7b1b772ab1ce4f381ce085c82e11005af3f5a2c6
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153                                 struct page *page, struct page *kpage)
154 {
155         struct mm_struct *mm = vma->vm_mm;
156         spinlock_t *ptl;
157         pte_t *ptep;
158         int err;
159         /* For mmu_notifiers */
160         const unsigned long mmun_start = addr;
161         const unsigned long mmun_end   = addr + PAGE_SIZE;
162         struct mem_cgroup *memcg;
163
164         err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
165         if (err)
166                 return err;
167
168         /* For try_to_free_swap() and munlock_vma_page() below */
169         lock_page(page);
170
171         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
172         err = -EAGAIN;
173         ptep = page_check_address(page, mm, addr, &ptl, 0);
174         if (!ptep) {
175                 mem_cgroup_cancel_charge(kpage, memcg);
176                 goto unlock;
177         }
178
179         get_page(kpage);
180         page_add_new_anon_rmap(kpage, vma, addr);
181         mem_cgroup_commit_charge(kpage, memcg, false);
182         lru_cache_add_active_or_unevictable(kpage, vma);
183
184         if (!PageAnon(page)) {
185                 dec_mm_counter(mm, MM_FILEPAGES);
186                 inc_mm_counter(mm, MM_ANONPAGES);
187         }
188
189         flush_cache_page(vma, addr, pte_pfn(*ptep));
190         ptep_clear_flush_notify(vma, addr, ptep);
191         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
192
193         page_remove_rmap(page);
194         if (!page_mapped(page))
195                 try_to_free_swap(page);
196         pte_unmap_unlock(ptep, ptl);
197
198         if (vma->vm_flags & VM_LOCKED)
199                 munlock_vma_page(page);
200         put_page(page);
201
202         err = 0;
203  unlock:
204         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
205         unlock_page(page);
206         return err;
207 }
208
209 /**
210  * is_swbp_insn - check if instruction is breakpoint instruction.
211  * @insn: instruction to be checked.
212  * Default implementation of is_swbp_insn
213  * Returns true if @insn is a breakpoint instruction.
214  */
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 {
217         return *insn == UPROBE_SWBP_INSN;
218 }
219
220 /**
221  * is_trap_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_trap_insn
224  * Returns true if @insn is a breakpoint instruction.
225  *
226  * This function is needed for the case where an architecture has multiple
227  * trap instructions (like powerpc).
228  */
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 {
231         return is_swbp_insn(insn);
232 }
233
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 {
236         void *kaddr = kmap_atomic(page);
237         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238         kunmap_atomic(kaddr);
239 }
240
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 {
243         void *kaddr = kmap_atomic(page);
244         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245         kunmap_atomic(kaddr);
246 }
247
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 {
250         uprobe_opcode_t old_opcode;
251         bool is_swbp;
252
253         /*
254          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255          * We do not check if it is any other 'trap variant' which could
256          * be conditional trap instruction such as the one powerpc supports.
257          *
258          * The logic is that we do not care if the underlying instruction
259          * is a trap variant; uprobes always wins over any other (gdb)
260          * breakpoint.
261          */
262         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263         is_swbp = is_swbp_insn(&old_opcode);
264
265         if (is_swbp_insn(new_opcode)) {
266                 if (is_swbp)            /* register: already installed? */
267                         return 0;
268         } else {
269                 if (!is_swbp)           /* unregister: was it changed by us? */
270                         return 0;
271         }
272
273         return 1;
274 }
275
276 /*
277  * NOTE:
278  * Expect the breakpoint instruction to be the smallest size instruction for
279  * the architecture. If an arch has variable length instruction and the
280  * breakpoint instruction is not of the smallest length instruction
281  * supported by that architecture then we need to modify is_trap_at_addr and
282  * uprobe_write_opcode accordingly. This would never be a problem for archs
283  * that have fixed length instructions.
284  *
285  * uprobe_write_opcode - write the opcode at a given virtual address.
286  * @mm: the probed process address space.
287  * @vaddr: the virtual address to store the opcode.
288  * @opcode: opcode to be written at @vaddr.
289  *
290  * Called with mm->mmap_sem held for write.
291  * Return 0 (success) or a negative errno.
292  */
293 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
294                         uprobe_opcode_t opcode)
295 {
296         struct page *old_page, *new_page;
297         struct vm_area_struct *vma;
298         int ret;
299
300 retry:
301         /* Read the page with vaddr into memory */
302         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
303         if (ret <= 0)
304                 return ret;
305
306         ret = verify_opcode(old_page, vaddr, &opcode);
307         if (ret <= 0)
308                 goto put_old;
309
310         ret = anon_vma_prepare(vma);
311         if (ret)
312                 goto put_old;
313
314         ret = -ENOMEM;
315         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
316         if (!new_page)
317                 goto put_old;
318
319         __SetPageUptodate(new_page);
320         copy_highpage(new_page, old_page);
321         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
322
323         ret = __replace_page(vma, vaddr, old_page, new_page);
324         page_cache_release(new_page);
325 put_old:
326         put_page(old_page);
327
328         if (unlikely(ret == -EAGAIN))
329                 goto retry;
330         return ret;
331 }
332
333 /**
334  * set_swbp - store breakpoint at a given address.
335  * @auprobe: arch specific probepoint information.
336  * @mm: the probed process address space.
337  * @vaddr: the virtual address to insert the opcode.
338  *
339  * For mm @mm, store the breakpoint instruction at @vaddr.
340  * Return 0 (success) or a negative errno.
341  */
342 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
343 {
344         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
345 }
346
347 /**
348  * set_orig_insn - Restore the original instruction.
349  * @mm: the probed process address space.
350  * @auprobe: arch specific probepoint information.
351  * @vaddr: the virtual address to insert the opcode.
352  *
353  * For mm @mm, restore the original opcode (opcode) at @vaddr.
354  * Return 0 (success) or a negative errno.
