uprobes: Simplify the usage of uprobe->pending_list
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66
67 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79
80 struct uprobe {
81         struct rb_node          rb_node;        /* node in the rb tree */
82         atomic_t                ref;
83         struct rw_semaphore     consumer_rwsem;
84         struct list_head        pending_list;
85         struct uprobe_consumer  *consumers;
86         struct inode            *inode;         /* Also hold a ref to inode */
87         loff_t                  offset;
88         int                     flags;
89         struct arch_uprobe      arch;
90 };
91
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *      - is_register: indicates if we are in register context.
97  *      - Return 1 if the specified virtual address is in an
98  *        executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102         if (!vma->vm_file)
103                 return false;
104
105         if (!is_register)
106                 return true;
107
108         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109                                 == (VM_READ|VM_EXEC))
110                 return true;
111
112         return false;
113 }
114
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117         loff_t vaddr;
118
119         vaddr = vma->vm_start + offset;
120         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121
122         return vaddr;
123 }
124
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @page:     the cowed page we are replacing by kpage
131  * @kpage:    the modified page we replace page by
132  *
133  * Returns 0 on success, -EFAULT on failure.
134  */
135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
136 {
137         struct mm_struct *mm = vma->vm_mm;
138         unsigned long addr;
139         spinlock_t *ptl;
140         pte_t *ptep;
141
142         addr = page_address_in_vma(page, vma);
143         if (addr == -EFAULT)
144                 return -EFAULT;
145
146         ptep = page_check_address(page, mm, addr, &ptl, 0);
147         if (!ptep)
148                 return -EAGAIN;
149
150         get_page(kpage);
151         page_add_new_anon_rmap(kpage, vma, addr);
152
153         if (!PageAnon(page)) {
154                 dec_mm_counter(mm, MM_FILEPAGES);
155                 inc_mm_counter(mm, MM_ANONPAGES);
156         }
157
158         flush_cache_page(vma, addr, pte_pfn(*ptep));
159         ptep_clear_flush(vma, addr, ptep);
160         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
161
162         page_remove_rmap(page);
163         if (!page_mapped(page))
164                 try_to_free_swap(page);
165         put_page(page);
166         pte_unmap_unlock(ptep, ptl);
167
168         return 0;
169 }
170
171 /**
172  * is_swbp_insn - check if instruction is breakpoint instruction.
173  * @insn: instruction to be checked.
174  * Default implementation of is_swbp_insn
175  * Returns true if @insn is a breakpoint instruction.
176  */
177 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
178 {
179         return *insn == UPROBE_SWBP_INSN;
180 }
181
182 /*
183  * NOTE:
184  * Expect the breakpoint instruction to be the smallest size instruction for
185  * the architecture. If an arch has variable length instruction and the
186  * breakpoint instruction is not of the smallest length instruction
187  * supported by that architecture then we need to modify read_opcode /
188  * write_opcode accordingly. This would never be a problem for archs that
189  * have fixed length instructions.
190  */
191
192 /*
193  * write_opcode - write the opcode at a given virtual address.
194  * @auprobe: arch breakpointing information.
195  * @mm: the probed process address space.
196  * @vaddr: the virtual address to store the opcode.
197  * @opcode: opcode to be written at @vaddr.
198  *
199  * Called with mm->mmap_sem held (for read and with a reference to
200  * mm).
201  *
202  * For mm @mm, write the opcode at @vaddr.
203  * Return 0 (success) or a negative errno.
204  */
205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206                         unsigned long vaddr, uprobe_opcode_t opcode)
207 {
208         struct page *old_page, *new_page;
209         struct address_space *mapping;
210         void *vaddr_old, *vaddr_new;
211         struct vm_area_struct *vma;
212         struct uprobe *uprobe;
213         int ret;
214 retry:
215         /* Read the page with vaddr into memory */
216         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
217         if (ret <= 0)
218                 return ret;
219
220         ret = -EINVAL;
221
222         /*
223          * We are interested in text pages only. Our pages of interest
224          * should be mapped for read and execute only. We desist from
225          * adding probes in write mapped pages since the breakpoints
226          * might end up in the file copy.
227          */
228         if (!valid_vma(vma, is_swbp_insn(&opcode)))
229                 goto put_out;
230
231         uprobe = container_of(auprobe, struct uprobe, arch);
232         mapping = uprobe->inode->i_mapping;
233         if (mapping != vma->vm_file->f_mapping)
234                 goto put_out;
235
236         ret = -ENOMEM;
237         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
238         if (!new_page)
239                 goto put_out;
240
241         __SetPageUptodate(new_page);
242
243         /*
244          * lock page will serialize against do_wp_page()'s
245          * PageAnon() handling
246          */
247         lock_page(old_page);
248         /* copy the page now that we've got it stable */
249         vaddr_old = kmap_atomic(old_page);
250         vaddr_new = kmap_atomic(new_page);
251
252         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
253         memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
254
255         kunmap_atomic(vaddr_new);
256         kunmap_atomic(vaddr_old);
257
258         ret = anon_vma_prepare(vma);
259         if (ret)
260                 goto unlock_out;
261
262         lock_page(new_page);
263         ret = __replace_page(vma, old_page, new_page);
264         unlock_page(new_page);
265
266 unlock_out:
267         unlock_page(old_page);
268         page_cache_release(new_page);
269
270 put_out:
271         put_page(old_page);
272
273         if (unlikely(ret == -EAGAIN))
274                 goto retry;
275         return ret;
276 }
277
278 /**
279  * read_opcode - read the opcode at a given virtual address.
