the
373   /// specified physical register.
374   const char *getName(unsigned RegNo) const {
375     return get(RegNo).Name;
376   }
377
378   /// getNumRegs - Return the number of registers this target has (useful for
379   /// sizing arrays holding per register information)
380   unsigned getNumRegs() const {
381     return NumRegs;
382   }
383
384   /// getSubRegIndexName - Return the human-readable symbolic target-specific
385   /// name for the specified SubRegIndex.
386   const char *getSubRegIndexName(unsigned SubIdx) const {
387     assert(SubIdx && "This is not a subregister index");
388     return SubRegIndexNames[SubIdx-1];
389   }
390
391   /// regsOverlap - Returns true if the two registers are equal or alias each
392   /// other. The registers may be virtual register.
393   bool regsOverlap(unsigned regA, unsigned regB) const {
394     if (regA == regB)
395       return true;
396
397     if (isVirtualRegister(regA) || isVirtualRegister(regB))
398       return false;
399
400     // regA and regB are distinct physical registers. Do they alias?
401     size_t index = (regA + regB * 37) & (AliasesHashSize-1);
402     unsigned ProbeAmt = 0;
403     while (AliasesHash[index*2] != 0 &&
404            AliasesHash[index*2+1] != 0) {
405       if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
406         return true;
407
408       index = (index + ProbeAmt) & (AliasesHashSize-1);
409       ProbeAmt += 2;
410     }
411
412     return false;
413   }
414
415   /// isSubRegister - Returns true if regB is a sub-register of regA.
416   ///
417   bool isSubRegister(unsigned regA, unsigned regB) const {
418     // SubregHash is a simple quadratically probed hash table.
419     size_t index = (regA + regB * 37) & (SubregHashSize-1);
420     unsigned ProbeAmt = 2;
421     while (SubregHash[index*2] != 0 &&
422            SubregHash[index*2+1] != 0) {
423       if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
424         return true;
425
426       index = (index + ProbeAmt) & (SubregHashSize-1);
427       ProbeAmt += 2;
428     }
429
430     return false;
431   }
432
433   /// isSuperRegister - Returns true if regB is a super-register of regA.
434   ///
435   bool isSuperRegister(unsigned regA, unsigned regB) const {
436     return isSubRegister(regB, regA);
437   }
438
439   /// getCalleeSavedRegs - Return a null-terminated list of all of the
440   /// callee saved registers on this target. The register should be in the
441   /// order of desired callee-save stack frame offset. The first register is
442   /// closed to the incoming stack pointer if stack grows down, and vice versa.
443   virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
444                                                                       const = 0;
445
446
447   /// getReservedRegs - Returns a bitset indexed by physical register number
448   /// indicating if a register is a special register that has particular uses
449   /// and should be considered unavailable at all times, e.g. SP, RA. This is
450   /// used by register scavenger to determine what registers are free.
451   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
452
453   /// getSubReg - Returns the physical register number of sub-register "Index"
454   /// for physical register RegNo. Return zero if the sub-register does not
455   /// exist.
456   virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
457
458   /// getSubRegIndex - For a given register pair, return the sub-register index
459   /// if the second register is a sub-register of the first. Return zero
460   /// otherwise.
461   virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
462
463   /// getMatchingSuperReg - Return a super-register of the specified register
464   /// Reg so its sub-register of index SubIdx is Reg.
465   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
466                                const TargetRegisterClass *RC) const {
467     for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
468       if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
469         return SR;
470     return 0;
471   }
472
473   /// canCombineSubRegIndices - Given a register class and a list of
474   /// subregister indices, return true if it's possible to combine the
475   /// subregister indices into one that corresponds to a larger
476   /// subregister. Return the new subregister index by reference. Note the
477   /// new index may be zero if the given subregisters can be combined to
478   /// form the whole register.
479   virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
480                                        SmallVectorImpl<unsigned> &SubIndices,
481                                        unsigned &NewSubIdx) const {
482     return 0;
483   }
484
485   /// getMatchingSuperRegClass - Return a subclass of the specified register
486   /// class A so that each register in it has a sub-register of the
487   /// specified sub-register index which is in the specified register class B.
488   virtual const TargetRegisterClass *
489   getMatchingSuperRegClass(const TargetRegisterClass *A,
490                            const TargetRegisterClass *B, unsigned Idx) const {
491     return 0;
492   }
493
494   /// composeSubRegIndices - Return the subregister index you get from composing
495   /// two subregister indices.
496   ///
497   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
498   /// returns c. Note that composeSubRegIndices does not tell you about illegal
499   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
500   /// b, composeSubRegIndices doesn't tell you.
501   ///
502   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
503   /// ssub_0:S0 - ssub_3:S3 subregs.
504   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
505   ///
506   virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
507     // This default implementation is correct for most targets.