355  */
356 int __weak
357 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
358 {
359         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
360 }
361
362 static struct uprobe *get_uprobe(struct uprobe *uprobe)
363 {
364         atomic_inc(&uprobe->ref);
365         return uprobe;
366 }
367
368 static void put_uprobe(struct uprobe *uprobe)
369 {
370         if (atomic_dec_and_test(&uprobe->ref))
371                 kfree(uprobe);
372 }
373
374 static int match_uprobe(struct uprobe *l, struct uprobe *r)
375 {
376         if (l->inode < r->inode)
377                 return -1;
378
379         if (l->inode > r->inode)
380                 return 1;
381
382         if (l->offset < r->offset)
383                 return -1;
384
385         if (l->offset > r->offset)
386                 return 1;
387
388         return 0;
389 }
390
391 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
392 {
393         struct uprobe u = { .inode = inode, .offset = offset };
394         struct rb_node *n = uprobes_tree.rb_node;
395         struct uprobe *uprobe;
396         int match;
397
398         while (n) {
399                 uprobe = rb_entry(n, struct uprobe, rb_node);
400                 match = match_uprobe(&u, uprobe);
401                 if (!match)
402                         return get_uprobe(uprobe);
403
404                 if (match < 0)
405                         n = n->rb_left;
406                 else
407                         n = n->rb_right;
408         }
409         return NULL;
410 }
411
412 /*
413  * Find a uprobe corresponding to a given inode:offset
414  * Acquires uprobes_treelock
415  */
416 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
417 {
418         struct uprobe *uprobe;
419
420         spin_lock(&uprobes_treelock);
421         uprobe = __find_uprobe(inode, offset);
422         spin_unlock(&uprobes_treelock);
423
424         return uprobe;
425 }
426
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429         struct rb_node **p = &uprobes_tree.rb_node;
430         struct rb_node *parent = NULL;
431         struct uprobe *u;
432         int match;
433
434         while (*p) {
435                 parent = *p;
436                 u = rb_entry(parent, struct uprobe, rb_node);
437                 match = match_uprobe(uprobe, u);
438                 if (!match)
439                         return get_uprobe(u);
440
441                 if (match < 0)
442                         p = &parent->rb_left;
443                 else
444                         p = &parent->rb_right;
445
446         }
447
448         u = NULL;
449         rb_link_node(&uprobe->rb_node, parent, p);
450         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451         /* get access + creation ref */
452         atomic_set(&uprobe->ref, 2);
453
454         return u;
455 }
456
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *      increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *      get a double refcount (access + creation) and return NULL.
464  */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467         struct uprobe *u;
468
469         spin_lock(&uprobes_treelock);
470         u = __insert_uprobe(uprobe);
471         spin_unlock(&uprobes_treelock);
472
473         return u;
474 }
475
476 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
477 {
478         struct uprobe *uprobe, *cur_uprobe;
479
480         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
481         if (!uprobe)
482                 return NULL;
483
484         uprobe->inode = igrab(inode);
485         uprobe->offset = offset;
486         init_rwsem(&uprobe->register_rwsem);
487         init_rwsem(&uprobe->consumer_rwsem);
488
489         /* add to uprobes_tree, sorted on inode:offset */
490         cur_uprobe = insert_uprobe(uprobe);
491         /* a uprobe exists for this inode:offset combination */
492         if (cur_uprobe) {
493                 kfree(uprobe);
494                 uprobe = cur_uprobe;
495                 iput(inode);
496         }
497
498         return uprobe;
499 }
500
501 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
502 {
503         down_write(&uprobe->consumer_rwsem);
504         uc->next = uprobe->consumers;
505         uprobe->consumers = uc;
506         up_write(&uprobe->consumer_rwsem);
507 }
508
509 /*
510  * For uprobe @uprobe, delete the consumer @uc.
511  * Return true if the @uc is deleted successfully
512  * or return false.
513  */
514 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
515 {
516         struct uprobe_consumer **con;
517         bool ret = false;
518
519         down_write(&uprobe->consumer_rwsem);
520         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
521                 if (*con == uc) {
522                         *con = uc->next;
523                         ret = true;
524                         break;
525                 }
526         }
527         up_write(&uprobe->consumer_rwsem);
528
529         return ret;
530 }
531
532 static int __copy_insn(struct address_space *mapping, struct file *filp,
533                         void *insn, int nbytes, loff_t offset)
534 {
535         struct page *page;
536         /*
537          * Ensure that the page that has the original instruction is populated
538          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
539          * see uprobe_register().
540          */
541         if (mapping->a_ops->readpage)
542                 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
543         else
544                 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
545         if (IS_ERR(page))
546                 return PTR_ERR(page);
547
548         copy_from_page(page, offset, insn, nbytes);
549         page_cache_release(page);
550
551         return 0;
552 }
553
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556         struct address_space *mapping = uprobe->inode->i_mapping;
557         loff_t offs = uprobe->offset;
558         void *insn = &uprobe->arch.insn;
559         int size = sizeof(uprobe->arch.insn);
560         int len, err = -EIO;
561
562         /* Copy only available bytes, -EIO if nothing was read */
563         do {
564                 if (offs >= i_size_read(uprobe->inode))
565                         break;
566
567                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
568                 err = __copy_insn(mapping, filp, insn, len, offs);
569                 if (err)
570                         break;
571
572                 insn += len;
573                 offs += len;
574                 size -= len;
575         } while (size);
576
577         return err;
578 }
579
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581                                 struct mm_struct *mm, unsigned long vaddr)
582 {
583         int ret = 0;
584
585         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586                 return ret;
587
588         /* TODO: move this into _register, until then we abuse this sem. */
589         down_write(&uprobe->consumer_rwsem);
590         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591                 goto out;
592
593         ret = copy_insn(uprobe, file);
594         if (ret)
595                 goto out;
596
597         ret = -ENOTSUPP;
598         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
599                 goto out;
600
601         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
602         if (ret)
603                 goto out;
604
605         /* uprobe_write_opcode() assumes we don't cross page boundary */
606         BUG_ON((uprobe->offset & ~PAGE_MASK) +
607                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
608
609         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
610         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
611
612  out:
613         up_write(&uprobe->consumer_rwsem);
614
615         return ret;
616 }
617
618 static inline bool consumer_filter(struct uprobe_consumer *uc,
619                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
620 {
621         return !uc->filter || uc->filter(uc, ctx, mm);
622 }
623
624 static bool filter_chain(struct uprobe *uprobe,
625                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
626 {
627         struct uprobe_consumer *uc;
628         bool ret = false;
629
630         down_read(&uprobe->consumer_rwsem);
631         for (uc = uprobe->consumers; uc; uc = uc->next) {
632                 ret = consumer_filter(uc, ctx, mm);
633                 if (ret)
634                         break;
635         }
636         up_read(&uprobe->consumer_rwsem);
637
638         return ret;
639 }
640
641 static int
642 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
643                         struct vm_area_struct *vma, unsigned long vaddr)
644 {
645         bool first_uprobe;
646         int ret;
647
648         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
649         if (ret)
650                 return ret;
651
652         /*
653          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
654          * the task can hit this breakpoint right after __replace_page().