280  * @mm: the probed process address space.
281  * @vaddr: the virtual address to read the opcode.
282  * @opcode: location to store the read opcode.
283  *
284  * Called with mm->mmap_sem held (for read and with a reference to
285  * mm.
286  *
287  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
288  * Return 0 (success) or a negative errno.
289  */
290 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
291 {
292         struct page *page;
293         void *vaddr_new;
294         int ret;
295
296         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
297         if (ret <= 0)
298                 return ret;
299
300         lock_page(page);
301         vaddr_new = kmap_atomic(page);
302         vaddr &= ~PAGE_MASK;
303         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
304         kunmap_atomic(vaddr_new);
305         unlock_page(page);
306
307         put_page(page);
308
309         return 0;
310 }
311
312 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
313 {
314         uprobe_opcode_t opcode;
315         int result;
316
317         if (current->mm == mm) {
318                 pagefault_disable();
319                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
320                                                                 sizeof(opcode));
321                 pagefault_enable();
322
323                 if (likely(result == 0))
324                         goto out;
325         }
326
327         result = read_opcode(mm, vaddr, &opcode);
328         if (result)
329                 return result;
330 out:
331         if (is_swbp_insn(&opcode))
332                 return 1;
333
334         return 0;
335 }
336
337 /**
338  * set_swbp - store breakpoint at a given address.
339  * @auprobe: arch specific probepoint information.
340  * @mm: the probed process address space.
341  * @vaddr: the virtual address to insert the opcode.
342  *
343  * For mm @mm, store the breakpoint instruction at @vaddr.
344  * Return 0 (success) or a negative errno.
345  */
346 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
347 {
348         int result;
349         /*
350          * See the comment near uprobes_hash().
351          */
352         result = is_swbp_at_addr(mm, vaddr);
353         if (result == 1)
354                 return -EEXIST;
355
356         if (result)
357                 return result;
358
359         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
360 }
361
362 /**
363  * set_orig_insn - Restore the original instruction.
364  * @mm: the probed process address space.
365  * @auprobe: arch specific probepoint information.
366  * @vaddr: the virtual address to insert the opcode.
367  * @verify: if true, verify existance of breakpoint instruction.
368  *
369  * For mm @mm, restore the original opcode (opcode) at @vaddr.
370  * Return 0 (success) or a negative errno.
371  */
372 int __weak
373 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
374 {
375         if (verify) {
376                 int result;
377
378                 result = is_swbp_at_addr(mm, vaddr);
379                 if (!result)
380                         return -EINVAL;
381
382                 if (result != 1)
383                         return result;
384         }
385         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
386 }
387
388 static int match_uprobe(struct uprobe *l, struct uprobe *r)
389 {
390         if (l->inode < r->inode)
391                 return -1;
392
393         if (l->inode > r->inode)
394                 return 1;
395
396         if (l->offset < r->offset)
397                 return -1;
398
399         if (l->offset > r->offset)
400                 return 1;
401
402         return 0;
403 }
404
405 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
406 {
407         struct uprobe u = { .inode = inode, .offset = offset };
408         struct rb_node *n = uprobes_tree.rb_node;
409         struct uprobe *uprobe;
410         int match;
411
412         while (n) {
413                 uprobe = rb_entry(n, struct uprobe, rb_node);
414                 match = match_uprobe(&u, uprobe);
415                 if (!match) {
416                         atomic_inc(&uprobe->ref);
417                         return uprobe;
418                 }
419
420                 if (match < 0)
421                         n = n->rb_left;
422                 else
423                         n = n->rb_right;
424         }
425         return NULL;
426 }
427
428 /*
429  * Find a uprobe corresponding to a given inode:offset
430  * Acquires uprobes_treelock
431  */
432 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
433 {
434         struct uprobe *uprobe;
435         unsigned long flags;
436
437         spin_lock_irqsave(&uprobes_treelock, flags);
438         uprobe = __find_uprobe(inode, offset);
439         spin_unlock_irqrestore(&uprobes_treelock, flags);
440
441         return uprobe;
442 }
443
444 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
445 {
446         struct rb_node **p = &uprobes_tree.rb_node;
447         struct rb_node *parent = NULL;
448         struct uprobe *u;
449         int match;
450
451         while (*p) {
452                 parent = *p;
453                 u = rb_entry(parent, struct uprobe, rb_node);
454                 match = match_uprobe(uprobe, u);
455                 if (!match) {
456                         atomic_inc(&u->ref);
457                         return u;
458                 }
459
460                 if (match < 0)
461                         p = &parent->rb_left;
462                 else
463                         p = &parent->rb_right;
464
465         }
466
467         u = NULL;
468         rb_link_node(&uprobe->rb_node, parent, p);
469         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
470         /* get access + creation ref */
471         atomic_set(&uprobe->ref, 2);
472
473         return u;
474 }
475
476 /*
477  * Acquire uprobes_treelock.
478  * Matching uprobe already exists in rbtree;
479  *      increment (access refcount) and return the matching uprobe.
480  *
481  * No matching uprobe; insert the uprobe in rb_tree;
482  *      get a double refcount (access + creation) and return NULL.
