1 //===- TargetSchedule.td - Target Independent Scheduling ---*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the target-independent scheduling interfaces which should
11 // be implemented by each target which is using TableGen based scheduling.
13 //===----------------------------------------------------------------------===//
15 //===----------------------------------------------------------------------===//
16 // Processor functional unit - These values represent the function units
17 // available across all chip sets for the target. Eg., IntUnit, FPUnit, ...
18 // These may be independent values for each chip set or may be shared across
19 // all chip sets of the target. Each functional unit is treated as a resource
20 // during scheduling and has an affect instruction order based on availability
21 // during a time interval.
25 //===----------------------------------------------------------------------===//
26 // Instruction stage - These values represent a non-pipelined step in
27 // the execution of an instruction. Cycles represents the number of
28 // discrete time slots needed to complete the stage. Units represent
29 // the choice of functional units that can be used to complete the
30 // stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many
31 // cycles should elapse from the start of this stage to the start of
32 // the next stage in the itinerary. For example:
34 // A stage is specified in one of two ways:
36 // InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles
37 // InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit
39 class InstrStage<int cycles, list<FuncUnit> units, int timeinc = -1> {
40 int Cycles = cycles; // length of stage in machine cycles
41 list<FuncUnit> Units = units; // choice of functional units
42 int TimeInc = timeinc; // cycles till start of next stage
45 //===----------------------------------------------------------------------===//
46 // Instruction itinerary - An itinerary represents a sequential series of steps
47 // required to complete an instruction. Itineraries are represented as lists of
48 // instruction stages.
51 //===----------------------------------------------------------------------===//
52 // Instruction itinerary classes - These values represent 'named' instruction
53 // itinerary. Using named itineraries simplifies managing groups of
54 // instructions across chip sets. An instruction uses the same itinerary class
55 // across all chip sets. Thus a new chip set can be added without modifying
56 // instruction information.
59 def NoItinerary : InstrItinClass;
61 //===----------------------------------------------------------------------===//
62 // Instruction itinerary data - These values provide a runtime map of an
63 // instruction itinerary class (name) to its itinerary data.
65 class InstrItinData<InstrItinClass Class, list<InstrStage> stages,
66 list<int> operandcycles = []> {
67 InstrItinClass TheClass = Class;
68 list<InstrStage> Stages = stages;
69 list<int> OperandCycles = operandcycles;
72 //===----------------------------------------------------------------------===//
73 // Processor itineraries - These values represent the set of all itinerary
74 // classes for a given chip set.
76 class ProcessorItineraries<list<InstrItinData> iid> {
77 list<InstrItinData> IID = iid;
80 // NoItineraries - A marker that can be used by processors without schedule
82 def NoItineraries : ProcessorItineraries<[]>;