655          */
656         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
657         if (first_uprobe)
658                 set_bit(MMF_HAS_UPROBES, &mm->flags);
659
660         ret = set_swbp(&uprobe->arch, mm, vaddr);
661         if (!ret)
662                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
663         else if (first_uprobe)
664                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
665
666         return ret;
667 }
668
669 static int
670 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
671 {
672         set_bit(MMF_RECALC_UPROBES, &mm->flags);
673         return set_orig_insn(&uprobe->arch, mm, vaddr);
674 }
675
676 static inline bool uprobe_is_active(struct uprobe *uprobe)
677 {
678         return !RB_EMPTY_NODE(&uprobe->rb_node);
679 }
680 /*
681  * There could be threads that have already hit the breakpoint. They
682  * will recheck the current insn and restart if find_uprobe() fails.
683  * See find_active_uprobe().
684  */
685 static void delete_uprobe(struct uprobe *uprobe)
686 {
687         if (WARN_ON(!uprobe_is_active(uprobe)))
688                 return;
689
690         spin_lock(&uprobes_treelock);
691         rb_erase(&uprobe->rb_node, &uprobes_tree);
692         spin_unlock(&uprobes_treelock);
693         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
694         iput(uprobe->inode);
695         put_uprobe(uprobe);
696 }
697
698 struct map_info {
699         struct map_info *next;
700         struct mm_struct *mm;
701         unsigned long vaddr;
702 };
703
704 static inline struct map_info *free_map_info(struct map_info *info)
705 {
706         struct map_info *next = info->next;
707         kfree(info);
708         return next;
709 }
710
711 static struct map_info *
712 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
713 {
714         unsigned long pgoff = offset >> PAGE_SHIFT;
715         struct vm_area_struct *vma;
716         struct map_info *curr = NULL;
717         struct map_info *prev = NULL;
718         struct map_info *info;
719         int more = 0;
720
721  again:
722         i_mmap_lock_read(mapping);
723         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
724                 if (!valid_vma(vma, is_register))
725                         continue;
726
727                 if (!prev && !more) {
728                         /*
729                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
730                          * reclaim. This is optimistic, no harm done if it fails.
731                          */
732                         prev = kmalloc(sizeof(struct map_info),
733                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
734                         if (prev)
735                                 prev->next = NULL;
736                 }
737                 if (!prev) {
738                         more++;
739                         continue;
740                 }
741
742                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
743                         continue;
744
745                 info = prev;
746                 prev = prev->next;
747                 info->next = curr;
748                 curr = info;
749
750                 info->mm = vma->vm_mm;
751                 info->vaddr = offset_to_vaddr(vma, offset);
752         }
753         i_mmap_unlock_read(mapping);
754
755         if (!more)
756                 goto out;
757
758         prev = curr;
759         while (curr) {
760                 mmput(curr->mm);
761                 curr = curr->next;
762         }
763
764         do {
765                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
766                 if (!info) {
767                         curr = ERR_PTR(-ENOMEM);
768                         goto out;
769                 }
770                 info->next = prev;
771                 prev = info;
772         } while (--more);
773
774         goto again;
775  out:
776         while (prev)
777                 prev = free_map_info(prev);
778         return curr;
779 }
780
781 static int
782 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
783 {
784         bool is_register = !!new;
785         struct map_info *info;
786         int err = 0;
787
788         percpu_down_write(&dup_mmap_sem);
789         info = build_map_info(uprobe->inode->i_mapping,
790                                         uprobe->offset, is_register);
791         if (IS_ERR(info)) {
792                 err = PTR_ERR(info);
793                 goto out;
794         }
795
796         while (info) {
797                 struct mm_struct *mm = info->mm;
798                 struct vm_area_struct *vma;
799
800                 if (err && is_register)
801                         goto free;
802
803                 down_write(&mm->mmap_sem);
804                 vma = find_vma(mm, info->vaddr);
805                 if (!vma || !valid_vma(vma, is_register) ||
806                     file_inode(vma->vm_file) != uprobe->inode)
807                         goto unlock;
808
809                 if (vma->vm_start > info->vaddr ||
810                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
811                         goto unlock;
812
813                 if (is_register) {
814                         /* consult only the "caller", new consumer. */
815                         if (consumer_filter(new,
816                                         UPROBE_FILTER_REGISTER, mm))
817                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
818                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
819                         if (!filter_chain(uprobe,
820                                         UPROBE_FILTER_UNREGISTER, mm))
821                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
822                 }
823
824  unlock:
825                 up_write(&mm->mmap_sem);
826  free:
827                 mmput(mm);
828                 info = free_map_info(info);
829         }
830  out:
831         percpu_up_write(&dup_mmap_sem);
832         return err;
833 }
834
835 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
836 {
837         consumer_add(uprobe, uc);
838         return register_for_each_vma(uprobe, uc);
839 }
840
841 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
842 {
843         int err;
844
845         if (WARN_ON(!consumer_del(uprobe, uc)))
846                 return;
847
848         err = register_for_each_vma(uprobe, NULL);
849         /* TODO : cant unregister? schedule a worker thread */
850         if (!uprobe->consumers && !err)
851                 delete_uprobe(uprobe);
852 }
853
854 /*
855  * uprobe_register - register a probe
856  * @inode: the file in which the probe has to be placed.
857  * @offset: offset from the start of the file.
858  * @uc: information on howto handle the probe..
859  *
860  * Apart from the access refcount, uprobe_register() takes a creation
861  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
862  * inserted into the rbtree (i.e first consumer for a @inode:@offset
863  * tuple).  Creation refcount stops uprobe_unregister from freeing the
864  * @uprobe even before the register operation is complete. Creation
865  * refcount is released when the last @uc for the @uprobe
866  * unregisters.
867  *
868  * Return errno if it cannot successully install probes
869  * else return 0 (success)
870  */
871 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
872 {
873         struct uprobe *uprobe;
874         int ret;
875
876         /* Uprobe must have at least one set consumer */
877         if (!uc->handler && !uc->ret_handler)
878                 return -EINVAL;
879
880         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
881         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
882                 return -EIO;
883         /* Racy, just to catch the obvious mistakes */
884         if (offset > i_size_read(inode))
885                 return -EINVAL;
886
887  retry:
888         uprobe = alloc_uprobe(inode, offset);
889         if (!uprobe)
890                 return -ENOMEM;
891         /*
892          * We can race with uprobe_unregister()->delete_uprobe().