483  */
484 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
485 {
486         unsigned long flags;
487         struct uprobe *u;
488
489         spin_lock_irqsave(&uprobes_treelock, flags);
490         u = __insert_uprobe(uprobe);
491         spin_unlock_irqrestore(&uprobes_treelock, flags);
492
493         /* For now assume that the instruction need not be single-stepped */
494         uprobe->flags |= UPROBE_SKIP_SSTEP;
495
496         return u;
497 }
498
499 static void put_uprobe(struct uprobe *uprobe)
500 {
501         if (atomic_dec_and_test(&uprobe->ref))
502                 kfree(uprobe);
503 }
504
505 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
506 {
507         struct uprobe *uprobe, *cur_uprobe;
508
509         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
510         if (!uprobe)
511                 return NULL;
512
513         uprobe->inode = igrab(inode);
514         uprobe->offset = offset;
515         init_rwsem(&uprobe->consumer_rwsem);
516
517         /* add to uprobes_tree, sorted on inode:offset */
518         cur_uprobe = insert_uprobe(uprobe);
519
520         /* a uprobe exists for this inode:offset combination */
521         if (cur_uprobe) {
522                 kfree(uprobe);
523                 uprobe = cur_uprobe;
524                 iput(inode);
525         } else {
526                 atomic_inc(&uprobe_events);
527         }
528
529         return uprobe;
530 }
531
532 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
533 {
534         struct uprobe_consumer *uc;
535
536         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
537                 return;
538
539         down_read(&uprobe->consumer_rwsem);
540         for (uc = uprobe->consumers; uc; uc = uc->next) {
541                 if (!uc->filter || uc->filter(uc, current))
542                         uc->handler(uc, regs);
543         }
544         up_read(&uprobe->consumer_rwsem);
545 }
546
547 /* Returns the previous consumer */
548 static struct uprobe_consumer *
549 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
550 {
551         down_write(&uprobe->consumer_rwsem);
552         uc->next = uprobe->consumers;
553         uprobe->consumers = uc;
554         up_write(&uprobe->consumer_rwsem);
555
556         return uc->next;
557 }
558
559 /*
560  * For uprobe @uprobe, delete the consumer @uc.
561  * Return true if the @uc is deleted successfully
562  * or return false.
563  */
564 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
565 {
566         struct uprobe_consumer **con;
567         bool ret = false;
568
569         down_write(&uprobe->consumer_rwsem);
570         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
571                 if (*con == uc) {
572                         *con = uc->next;
573                         ret = true;
574                         break;
575                 }
576         }
577         up_write(&uprobe->consumer_rwsem);
578
579         return ret;
580 }
581
582 static int
583 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
584                         unsigned long nbytes, unsigned long offset)
585 {
586         struct page *page;
587         void *vaddr;
588         unsigned long off1;
589         unsigned long idx;
590
591         if (!filp)
592                 return -EINVAL;
593
594         if (!mapping->a_ops->readpage)
595                 return -EIO;
596
597         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
598         off1 = offset &= ~PAGE_MASK;
599
600         /*
601          * Ensure that the page that has the original instruction is
602          * populated and in page-cache.
603          */
604         page = read_mapping_page(mapping, idx, filp);
605         if (IS_ERR(page))
606                 return PTR_ERR(page);
607
608         vaddr = kmap_atomic(page);
609         memcpy(insn, vaddr + off1, nbytes);
610         kunmap_atomic(vaddr);
611         page_cache_release(page);
612
613         return 0;
614 }
615
616 static int copy_insn(struct uprobe *uprobe, struct file *filp)
617 {
618         struct address_space *mapping;
619         unsigned long nbytes;
620         int bytes;
621
622         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
623         mapping = uprobe->inode->i_mapping;
624
625         /* Instruction at end of binary; copy only available bytes */
626         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
627                 bytes = uprobe->inode->i_size - uprobe->offset;
628         else
629                 bytes = MAX_UINSN_BYTES;
630
631         /* Instruction at the page-boundary; copy bytes in second page */
632         if (nbytes < bytes) {
633                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
634                                 bytes - nbytes, uprobe->offset + nbytes);
635                 if (err)
636                         return err;
637                 bytes = nbytes;
638         }
639         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
640 }
641
642 /*
643  * How mm->uprobes_state.count gets updated
644  * uprobe_mmap() increments the count if
645  *      - it successfully adds a breakpoint.
646  *      - it cannot add a breakpoint, but sees that there is a underlying
647  *        breakpoint (via a is_swbp_at_addr()).
648  *
649  * uprobe_munmap() decrements the count if
650  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
651  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
652  *        unless a uprobe_mmap kicks in, since the old vma would be
653  *        dropped just after uprobe_munmap.)
654  *
655  * uprobe_register increments the count if:
656  *      - it successfully adds a breakpoint.
657  *
658  * uprobe_unregister decrements the count if:
659  *      - it sees a underlying breakpoint and removes successfully.
660  *        (via is_swbp_at_addr)
661  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
662  *        since there is no underlying breakpoint after the
663  *        breakpoint removal.)
664  */
665 static int
666 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
667                         struct vm_area_struct *vma, loff_t vaddr)
668 {
669         unsigned long addr;
670         int ret;
671
672         /*
673          * If probe is being deleted, unregister thread could be done with
674          * the vma-rmap-walk through. Adding a probe now can be fatal since
675          * nobody will be able to cleanup. Also we could be from fork or
676          * mremap path, where the probe might have already been inserted.
677          * Hence behave as if probe already existed.