508     return b;
509   }
510
511   //===--------------------------------------------------------------------===//
512   // Register Class Information
513   //
514
515   /// Register class iterators
516   ///
517   regclass_iterator regclass_begin() const { return RegClassBegin; }
518   regclass_iterator regclass_end() const { return RegClassEnd; }
519
520   unsigned getNumRegClasses() const {
521     return (unsigned)(regclass_end()-regclass_begin());
522   }
523
524   /// getRegClass - Returns the register class associated with the enumeration
525   /// value.  See class TargetOperandInfo.
526   const TargetRegisterClass *getRegClass(unsigned i) const {
527     assert(i < getNumRegClasses() && "Register Class ID out of range");
528     return RegClassBegin[i];
529   }
530
531   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
532   /// values.  If a target supports multiple different pointer register classes,
533   /// kind specifies which one is indicated.
534   virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
535     assert(0 && "Target didn't implement getPointerRegClass!");
536     return 0; // Must return a value in order to compile with VS 2005
537   }
538
539   /// getCrossCopyRegClass - Returns a legal register class to copy a register
540   /// in the specified class to or from. Returns NULL if it is possible to copy
541   /// between a two registers of the specified class.
542   virtual const TargetRegisterClass *
543   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
544     return NULL;
545   }
546
547   /// getAllocationOrder - Returns the register allocation order for a specified
548   /// register class in the form of a pair of TargetRegisterClass iterators.
549   virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
550   getAllocationOrder(const TargetRegisterClass *RC,
551                      unsigned HintType, unsigned HintReg,
552                      const MachineFunction &MF) const {
553     return std::make_pair(RC->allocation_order_begin(MF),
554                           RC->allocation_order_end(MF));
555   }
556
557   /// ResolveRegAllocHint - Resolves the specified register allocation hint
558   /// to a physical register. Returns the physical register if it is successful.
559   virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
560                                        const MachineFunction &MF) const {
561     if (Type == 0 && Reg && isPhysicalRegister(Reg))
562       return Reg;
563     return 0;
564   }
565
566   /// UpdateRegAllocHint - A callback to allow target a chance to update
567   /// register allocation hints when a register is "changed" (e.g. coalesced)
568   /// to another register. e.g. On ARM, some virtual registers should target
569   /// register pairs, if one of pair is coalesced to another register, the
570   /// allocation hint of the other half of the pair should be changed to point
571   /// to the new register.
572   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
573                                   MachineFunction &MF) const {
574     // Do nothing.
575   }
576
577   /// targetHandlesStackFrameRounding - Returns true if the target is
578   /// responsible for rounding up the stack frame (probably at emitPrologue
579   /// time).
580   virtual bool targetHandlesStackFrameRounding() const {
581     return false;
582   }
583
584   /// requiresRegisterScavenging - returns true if the target requires (and can
585   /// make use of) the register scavenger.
586   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
587     return false;
588   }
589
590   /// requiresFrameIndexScavenging - returns true if the target requires post
591   /// PEI scavenging of registers for materializing frame index constants.
592   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
593     return false;
594   }
595
596   /// hasFP - Return true if the specified function should have a dedicated
597   /// frame pointer register. For most targets this is true only if the function
598   /// has variable sized allocas or if frame pointer elimination is disabled.
599   virtual bool hasFP(const MachineFunction &MF) const = 0;
600
601   /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
602   /// not required, we reserve argument space for call sites in the function
603   /// immediately on entry to the current function. This eliminates the need for
604   /// add/sub sp brackets around call sites. Returns true if the call frame is
605   /// included as part of the stack frame.
606   virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
607     return !hasFP(MF);
608   }
609
610   /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
611   /// call frame pseudo ops before doing frame index elimination. This is
612   /// possible only when frame index references between the pseudos won't
613   /// need adjusting for the call frame adjustments. Normally, that's true
614   /// if the function has a reserved call frame or a frame pointer. Some
615   /// targets (Thumb2, for example) may have more complicated criteria,
616   /// however, and can override this behavior.
617   virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
618     return hasReservedCallFrame(MF) || hasFP(MF);
619   }
620
621   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
622   /// the stack frame of the given function for the specified register. e.g. On
623   /// x86, if the frame register is required, the first fixed stack object is
624   /// reserved as its spill slot. This tells PEI not to create a new stack frame
625   /// object for the given register. It should be called only after
626   /// processFunctionBeforeCalleeSavedScan().
627   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
628                                     int &FrameIdx) const {
629     return false;
630   }
631
632   /// needsStackRealignment - true if storage within the function requires the
633   /// stack pointer to be aligned more than the normal calling convention calls
634   /// for.
635   virtual bool needsStackRealignment(const MachineFunction &MF) const {
636     return false;
637   }
638
639   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
640   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
641   /// targets use pseudo instructions in order to abstract away the difference
642   /// between operating with a frame pointer and operating without, through the
643   /// use of these two instructions.