893          * Check uprobe_is_active() and retry if it is false.
894          */
895         down_write(&uprobe->register_rwsem);
896         ret = -EAGAIN;
897         if (likely(uprobe_is_active(uprobe))) {
898                 ret = __uprobe_register(uprobe, uc);
899                 if (ret)
900                         __uprobe_unregister(uprobe, uc);
901         }
902         up_write(&uprobe->register_rwsem);
903         put_uprobe(uprobe);
904
905         if (unlikely(ret == -EAGAIN))
906                 goto retry;
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(uprobe_register);
910
911 /*
912  * uprobe_apply - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: consumer which wants to add more or remove some breakpoints
916  * @add: add or remove the breakpoints
917  */
918 int uprobe_apply(struct inode *inode, loff_t offset,
919                         struct uprobe_consumer *uc, bool add)
920 {
921         struct uprobe *uprobe;
922         struct uprobe_consumer *con;
923         int ret = -ENOENT;
924
925         uprobe = find_uprobe(inode, offset);
926         if (WARN_ON(!uprobe))
927                 return ret;
928
929         down_write(&uprobe->register_rwsem);
930         for (con = uprobe->consumers; con && con != uc ; con = con->next)
931                 ;
932         if (con)
933                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
934         up_write(&uprobe->register_rwsem);
935         put_uprobe(uprobe);
936
937         return ret;
938 }
939
940 /*
941  * uprobe_unregister - unregister a already registered probe.
942  * @inode: the file in which the probe has to be removed.
943  * @offset: offset from the start of the file.
944  * @uc: identify which probe if multiple probes are colocated.
945  */
946 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
947 {
948         struct uprobe *uprobe;
949
950         uprobe = find_uprobe(inode, offset);
951         if (WARN_ON(!uprobe))
952                 return;
953
954         down_write(&uprobe->register_rwsem);
955         __uprobe_unregister(uprobe, uc);
956         up_write(&uprobe->register_rwsem);
957         put_uprobe(uprobe);
958 }
959 EXPORT_SYMBOL_GPL(uprobe_unregister);
960
961 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
962 {
963         struct vm_area_struct *vma;
964         int err = 0;
965
966         down_read(&mm->mmap_sem);
967         for (vma = mm->mmap; vma; vma = vma->vm_next) {
968                 unsigned long vaddr;
969                 loff_t offset;
970
971                 if (!valid_vma(vma, false) ||
972                     file_inode(vma->vm_file) != uprobe->inode)
973                         continue;
974
975                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
976                 if (uprobe->offset <  offset ||
977                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
978                         continue;
979
980                 vaddr = offset_to_vaddr(vma, uprobe->offset);
981                 err |= remove_breakpoint(uprobe, mm, vaddr);
982         }
983         up_read(&mm->mmap_sem);
984
985         return err;
986 }
987
988 static struct rb_node *
989 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
990 {
991         struct rb_node *n = uprobes_tree.rb_node;
992
993         while (n) {
994                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
995
996                 if (inode < u->inode) {
997                         n = n->rb_left;
998                 } else if (inode > u->inode) {
999                         n = n->rb_right;
1000                 } else {
1001                         if (max < u->offset)
1002                                 n = n->rb_left;
1003                         else if (min > u->offset)
1004                                 n = n->rb_right;
1005                         else
1006                                 break;
1007                 }
1008         }
1009
1010         return n;
1011 }
1012
1013 /*
1014  * For a given range in vma, build a list of probes that need to be inserted.
1015  */
1016 static void build_probe_list(struct inode *inode,
1017                                 struct vm_area_struct *vma,
1018                                 unsigned long start, unsigned long end,
1019                                 struct list_head *head)
1020 {
1021         loff_t min, max;
1022         struct rb_node *n, *t;
1023         struct uprobe *u;
1024
1025         INIT_LIST_HEAD(head);
1026         min = vaddr_to_offset(vma, start);
1027         max = min + (end - start) - 1;
1028
1029         spin_lock(&uprobes_treelock);
1030         n = find_node_in_range(inode, min, max);
1031         if (n) {
1032                 for (t = n; t; t = rb_prev(t)) {
1033                         u = rb_entry(t, struct uprobe, rb_node);
1034                         if (u->inode != inode || u->offset < min)
1035                                 break;
1036                         list_add(&u->pending_list, head);
1037                         get_uprobe(u);
1038                 }
1039                 for (t = n; (t = rb_next(t)); ) {
1040                         u = rb_entry(t, struct uprobe, rb_node);
1041                         if (u->inode != inode || u->offset > max)
1042                                 break;
1043                         list_add(&u->pending_list, head);
1044                         get_uprobe(u);
1045                 }
1046         }
1047         spin_unlock(&uprobes_treelock);
1048 }
1049
1050 /*
1051  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1052  *
1053  * Currently we ignore all errors and always return 0, the callers
1054  * can't handle the failure anyway.
1055  */
1056 int uprobe_mmap(struct vm_area_struct *vma)
1057 {
1058         struct list_head tmp_list;
1059         struct uprobe *uprobe, *u;
1060         struct inode *inode;
1061
1062         if (no_uprobe_events() || !valid_vma(vma, true))
1063                 return 0;
1064
1065         inode = file_inode(vma->vm_file);
1066         if (!inode)
1067                 return 0;
1068
1069         mutex_lock(uprobes_mmap_hash(inode));
1070         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1071         /*
1072          * We can race with uprobe_unregister(), this uprobe can be already
1073          * removed. But in this case filter_chain() must return false, all
1074          * consumers have gone away.
1075          */
1076         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077                 if (!fatal_signal_pending(current) &&
1078                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1079                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1080                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1081                 }
1082                 put_uprobe(uprobe);
1083         }
1084         mutex_unlock(uprobes_mmap_hash(inode));
1085
1086         return 0;
1087 }
1088
1089 static bool
1090 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091 {
1092         loff_t min, max;
1093         struct inode *inode;
1094         struct rb_node *n;
1095
1096         inode = file_inode(vma->vm_file);
1097
1098         min = vaddr_to_offset(vma, start);
1099         max = min + (end - start) - 1;
1100
1101         spin_lock(&uprobes_treelock);
1102         n = find_node_in_range(inode, min, max);
1103         spin_unlock(&uprobes_treelock);
1104
1105         return !!n;
1106 }
1107
1108 /*
1109  * Called in context of a munmap of a vma.