678          */
679         if (!uprobe->consumers)
680                 return -EEXIST;
681
682         addr = (unsigned long)vaddr;
683
684         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
685                 ret = copy_insn(uprobe, vma->vm_file);
686                 if (ret)
687                         return ret;
688
689                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
690                         return -ENOTSUPP;
691
692                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
693                 if (ret)
694                         return ret;
695
696                 /* write_opcode() assumes we don't cross page boundary */
697                 BUG_ON((uprobe->offset & ~PAGE_MASK) +
698                                 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
699
700                 uprobe->flags |= UPROBE_COPY_INSN;
701         }
702
703         /*
704          * Ideally, should be updating the probe count after the breakpoint
705          * has been successfully inserted. However a thread could hit the
706          * breakpoint we just inserted even before the probe count is
707          * incremented. If this is the first breakpoint placed, breakpoint
708          * notifier might ignore uprobes and pass the trap to the thread.
709          * Hence increment before and decrement on failure.
710          */
711         atomic_inc(&mm->uprobes_state.count);
712         ret = set_swbp(&uprobe->arch, mm, addr);
713         if (ret)
714                 atomic_dec(&mm->uprobes_state.count);
715
716         return ret;
717 }
718
719 static void
720 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
721 {
722         if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
723                 atomic_dec(&mm->uprobes_state.count);
724 }
725
726 /*
727  * There could be threads that have already hit the breakpoint. They
728  * will recheck the current insn and restart if find_uprobe() fails.
729  * See find_active_uprobe().
730  */
731 static void delete_uprobe(struct uprobe *uprobe)
732 {
733         unsigned long flags;
734
735         spin_lock_irqsave(&uprobes_treelock, flags);
736         rb_erase(&uprobe->rb_node, &uprobes_tree);
737         spin_unlock_irqrestore(&uprobes_treelock, flags);
738         iput(uprobe->inode);
739         put_uprobe(uprobe);
740         atomic_dec(&uprobe_events);
741 }
742
743 struct map_info {
744         struct map_info *next;
745         struct mm_struct *mm;
746         loff_t vaddr;
747 };
748
749 static inline struct map_info *free_map_info(struct map_info *info)
750 {
751         struct map_info *next = info->next;
752         kfree(info);
753         return next;
754 }
755
756 static struct map_info *
757 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
758 {
759         unsigned long pgoff = offset >> PAGE_SHIFT;
760         struct prio_tree_iter iter;
761         struct vm_area_struct *vma;
762         struct map_info *curr = NULL;
763         struct map_info *prev = NULL;
764         struct map_info *info;
765         int more = 0;
766
767  again:
768         mutex_lock(&mapping->i_mmap_mutex);
769         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
770                 if (!valid_vma(vma, is_register))
771                         continue;
772
773                 if (!prev && !more) {
774                         /*
775                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
776                          * reclaim. This is optimistic, no harm done if it fails.
777                          */
778                         prev = kmalloc(sizeof(struct map_info),
779                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
780                         if (prev)
781                                 prev->next = NULL;
782                 }
783                 if (!prev) {
784                         more++;
785                         continue;
786                 }
787
788                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
789                         continue;
790
791                 info = prev;
792                 prev = prev->next;
793                 info->next = curr;
794                 curr = info;
795
796                 info->mm = vma->vm_mm;
797                 info->vaddr = vma_address(vma, offset);
798         }
799         mutex_unlock(&mapping->i_mmap_mutex);
800
801         if (!more)
802                 goto out;
803
804         prev = curr;
805         while (curr) {
806                 mmput(curr->mm);
807                 curr = curr->next;
808         }
809
810         do {
811                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
812                 if (!info) {
813                         curr = ERR_PTR(-ENOMEM);
814                         goto out;
815                 }
816                 info->next = prev;
817                 prev = info;
818         } while (--more);
819
820         goto again;
821  out:
822         while (prev)
823                 prev = free_map_info(prev);
824         return curr;
825 }
826
827 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
828 {
829         struct map_info *info;
830         int err = 0;
831
832         info = build_map_info(uprobe->inode->i_mapping,
833                                         uprobe->offset, is_register);
834         if (IS_ERR(info))
835                 return PTR_ERR(info);
836
837         while (info) {
838                 struct mm_struct *mm = info->mm;
839                 struct vm_area_struct *vma;
840                 loff_t vaddr;
841
842                 if (err)
843                         goto free;
844
845                 down_write(&mm->mmap_sem);
846                 vma = find_vma(mm, (unsigned long)info->vaddr);
847                 if (!vma || !valid_vma(vma, is_register))
848                         goto unlock;
849
850                 vaddr = vma_address(vma, uprobe->offset);
851                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
852                                                 vaddr != info->vaddr)
853                         goto unlock;
854
855                 if (is_register) {
856                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
857                         /*
858                          * We can race against uprobe_mmap(), see the
859                          * comment near uprobe_hash().
860                          */
861                         if (err == -EEXIST)
862                                 err = 0;
863                 } else {
864                         remove_breakpoint(uprobe, mm, info->vaddr);
865                 }
866  unlock:
867                 up_write(&mm->mmap_sem);
868  free:
869                 mmput(mm);
870                 info = free_map_info(info);
871         }
872
873         return err;
874 }
875
876 static int __uprobe_register(struct uprobe *uprobe)
877 {
878         return register_for_each_vma(uprobe, true);
879 }
880
881 static void __uprobe_unregister(struct uprobe *uprobe)
882 {
883         if (!register_for_each_vma(uprobe, false))
884                 delete_uprobe(uprobe);
885
886         /* TODO : cant unregister? schedule a worker thread */
887 }
888
889 /*
890  * uprobe_register - register a probe
891  * @inode: the file in which the probe has to be placed.