644   ///
645   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
646   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
647
648   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
649   /// code insertion to eliminate call frame setup and destroy pseudo
650   /// instructions (but only if the Target is using them).  It is responsible
651   /// for eliminating these instructions, replacing them with concrete
652   /// instructions.  This method need only be implemented if using call frame
653   /// setup/destroy pseudo instructions.
654   ///
655   virtual void
656   eliminateCallFramePseudoInstr(MachineFunction &MF,
657                                 MachineBasicBlock &MBB,
658                                 MachineBasicBlock::iterator MI) const {
659     assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
660            "eliminateCallFramePseudoInstr must be implemented if using"
661            " call frame setup/destroy pseudo instructions!");
662     assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
663   }
664
665   /// processFunctionBeforeCalleeSavedScan - This method is called immediately
666   /// before PrologEpilogInserter scans the physical registers used to determine
667   /// what callee saved registers should be spilled. This method is optional.
668   virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
669                                                 RegScavenger *RS = NULL) const {
670
671   }
672
673   /// processFunctionBeforeFrameFinalized - This method is called immediately
674   /// before the specified functions frame layout (MF.getFrameInfo()) is
675   /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
676   /// replaced with direct constants.  This method is optional.
677   ///
678   virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
679   }
680
681   /// saveScavengerRegister - Spill the register so it can be used by the
682   /// register scavenger. Return true if the register was spilled, false
683   /// otherwise. If this function does not spill the register, the scavenger
684   /// will instead spill it to the emergency spill slot.
685   ///
686   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
687                                      MachineBasicBlock::iterator I,
688                                      MachineBasicBlock::iterator &UseMI,
689                                      const TargetRegisterClass *RC,
690                                      unsigned Reg) const {
691     return false;
692   }
693
694   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
695   /// frame indices from instructions which may use them.  The instruction
696   /// referenced by the iterator contains an MO_FrameIndex operand which must be
697   /// eliminated by this method.  This method may modify or replace the
698   /// specified instruction, as long as it keeps the iterator pointing at the
699   /// finished product. SPAdj is the SP adjustment due to call frame setup
700   /// instruction.
701   ///
702   /// When -enable-frame-index-scavenging is enabled, the virtual register
703   /// allocated for this frame index is returned and its value is stored in
704   /// *Value.
705   typedef std::pair<unsigned, int> FrameIndexValue;
706   virtual unsigned eliminateFrameIndex(MachineBasicBlock::iterator MI,
707                                        int SPAdj, FrameIndexValue *Value = NULL,
708                                        RegScavenger *RS=NULL) const = 0;
709
710   /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
711   /// the function.
712   virtual void emitPrologue(MachineFunction &MF) const = 0;
713   virtual void emitEpilogue(MachineFunction &MF,
714                             MachineBasicBlock &MBB) const = 0;
715
716   //===--------------------------------------------------------------------===//
717   /// Debug information queries.
718
719   /// getDwarfRegNum - Map a target register to an equivalent dwarf register
720   /// number.  Returns -1 if there is no equivalent value.  The second
721   /// parameter allows targets to use different numberings for EH info and
722   /// debugging info.
723   virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
724
725   /// getFrameRegister - This method should return the register used as a base
726   /// for values allocated in the current stack frame.
727   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
728
729   /// getFrameIndexOffset - Returns the displacement from the frame register to
730   /// the stack frame of the specified index.
731   virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
732
733   /// getFrameIndexReference - This method should return the base register
734   /// and offset used to reference a frame index location. The offset is
735   /// returned directly, and the base register is returned via FrameReg.
736   virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
737                                      unsigned &FrameReg) const {
738     // By default, assume all frame indices are referenced via whatever
739     // getFrameRegister() says. The target can override this if it's doing
740     // something different.
741     FrameReg = getFrameRegister(MF);
742     return getFrameIndexOffset(MF, FI);
743   }
744
745   /// getRARegister - This method should return the register where the return
746   /// address can be found.
747   virtual unsigned getRARegister() const = 0;
748
749   /// getInitialFrameState - Returns a list of machine moves that are assumed
750   /// on entry to all functions.  Note that LabelID is ignored (assumed to be
751   /// the beginning of the function.)
752   virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
753 };
754
755
756 // This is useful when building IndexedMaps keyed on virtual registers
757 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
758   unsigned operator()(unsigned Reg) const {
759     return Reg - TargetRegisterInfo::FirstVirtualRegister;
760   }
761 };
762
763 /// getCommonSubClass - find the largest common subclass of A and B. Return NULL
764 /// if there is no common subclass.
765 const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
766                                              const TargetRegisterClass *B);
767
768 } // End llvm namespace
769
770 #endif