1110  */
1111 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1112 {
1113         if (no_uprobe_events() || !valid_vma(vma, false))
1114                 return;
1115
1116         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117                 return;
1118
1119         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1121                 return;
1122
1123         if (vma_has_uprobes(vma, start, end))
1124                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1125 }
1126
1127 /* Slot allocation for XOL */
1128 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1129 {
1130         struct vm_area_struct *vma;
1131         int ret;
1132
1133         down_write(&mm->mmap_sem);
1134         if (mm->uprobes_state.xol_area) {
1135                 ret = -EALREADY;
1136                 goto fail;
1137         }
1138
1139         if (!area->vaddr) {
1140                 /* Try to map as high as possible, this is only a hint. */
1141                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1142                                                 PAGE_SIZE, 0, 0);
1143                 if (area->vaddr & ~PAGE_MASK) {
1144                         ret = area->vaddr;
1145                         goto fail;
1146                 }
1147         }
1148
1149         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1150                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1151                                 &area->xol_mapping);
1152         if (IS_ERR(vma)) {
1153                 ret = PTR_ERR(vma);
1154                 goto fail;
1155         }
1156
1157         ret = 0;
1158         smp_wmb();      /* pairs with get_xol_area() */
1159         mm->uprobes_state.xol_area = area;
1160  fail:
1161         up_write(&mm->mmap_sem);
1162
1163         return ret;
1164 }
1165
1166 static struct xol_area *__create_xol_area(unsigned long vaddr)
1167 {
1168         struct mm_struct *mm = current->mm;
1169         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1170         struct xol_area *area;
1171
1172         area = kmalloc(sizeof(*area), GFP_KERNEL);
1173         if (unlikely(!area))
1174                 goto out;
1175
1176         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1177         if (!area->bitmap)
1178                 goto free_area;
1179
1180         area->xol_mapping.name = "[uprobes]";
1181         area->xol_mapping.pages = area->pages;
1182         area->pages[0] = alloc_page(GFP_HIGHUSER);
1183         if (!area->pages[0])
1184                 goto free_bitmap;
1185         area->pages[1] = NULL;
1186
1187         area->vaddr = vaddr;
1188         init_waitqueue_head(&area->wq);
1189         /* Reserve the 1st slot for get_trampoline_vaddr() */
1190         set_bit(0, area->bitmap);
1191         atomic_set(&area->slot_count, 1);
1192         copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1193
1194         if (!xol_add_vma(mm, area))
1195                 return area;
1196
1197         __free_page(area->pages[0]);
1198  free_bitmap:
1199         kfree(area->bitmap);
1200  free_area:
1201         kfree(area);
1202  out:
1203         return NULL;
1204 }
1205
1206 /*
1207  * get_xol_area - Allocate process's xol_area if necessary.
1208  * This area will be used for storing instructions for execution out of line.
1209  *
1210  * Returns the allocated area or NULL.
1211  */
1212 static struct xol_area *get_xol_area(void)
1213 {
1214         struct mm_struct *mm = current->mm;
1215         struct xol_area *area;
1216
1217         if (!mm->uprobes_state.xol_area)
1218                 __create_xol_area(0);
1219
1220         area = mm->uprobes_state.xol_area;
1221         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1222         return area;
1223 }
1224
1225 /*
1226  * uprobe_clear_state - Free the area allocated for slots.
1227  */
1228 void uprobe_clear_state(struct mm_struct *mm)
1229 {
1230         struct xol_area *area = mm->uprobes_state.xol_area;
1231
1232         if (!area)
1233                 return;
1234
1235         put_page(area->pages[0]);
1236         kfree(area->bitmap);
1237         kfree(area);
1238 }
1239
1240 void uprobe_start_dup_mmap(void)
1241 {
1242         percpu_down_read(&dup_mmap_sem);
1243 }
1244
1245 void uprobe_end_dup_mmap(void)
1246 {
1247         percpu_up_read(&dup_mmap_sem);
1248 }
1249
1250 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1251 {
1252         newmm->uprobes_state.xol_area = NULL;
1253
1254         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1255                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1256                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1257                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1258         }
1259 }
1260
1261 /*
1262  *  - search for a free slot.
1263  */
1264 static unsigned long xol_take_insn_slot(struct xol_area *area)
1265 {
1266         unsigned long slot_addr;
1267         int slot_nr;
1268
1269         do {
1270                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1271                 if (slot_nr < UINSNS_PER_PAGE) {
1272                         if (!test_and_set_bit(slot_nr, area->bitmap))
1273                                 break;
1274
1275                         slot_nr = UINSNS_PER_PAGE;
1276                         continue;
1277                 }
1278                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1279         } while (slot_nr >= UINSNS_PER_PAGE);
1280
1281         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1282         atomic_inc(&area->slot_count);
1283
1284         return slot_addr;
1285 }
1286
1287 /*
1288  * xol_get_insn_slot - allocate a slot for xol.
1289  * Returns the allocated slot address or 0.
1290  */
1291 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1292 {
1293         struct xol_area *area;
1294         unsigned long xol_vaddr;
1295
1296         area = get_xol_area();
1297         if (!area)
1298                 return 0;
1299
1300         xol_vaddr = xol_take_insn_slot(area);
1301         if (unlikely(!xol_vaddr))
1302                 return 0;
1303
1304         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1305                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1306
1307         return xol_vaddr;
1308 }
1309
1310 /*
1311  * xol_free_insn_slot - If slot was earlier allocated by
1312  * @xol_get_insn_slot(), make the slot available for
1313  * subsequent requests.
1314  */
1315 static void xol_free_insn_slot(struct task_struct *tsk)
1316 {
1317         struct xol_area *area;
1318         unsigned long vma_end;
1319         unsigned long slot_addr;
1320
1321         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1322                 return;
1323
1324         slot_addr = tsk->utask->xol_vaddr;
1325         if (unlikely(!slot_addr))
1326                 return;
1327
1328         area = tsk->mm->uprobes_state.xol_area;
1329         vma_end = area->vaddr + PAGE_SIZE;
1330         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1331                 unsigned long offset;
1332                 int slot_nr;
1333
1334                 offset = slot_addr - area->vaddr;
1335                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1336                 if (slot_nr >= UINSNS_PER_PAGE)
1337                         return;
1338
1339                 clear_bit(slot_nr, area->bitmap);
1340                 atomic_dec(&area->slot_count);
1341                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1342                 if (waitqueue_active(&area->wq))
1343                         wake_up(&area->wq);
1344
1345                 tsk->utask->xol_vaddr = 0;
1346         }
1347 }
1348
1349 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1350                                   void *src, unsigned long len)
1351 {
1352         /* Initialize the slot */
1353         copy_to_page(page, vaddr, src, len);
1354
1355         /*
1356          * We probably need flush_icache_user_range() but it needs vma.