892  * @offset: offset from the start of the file.
893  * @uc: information on howto handle the probe..
894  *
895  * Apart from the access refcount, uprobe_register() takes a creation
896  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
897  * inserted into the rbtree (i.e first consumer for a @inode:@offset
898  * tuple).  Creation refcount stops uprobe_unregister from freeing the
899  * @uprobe even before the register operation is complete. Creation
900  * refcount is released when the last @uc for the @uprobe
901  * unregisters.
902  *
903  * Return errno if it cannot successully install probes
904  * else return 0 (success)
905  */
906 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
907 {
908         struct uprobe *uprobe;
909         int ret;
910
911         if (!inode || !uc || uc->next)
912                 return -EINVAL;
913
914         if (offset > i_size_read(inode))
915                 return -EINVAL;
916
917         ret = 0;
918         mutex_lock(uprobes_hash(inode));
919         uprobe = alloc_uprobe(inode, offset);
920
921         if (uprobe && !consumer_add(uprobe, uc)) {
922                 ret = __uprobe_register(uprobe);
923                 if (ret) {
924                         uprobe->consumers = NULL;
925                         __uprobe_unregister(uprobe);
926                 } else {
927                         uprobe->flags |= UPROBE_RUN_HANDLER;
928                 }
929         }
930
931         mutex_unlock(uprobes_hash(inode));
932         put_uprobe(uprobe);
933
934         return ret;
935 }
936
937 /*
938  * uprobe_unregister - unregister a already registered probe.
939  * @inode: the file in which the probe has to be removed.
940  * @offset: offset from the start of the file.
941  * @uc: identify which probe if multiple probes are colocated.
942  */
943 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
944 {
945         struct uprobe *uprobe;
946
947         if (!inode || !uc)
948                 return;
949
950         uprobe = find_uprobe(inode, offset);
951         if (!uprobe)
952                 return;
953
954         mutex_lock(uprobes_hash(inode));
955
956         if (consumer_del(uprobe, uc)) {
957                 if (!uprobe->consumers) {
958                         __uprobe_unregister(uprobe);
959                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
960                 }
961         }
962
963         mutex_unlock(uprobes_hash(inode));
964         if (uprobe)
965                 put_uprobe(uprobe);
966 }
967
968 /*
969  * Of all the nodes that correspond to the given inode, return the node
970  * with the least offset.
971  */
972 static struct rb_node *find_least_offset_node(struct inode *inode)
973 {
974         struct uprobe u = { .inode = inode, .offset = 0};
975         struct rb_node *n = uprobes_tree.rb_node;
976         struct rb_node *close_node = NULL;
977         struct uprobe *uprobe;
978         int match;
979
980         while (n) {
981                 uprobe = rb_entry(n, struct uprobe, rb_node);
982                 match = match_uprobe(&u, uprobe);
983
984                 if (uprobe->inode == inode)
985                         close_node = n;
986
987                 if (!match)
988                         return close_node;
989
990                 if (match < 0)
991                         n = n->rb_left;
992                 else
993                         n = n->rb_right;
994         }
995
996         return close_node;
997 }
998
999 /*
1000  * For a given inode, build a list of probes that need to be inserted.
1001  */
1002 static void build_probe_list(struct inode *inode, struct list_head *head)
1003 {
1004         struct uprobe *uprobe;
1005         unsigned long flags;
1006         struct rb_node *n;
1007
1008         spin_lock_irqsave(&uprobes_treelock, flags);
1009
1010         n = find_least_offset_node(inode);
1011
1012         for (; n; n = rb_next(n)) {
1013                 uprobe = rb_entry(n, struct uprobe, rb_node);
1014                 if (uprobe->inode != inode)
1015                         break;
1016
1017                 list_add(&uprobe->pending_list, head);
1018                 atomic_inc(&uprobe->ref);
1019         }
1020
1021         spin_unlock_irqrestore(&uprobes_treelock, flags);
1022 }
1023
1024 /*
1025  * Called from mmap_region.
1026  * called with mm->mmap_sem acquired.
1027  *
1028  * Return -ve no if we fail to insert probes and we cannot
1029  * bail-out.
1030  * Return 0 otherwise. i.e:
1031  *
1032  *      - successful insertion of probes
1033  *      - (or) no possible probes to be inserted.
1034  *      - (or) insertion of probes failed but we can bail-out.
1035  */
1036 int uprobe_mmap(struct vm_area_struct *vma)
1037 {
1038         struct list_head tmp_list;
1039         struct uprobe *uprobe;
1040         struct inode *inode;
1041         int ret, count;
1042
1043         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1044                 return 0;
1045
1046         inode = vma->vm_file->f_mapping->host;
1047         if (!inode)
1048                 return 0;
1049
1050         INIT_LIST_HEAD(&tmp_list);
1051         mutex_lock(uprobes_mmap_hash(inode));
1052         build_probe_list(inode, &tmp_list);
1053
1054         ret = 0;
1055         count = 0;
1056
1057         list_for_each_entry(uprobe, &tmp_list, pending_list) {
1058                 loff_t vaddr;
1059
1060                 if (!ret) {
1061                         vaddr = vma_address(vma, uprobe->offset);
1062
1063                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1064                                 put_uprobe(uprobe);
1065                                 continue;
1066                         }
1067
1068                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1069                         /*
1070                          * We can race against uprobe_register(), see the
1071                          * comment near uprobe_hash().