1357          * This should work on most of architectures by default. If
1358          * architecture needs to do something different it can define
1359          * its own version of the function.
1360          */
1361         flush_dcache_page(page);
1362 }
1363
1364 /**
1365  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1366  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1367  * instruction.
1368  * Return the address of the breakpoint instruction.
1369  */
1370 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1371 {
1372         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1373 }
1374
1375 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1376 {
1377         struct uprobe_task *utask = current->utask;
1378
1379         if (unlikely(utask && utask->active_uprobe))
1380                 return utask->vaddr;
1381
1382         return instruction_pointer(regs);
1383 }
1384
1385 static struct return_instance *free_ret_instance(struct return_instance *ri)
1386 {
1387         struct return_instance *next = ri->next;
1388         put_uprobe(ri->uprobe);
1389         kfree(ri);
1390         return next;
1391 }
1392
1393 /*
1394  * Called with no locks held.
1395  * Called in context of a exiting or a exec-ing thread.
1396  */
1397 void uprobe_free_utask(struct task_struct *t)
1398 {
1399         struct uprobe_task *utask = t->utask;
1400         struct return_instance *ri;
1401
1402         if (!utask)
1403                 return;
1404
1405         if (utask->active_uprobe)
1406                 put_uprobe(utask->active_uprobe);
1407
1408         ri = utask->return_instances;
1409         while (ri)
1410                 ri = free_ret_instance(ri);
1411
1412         xol_free_insn_slot(t);
1413         kfree(utask);
1414         t->utask = NULL;
1415 }
1416
1417 /*
1418  * Allocate a uprobe_task object for the task if if necessary.
1419  * Called when the thread hits a breakpoint.
1420  *
1421  * Returns:
1422  * - pointer to new uprobe_task on success
1423  * - NULL otherwise
1424  */
1425 static struct uprobe_task *get_utask(void)
1426 {
1427         if (!current->utask)
1428                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1429         return current->utask;
1430 }
1431
1432 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1433 {
1434         struct uprobe_task *n_utask;
1435         struct return_instance **p, *o, *n;
1436
1437         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1438         if (!n_utask)
1439                 return -ENOMEM;
1440         t->utask = n_utask;
1441
1442         p = &n_utask->return_instances;
1443         for (o = o_utask->return_instances; o; o = o->next) {
1444                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1445                 if (!n)
1446                         return -ENOMEM;
1447
1448                 *n = *o;
1449                 get_uprobe(n->uprobe);
1450                 n->next = NULL;
1451
1452                 *p = n;
1453                 p = &n->next;
1454                 n_utask->depth++;
1455         }
1456
1457         return 0;
1458 }
1459
1460 static void uprobe_warn(struct task_struct *t, const char *msg)
1461 {
1462         pr_warn("uprobe: %s:%d failed to %s\n",
1463                         current->comm, current->pid, msg);
1464 }
1465
1466 static void dup_xol_work(struct callback_head *work)
1467 {
1468         if (current->flags & PF_EXITING)
1469                 return;
1470
1471         if (!__create_xol_area(current->utask->dup_xol_addr))
1472                 uprobe_warn(current, "dup xol area");
1473 }
1474
1475 /*
1476  * Called in context of a new clone/fork from copy_process.
1477  */
1478 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1479 {
1480         struct uprobe_task *utask = current->utask;
1481         struct mm_struct *mm = current->mm;
1482         struct xol_area *area;
1483
1484         t->utask = NULL;
1485
1486         if (!utask || !utask->return_instances)
1487                 return;
1488
1489         if (mm == t->mm && !(flags & CLONE_VFORK))
1490                 return;
1491
1492         if (dup_utask(t, utask))
1493                 return uprobe_warn(t, "dup ret instances");
1494
1495         /* The task can fork() after dup_xol_work() fails */
1496         area = mm->uprobes_state.xol_area;
1497         if (!area)
1498                 return uprobe_warn(t, "dup xol area");
1499
1500         if (mm == t->mm)
1501                 return;
1502
1503         t->utask->dup_xol_addr = area->vaddr;
1504         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1505         task_work_add(t, &t->utask->dup_xol_work, true);
1506 }
1507
1508 /*
1509  * Current area->vaddr notion assume the trampoline address is always
1510  * equal area->vaddr.
1511  *
1512  * Returns -1 in case the xol_area is not allocated.
1513  */
1514 static unsigned long get_trampoline_vaddr(void)
1515 {
1516         struct xol_area *area;
1517         unsigned long trampoline_vaddr = -1;
1518
1519         area = current->mm->uprobes_state.xol_area;
1520         smp_read_barrier_depends();
1521         if (area)
1522                 trampoline_vaddr = area->vaddr;
1523
1524         return trampoline_vaddr;
1525 }
1526
1527 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1528                                         struct pt_regs *regs)
1529 {
1530         struct return_instance *ri = utask->return_instances;
1531         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1532
1533         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1534                 ri = free_ret_instance(ri);
1535                 utask->depth--;
1536         }
1537         utask->return_instances = ri;
1538 }
1539
1540 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1541 {
1542         struct return_instance *ri;
1543         struct uprobe_task *utask;
1544         unsigned long orig_ret_vaddr, trampoline_vaddr;
1545         bool chained;
1546
1547         if (!get_xol_area())
1548                 return;
1549
1550         utask = get_utask();
1551         if (!utask)
1552                 return;
1553
1554         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1555                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1556                                 " nestedness limit pid/tgid=%d/%d\n",
1557                                 current->pid, current->tgid);
1558                 return;
1559         }
1560
1561         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1562         if (!ri)
1563                 return;
1564
1565         trampoline_vaddr = get_trampoline_vaddr();
1566         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1567         if (orig_ret_vaddr == -1)
1568                 goto fail;
1569
1570         /* drop the entries invalidated by longjmp() */
1571         chained = (orig_ret_vaddr == trampoline_vaddr);
1572         cleanup_return_instances(utask, chained, regs);
1573
1574         /*
1575          * We don't want to keep trampoline address in stack, rather keep the
1576          * original return address of first caller thru all the consequent
1577          * instances. This also makes breakpoint unwrapping easier.