1072                          */
1073                         if (ret == -EEXIST) {
1074                                 ret = 0;
1075
1076                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1077                                         continue;
1078
1079                                 /*
1080                                  * Unable to insert a breakpoint, but
1081                                  * breakpoint lies underneath. Increment the
1082                                  * probe count.
1083                                  */
1084                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1085                         }
1086
1087                         if (!ret)
1088                                 count++;
1089                 }
1090                 put_uprobe(uprobe);
1091         }
1092
1093         mutex_unlock(uprobes_mmap_hash(inode));
1094
1095         if (ret)
1096                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1097
1098         return ret;
1099 }
1100
1101 /*
1102  * Called in context of a munmap of a vma.
1103  */
1104 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1105 {
1106         struct list_head tmp_list;
1107         struct uprobe *uprobe;
1108         struct inode *inode;
1109
1110         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1111                 return;
1112
1113         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1114                 return;
1115
1116         inode = vma->vm_file->f_mapping->host;
1117         if (!inode)
1118                 return;
1119
1120         INIT_LIST_HEAD(&tmp_list);
1121         mutex_lock(uprobes_mmap_hash(inode));
1122         build_probe_list(inode, &tmp_list);
1123
1124         list_for_each_entry(uprobe, &tmp_list, pending_list) {
1125                 loff_t vaddr;
1126
1127                 vaddr = vma_address(vma, uprobe->offset);
1128                 if (vaddr >= start && vaddr < end) {
1129                         /*
1130                          * An unregister could have removed the probe before
1131                          * unmap. So check before we decrement the count.
1132                          */
1133                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1134                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1135                 }
1136                 put_uprobe(uprobe);
1137         }
1138         mutex_unlock(uprobes_mmap_hash(inode));
1139 }
1140
1141 /* Slot allocation for XOL */
1142 static int xol_add_vma(struct xol_area *area)
1143 {
1144         struct mm_struct *mm;
1145         int ret;
1146
1147         area->page = alloc_page(GFP_HIGHUSER);
1148         if (!area->page)
1149                 return -ENOMEM;
1150
1151         ret = -EALREADY;
1152         mm = current->mm;
1153
1154         down_write(&mm->mmap_sem);
1155         if (mm->uprobes_state.xol_area)
1156                 goto fail;
1157
1158         ret = -ENOMEM;
1159
1160         /* Try to map as high as possible, this is only a hint. */
1161         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1162         if (area->vaddr & ~PAGE_MASK) {
1163                 ret = area->vaddr;
1164                 goto fail;
1165         }
1166
1167         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1168                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1169         if (ret)
1170                 goto fail;
1171
1172         smp_wmb();      /* pairs with get_xol_area() */
1173         mm->uprobes_state.xol_area = area;
1174         ret = 0;
1175
1176 fail:
1177         up_write(&mm->mmap_sem);
1178         if (ret)
1179                 __free_page(area->page);
1180
1181         return ret;
1182 }
1183
1184 static struct xol_area *get_xol_area(struct mm_struct *mm)
1185 {
1186         struct xol_area *area;
1187
1188         area = mm->uprobes_state.xol_area;
1189         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1190
1191         return area;
1192 }
1193
1194 /*
1195  * xol_alloc_area - Allocate process's xol_area.
1196  * This area will be used for storing instructions for execution out of
1197  * line.
1198  *
1199  * Returns the allocated area or NULL.
1200  */
1201 static struct xol_area *xol_alloc_area(void)
1202 {
1203         struct xol_area *area;
1204
1205         area = kzalloc(sizeof(*area), GFP_KERNEL);
1206         if (unlikely(!area))
1207                 return NULL;
1208
1209         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1210
1211         if (!area->bitmap)
1212                 goto fail;
1213
1214         init_waitqueue_head(&area->wq);
1215         if (!xol_add_vma(area))
1216                 return area;
1217
1218 fail:
1219         kfree(area->bitmap);
1220         kfree(area);
1221
1222         return get_xol_area(current->mm);
1223 }
1224
1225 /*
1226  * uprobe_clear_state - Free the area allocated for slots.
1227  */
1228 void uprobe_clear_state(struct mm_struct *mm)
1229 {
1230         struct xol_area *area = mm->uprobes_state.xol_area;
1231
1232         if (!area)
1233                 return;
1234
1235         put_page(area->page);
1236         kfree(area->bitmap);
1237         kfree(area);
1238 }
1239
1240 /*
1241  * uprobe_reset_state - Free the area allocated for slots.
1242  */
1243 void uprobe_reset_state(struct mm_struct *mm)
1244 {
1245         mm->uprobes_state.xol_area = NULL;
1246         atomic_set(&mm->uprobes_state.count, 0);
1247 }
1248
1249 /*
1250  *  - search for a free slot.
1251  */
1252 static unsigned long xol_take_insn_slot(struct xol_area *area)
1253 {
1254         unsigned long slot_addr;
1255         int slot_nr;
1256
1257         do {
1258                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1259                 if (slot_nr < UINSNS_PER_PAGE) {
1260                         if (!test_and_set_bit(slot_nr, area->bitmap))
1261                                 break;
1262
1263                         slot_nr = UINSNS_PER_PAGE;
1264                         continue;
1265                 }
1266                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1267         } while (slot_nr >= UINSNS_PER_PAGE);
1268
1269         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1270         atomic_inc(&area->slot_count);
1271
1272         return slot_addr;
1273 }
1274
1275 /*
1276  * xol_get_insn_slot - If was not allocated a slot, then
1277  * allocate a slot.