1578          */
1579         if (chained) {
1580                 if (!utask->return_instances) {
1581                         /*
1582                          * This situation is not possible. Likely we have an
1583                          * attack from user-space.
1584                          */
1585                         uprobe_warn(current, "handle tail call");
1586                         goto fail;
1587                 }
1588                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1589         }
1590
1591         ri->uprobe = get_uprobe(uprobe);
1592         ri->func = instruction_pointer(regs);
1593         ri->stack = user_stack_pointer(regs);
1594         ri->orig_ret_vaddr = orig_ret_vaddr;
1595         ri->chained = chained;
1596
1597         utask->depth++;
1598         ri->next = utask->return_instances;
1599         utask->return_instances = ri;
1600
1601         return;
1602  fail:
1603         kfree(ri);
1604 }
1605
1606 /* Prepare to single-step probed instruction out of line. */
1607 static int
1608 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1609 {
1610         struct uprobe_task *utask;
1611         unsigned long xol_vaddr;
1612         int err;
1613
1614         utask = get_utask();
1615         if (!utask)
1616                 return -ENOMEM;
1617
1618         xol_vaddr = xol_get_insn_slot(uprobe);
1619         if (!xol_vaddr)
1620                 return -ENOMEM;
1621
1622         utask->xol_vaddr = xol_vaddr;
1623         utask->vaddr = bp_vaddr;
1624
1625         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1626         if (unlikely(err)) {
1627                 xol_free_insn_slot(current);
1628                 return err;
1629         }
1630
1631         utask->active_uprobe = uprobe;
1632         utask->state = UTASK_SSTEP;
1633         return 0;
1634 }
1635
1636 /*
1637  * If we are singlestepping, then ensure this thread is not connected to
1638  * non-fatal signals until completion of singlestep.  When xol insn itself
1639  * triggers the signal,  restart the original insn even if the task is
1640  * already SIGKILL'ed (since coredump should report the correct ip).  This
1641  * is even more important if the task has a handler for SIGSEGV/etc, The
1642  * _same_ instruction should be repeated again after return from the signal
1643  * handler, and SSTEP can never finish in this case.
1644  */
1645 bool uprobe_deny_signal(void)
1646 {
1647         struct task_struct *t = current;
1648         struct uprobe_task *utask = t->utask;
1649
1650         if (likely(!utask || !utask->active_uprobe))
1651                 return false;
1652
1653         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1654
1655         if (signal_pending(t)) {
1656                 spin_lock_irq(&t->sighand->siglock);
1657                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1658                 spin_unlock_irq(&t->sighand->siglock);
1659
1660                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1661                         utask->state = UTASK_SSTEP_TRAPPED;
1662                         set_tsk_thread_flag(t, TIF_UPROBE);
1663                 }
1664         }
1665
1666         return true;
1667 }
1668
1669 static void mmf_recalc_uprobes(struct mm_struct *mm)
1670 {
1671         struct vm_area_struct *vma;
1672
1673         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1674                 if (!valid_vma(vma, false))
1675                         continue;
1676                 /*
1677                  * This is not strictly accurate, we can race with
1678                  * uprobe_unregister() and see the already removed
1679                  * uprobe if delete_uprobe() was not yet called.
1680                  * Or this uprobe can be filtered out.
1681                  */
1682                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1683                         return;
1684         }
1685
1686         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1687 }
1688
1689 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1690 {
1691         struct page *page;
1692         uprobe_opcode_t opcode;
1693         int result;
1694
1695         pagefault_disable();
1696         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1697         pagefault_enable();
1698
1699         if (likely(result == 0))
1700                 goto out;
1701
1702         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1703         if (result < 0)
1704                 return result;
1705
1706         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1707         put_page(page);
1708  out:
1709         /* This needs to return true for any variant of the trap insn */
1710         return is_trap_insn(&opcode);
1711 }
1712
1713 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1714 {
1715         struct mm_struct *mm = current->mm;
1716         struct uprobe *uprobe = NULL;
1717         struct vm_area_struct *vma;
1718
1719         down_read(&mm->mmap_sem);
1720         vma = find_vma(mm, bp_vaddr);
1721         if (vma && vma->vm_start <= bp_vaddr) {
1722                 if (valid_vma(vma, false)) {
1723                         struct inode *inode = file_inode(vma->vm_file);
1724                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1725
1726                         uprobe = find_uprobe(inode, offset);
1727                 }
1728
1729                 if (!uprobe)
1730                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1731         } else {
1732                 *is_swbp = -EFAULT;
1733         }
1734
1735         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1736                 mmf_recalc_uprobes(mm);
1737         up_read(&mm->mmap_sem);
1738
1739         return uprobe;
1740 }
1741
1742 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1743 {
1744         struct uprobe_consumer *uc;
1745         int remove = UPROBE_HANDLER_REMOVE;
1746         bool need_prep = false; /* prepare return uprobe, when needed */
1747
1748         down_read(&uprobe->register_rwsem);
1749         for (uc = uprobe->consumers; uc; uc = uc->next) {
1750                 int rc = 0;
1751
1752                 if (uc->handler) {
1753                         rc = uc->handler(uc, regs);
1754                         WARN(rc & ~UPROBE_HANDLER_MASK,
1755                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1756                 }
1757
1758                 if (uc->ret_handler)
1759                         need_prep = true;
1760
1761                 remove &= rc;
1762         }
1763
1764         if (need_prep && !remove)
1765                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1766
1767         if (remove && uprobe->consumers) {
1768                 WARN_ON(!uprobe_is_active(uprobe));
1769                 unapply_uprobe(uprobe, current->mm);
1770         }
1771         up_read(&uprobe->register_rwsem);
1772 }
1773
1774 static void
1775 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1776 {
1777         struct uprobe *uprobe = ri->uprobe;
1778         struct uprobe_consumer *uc;
1779
1780         down_read(&uprobe->register_rwsem);
1781         for (uc = uprobe->consumers; uc; uc = uc->next) {
1782                 if (uc->ret_handler)
1783                         uc->ret_handler(uc, ri->func, regs);
1784         }
1785         up_read(&uprobe->register_rwsem);
1786 }
1787
1788 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1789 {
1790         bool chained;
1791
1792         do {
1793                 chained = ri->chained;
1794                 ri = ri->next;  /* can't be NULL if chained */
1795         } while (chained);
1796
1797         return ri;
1798 }
1799
1800 static void handle_trampoline(struct pt_regs *regs)
1801 {
1802         struct uprobe_task *utask;
1803         struct return_instance *ri, *next;
1804         bool valid;
1805
1806         utask = current->utask;
1807         if (!utask)
1808                 goto sigill;
1809
1810         ri = utask->return_instances;
1811         if (!ri)
1812                 goto sigill;
1813
1814         do {
1815                 /*
1816                  * We should throw out the frames invalidated by longjmp().