1278  * Returns the allocated slot address or 0.
1279  */
1280 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1281 {
1282         struct xol_area *area;
1283         unsigned long offset;
1284         void *vaddr;
1285
1286         area = get_xol_area(current->mm);
1287         if (!area) {
1288                 area = xol_alloc_area();
1289                 if (!area)
1290                         return 0;
1291         }
1292         current->utask->xol_vaddr = xol_take_insn_slot(area);
1293
1294         /*
1295          * Initialize the slot if xol_vaddr points to valid
1296          * instruction slot.
1297          */
1298         if (unlikely(!current->utask->xol_vaddr))
1299                 return 0;
1300
1301         current->utask->vaddr = slot_addr;
1302         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1303         vaddr = kmap_atomic(area->page);
1304         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1305         kunmap_atomic(vaddr);
1306
1307         return current->utask->xol_vaddr;
1308 }
1309
1310 /*
1311  * xol_free_insn_slot - If slot was earlier allocated by
1312  * @xol_get_insn_slot(), make the slot available for
1313  * subsequent requests.
1314  */
1315 static void xol_free_insn_slot(struct task_struct *tsk)
1316 {
1317         struct xol_area *area;
1318         unsigned long vma_end;
1319         unsigned long slot_addr;
1320
1321         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1322                 return;
1323
1324         slot_addr = tsk->utask->xol_vaddr;
1325
1326         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1327                 return;
1328
1329         area = tsk->mm->uprobes_state.xol_area;
1330         vma_end = area->vaddr + PAGE_SIZE;
1331         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1332                 unsigned long offset;
1333                 int slot_nr;
1334
1335                 offset = slot_addr - area->vaddr;
1336                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1337                 if (slot_nr >= UINSNS_PER_PAGE)
1338                         return;
1339
1340                 clear_bit(slot_nr, area->bitmap);
1341                 atomic_dec(&area->slot_count);
1342                 if (waitqueue_active(&area->wq))
1343                         wake_up(&area->wq);
1344
1345                 tsk->utask->xol_vaddr = 0;
1346         }
1347 }
1348
1349 /**
1350  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1351  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1352  * instruction.
1353  * Return the address of the breakpoint instruction.
1354  */
1355 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1356 {
1357         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1358 }
1359
1360 /*
1361  * Called with no locks held.
1362  * Called in context of a exiting or a exec-ing thread.
1363  */
1364 void uprobe_free_utask(struct task_struct *t)
1365 {
1366         struct uprobe_task *utask = t->utask;
1367
1368         if (!utask)
1369                 return;
1370
1371         if (utask->active_uprobe)
1372                 put_uprobe(utask->active_uprobe);
1373
1374         xol_free_insn_slot(t);
1375         kfree(utask);
1376         t->utask = NULL;
1377 }
1378
1379 /*
1380  * Called in context of a new clone/fork from copy_process.
1381  */
1382 void uprobe_copy_process(struct task_struct *t)
1383 {
1384         t->utask = NULL;
1385 }
1386
1387 /*
1388  * Allocate a uprobe_task object for the task.
1389  * Called when the thread hits a breakpoint for the first time.
1390  *
1391  * Returns:
1392  * - pointer to new uprobe_task on success
1393  * - NULL otherwise
1394  */
1395 static struct uprobe_task *add_utask(void)
1396 {
1397         struct uprobe_task *utask;
1398
1399         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1400         if (unlikely(!utask))
1401                 return NULL;
1402
1403         utask->active_uprobe = NULL;
1404         current->utask = utask;
1405         return utask;
1406 }
1407
1408 /* Prepare to single-step probed instruction out of line. */
1409 static int
1410 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1411 {
1412         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1413                 return 0;
1414
1415         return -EFAULT;
1416 }
1417
1418 /*
1419  * If we are singlestepping, then ensure this thread is not connected to
1420  * non-fatal signals until completion of singlestep.  When xol insn itself
1421  * triggers the signal,  restart the original insn even if the task is
1422  * already SIGKILL'ed (since coredump should report the correct ip).  This
1423  * is even more important if the task has a handler for SIGSEGV/etc, The
1424  * _same_ instruction should be repeated again after return from the signal
1425  * handler, and SSTEP can never finish in this case.
1426  */
1427 bool uprobe_deny_signal(void)
1428 {
1429         struct task_struct *t = current;
1430         struct uprobe_task *utask = t->utask;
1431
1432         if (likely(!utask || !utask->active_uprobe))
1433                 return false;
1434
1435         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1436
1437         if (signal_pending(t)) {
1438                 spin_lock_irq(&t->sighand->siglock);
1439                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1440                 spin_unlock_irq(&t->sighand->siglock);
1441
1442                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1443                         utask->state = UTASK_SSTEP_TRAPPED;
1444                         set_tsk_thread_flag(t, TIF_UPROBE);
1445                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1446                 }
1447         }
1448
1449         return true;
1450 }
1451
1452 /*
1453  * Avoid singlestepping the original instruction if the original instruction
1454  * is a NOP or can be emulated.