1817                  * If this chain is valid, then the next one should be alive
1818                  * or NULL; the latter case means that nobody but ri->func
1819                  * could hit this trampoline on return. TODO: sigaltstack().
1820                  */
1821                 next = find_next_ret_chain(ri);
1822                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1823
1824                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1825                 do {
1826                         if (valid)
1827                                 handle_uretprobe_chain(ri, regs);
1828                         ri = free_ret_instance(ri);
1829                         utask->depth--;
1830                 } while (ri != next);
1831         } while (!valid);
1832
1833         utask->return_instances = ri;
1834         return;
1835
1836  sigill:
1837         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1838         force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1839
1840 }
1841
1842 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1843 {
1844         return false;
1845 }
1846
1847 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1848                                         struct pt_regs *regs)
1849 {
1850         return true;
1851 }
1852
1853 /*
1854  * Run handler and ask thread to singlestep.
1855  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1856  */
1857 static void handle_swbp(struct pt_regs *regs)
1858 {
1859         struct uprobe *uprobe;
1860         unsigned long bp_vaddr;
1861         int uninitialized_var(is_swbp);
1862
1863         bp_vaddr = uprobe_get_swbp_addr(regs);
1864         if (bp_vaddr == get_trampoline_vaddr())
1865                 return handle_trampoline(regs);
1866
1867         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1868         if (!uprobe) {
1869                 if (is_swbp > 0) {
1870                         /* No matching uprobe; signal SIGTRAP. */
1871                         send_sig(SIGTRAP, current, 0);
1872                 } else {
1873                         /*
1874                          * Either we raced with uprobe_unregister() or we can't
1875                          * access this memory. The latter is only possible if
1876                          * another thread plays with our ->mm. In both cases
1877                          * we can simply restart. If this vma was unmapped we
1878                          * can pretend this insn was not executed yet and get
1879                          * the (correct) SIGSEGV after restart.
1880                          */
1881                         instruction_pointer_set(regs, bp_vaddr);
1882                 }
1883                 return;
1884         }
1885
1886         /* change it in advance for ->handler() and restart */
1887         instruction_pointer_set(regs, bp_vaddr);
1888
1889         /*
1890          * TODO: move copy_insn/etc into _register and remove this hack.
1891          * After we hit the bp, _unregister + _register can install the
1892          * new and not-yet-analyzed uprobe at the same address, restart.
1893          */
1894         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1895         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1896                 goto out;
1897
1898         /* Tracing handlers use ->utask to communicate with fetch methods */
1899         if (!get_utask())
1900                 goto out;
1901
1902         if (arch_uprobe_ignore(&uprobe->arch, regs))
1903                 goto out;
1904
1905         handler_chain(uprobe, regs);
1906
1907         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1908                 goto out;
1909
1910         if (!pre_ssout(uprobe, regs, bp_vaddr))
1911                 return;
1912
1913         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1914 out:
1915         put_uprobe(uprobe);
1916 }
1917
1918 /*
1919  * Perform required fix-ups and disable singlestep.
1920  * Allow pending signals to take effect.
1921  */
1922 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1923 {
1924         struct uprobe *uprobe;
1925         int err = 0;
1926
1927         uprobe = utask->active_uprobe;
1928         if (utask->state == UTASK_SSTEP_ACK)
1929                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1930         else if (utask->state == UTASK_SSTEP_TRAPPED)
1931                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1932         else
1933                 WARN_ON_ONCE(1);
1934
1935         put_uprobe(uprobe);
1936         utask->active_uprobe = NULL;
1937         utask->state = UTASK_RUNNING;
1938         xol_free_insn_slot(current);
1939
1940         spin_lock_irq(&current->sighand->siglock);
1941         recalc_sigpending(); /* see uprobe_deny_signal() */
1942         spin_unlock_irq(&current->sighand->siglock);
1943
1944         if (unlikely(err)) {
1945                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1946                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1947         }
1948 }
1949
1950 /*
1951  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1952  * allows the thread to return from interrupt. After that handle_swbp()
1953  * sets utask->active_uprobe.
1954  *
1955  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1956  * and allows the thread to return from interrupt.
1957  *
1958  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1959  * uprobe_notify_resume().
1960  */
1961 void uprobe_notify_resume(struct pt_regs *regs)
1962 {
1963         struct uprobe_task *utask;
1964
1965         clear_thread_flag(TIF_UPROBE);
1966
1967         utask = current->utask;
1968         if (utask && utask->active_uprobe)
1969                 handle_singlestep(utask, regs);
1970         else
1971                 handle_swbp(regs);
1972 }
1973
1974 /*
1975  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1976  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1977  */
1978 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1979 {
1980         if (!current->mm)
1981                 return 0;
1982
1983         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1984             (!current->utask || !current->utask->return_instances))
1985                 return 0;
1986
1987         set_thread_flag(TIF_UPROBE);
1988         return 1;
1989 }
1990
1991 /*
1992  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1993  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1994  */
1995 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1996 {
1997         struct uprobe_task *utask = current->utask;
1998
1999         if (!current->mm || !utask || !utask->active_uprobe)
2000                 /* task is currently not uprobed */
2001                 return 0;
2002
2003         utask->state = UTASK_SSTEP_ACK;
2004         set_thread_flag(TIF_UPROBE);
2005         return 1;
2006 }
2007
2008 static struct notifier_block uprobe_exception_nb = {
2009         .notifier_call          = arch_uprobe_exception_notify,
2010         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2011 };
2012
2013 static int __init init_uprobes(void)
2014 {
2015         int i;
2016
2017         for (i = 0; i < UPROBES_HASH_SZ; i++)
2018                 mutex_init(&uprobes_mmap_mutex[i]);
2019
2020         if (percpu_init_rwsem(&dup_mmap_sem))
2021                 return -ENOMEM;
2022
2023         return register_die_notifier(&uprobe_exception_nb);
2024 }
2025 __initcall(init_uprobes);