1455  */
1456 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1457 {
1458         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1459                 return true;
1460
1461         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1462         return false;
1463 }
1464
1465 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1466 {
1467         struct mm_struct *mm = current->mm;
1468         struct uprobe *uprobe = NULL;
1469         struct vm_area_struct *vma;
1470
1471         down_read(&mm->mmap_sem);
1472         vma = find_vma(mm, bp_vaddr);
1473         if (vma && vma->vm_start <= bp_vaddr) {
1474                 if (valid_vma(vma, false)) {
1475                         struct inode *inode;
1476                         loff_t offset;
1477
1478                         inode = vma->vm_file->f_mapping->host;
1479                         offset = bp_vaddr - vma->vm_start;
1480                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1481                         uprobe = find_uprobe(inode, offset);
1482                 }
1483
1484                 if (!uprobe)
1485                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1486         } else {
1487                 *is_swbp = -EFAULT;
1488         }
1489         up_read(&mm->mmap_sem);
1490
1491         return uprobe;
1492 }
1493
1494 /*
1495  * Run handler and ask thread to singlestep.
1496  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1497  */
1498 static void handle_swbp(struct pt_regs *regs)
1499 {
1500         struct uprobe_task *utask;
1501         struct uprobe *uprobe;
1502         unsigned long bp_vaddr;
1503         int uninitialized_var(is_swbp);
1504
1505         bp_vaddr = uprobe_get_swbp_addr(regs);
1506         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1507
1508         if (!uprobe) {
1509                 if (is_swbp > 0) {
1510                         /* No matching uprobe; signal SIGTRAP. */
1511                         send_sig(SIGTRAP, current, 0);
1512                 } else {
1513                         /*
1514                          * Either we raced with uprobe_unregister() or we can't
1515                          * access this memory. The latter is only possible if
1516                          * another thread plays with our ->mm. In both cases
1517                          * we can simply restart. If this vma was unmapped we
1518                          * can pretend this insn was not executed yet and get
1519                          * the (correct) SIGSEGV after restart.
1520                          */
1521                         instruction_pointer_set(regs, bp_vaddr);
1522                 }
1523                 return;
1524         }
1525
1526         utask = current->utask;
1527         if (!utask) {
1528                 utask = add_utask();
1529                 /* Cannot allocate; re-execute the instruction. */
1530                 if (!utask)
1531                         goto cleanup_ret;
1532         }
1533         utask->active_uprobe = uprobe;
1534         handler_chain(uprobe, regs);
1535         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1536                 goto cleanup_ret;
1537
1538         utask->state = UTASK_SSTEP;
1539         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1540                 user_enable_single_step(current);
1541                 return;
1542         }
1543
1544 cleanup_ret:
1545         if (utask) {
1546                 utask->active_uprobe = NULL;
1547                 utask->state = UTASK_RUNNING;
1548         }
1549         if (uprobe) {
1550                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1551
1552                         /*
1553                          * cannot singlestep; cannot skip instruction;
1554                          * re-execute the instruction.
1555                          */
1556                         instruction_pointer_set(regs, bp_vaddr);
1557
1558                 put_uprobe(uprobe);
1559         }
1560 }
1561
1562 /*
1563  * Perform required fix-ups and disable singlestep.
1564  * Allow pending signals to take effect.
1565  */
1566 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1567 {
1568         struct uprobe *uprobe;
1569
1570         uprobe = utask->active_uprobe;
1571         if (utask->state == UTASK_SSTEP_ACK)
1572                 arch_uprobe_post_xol(&uprobe->arch, regs);
1573         else if (utask->state == UTASK_SSTEP_TRAPPED)
1574                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1575         else
1576                 WARN_ON_ONCE(1);
1577
1578         put_uprobe(uprobe);
1579         utask->active_uprobe = NULL;
1580         utask->state = UTASK_RUNNING;
1581         user_disable_single_step(current);
1582         xol_free_insn_slot(current);
1583
1584         spin_lock_irq(&current->sighand->siglock);
1585         recalc_sigpending(); /* see uprobe_deny_signal() */
1586         spin_unlock_irq(&current->sighand->siglock);
1587 }
1588
1589 /*
1590  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1591  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1592  * allows the thread to return from interrupt.
1593  *
1594  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1595  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1596  * interrupt.
1597  *
1598  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1599  * uprobe_notify_resume().
1600  */
1601 void uprobe_notify_resume(struct pt_regs *regs)
1602 {
1603         struct uprobe_task *utask;
1604
1605         utask = current->utask;
1606         if (!utask || utask->state == UTASK_BP_HIT)
1607                 handle_swbp(regs);
1608         else
1609                 handle_singlestep(utask, regs);
1610 }
1611
1612 /*
1613  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1614  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1615  */
1616 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1617 {
1618         struct uprobe_task *utask;
1619
1620         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1621                 /* task is currently not uprobed */
1622                 return 0;
1623
1624         utask = current->utask;
1625         if (utask)
1626                 utask->state = UTASK_BP_HIT;
1627
1628         set_thread_flag(TIF_UPROBE);
1629
1630         return 1;
1631 }
1632
1633 /*
1634  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1635  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1636  */
1637 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1638 {
1639         struct uprobe_task *utask = current->utask;
1640
1641         if (!current->mm || !utask || !utask->active_uprobe)
1642                 /* task is currently not uprobed */
1643                 return 0;
1644
1645         utask->state = UTASK_SSTEP_ACK;
1646         set_thread_flag(TIF_UPROBE);
1647         return 1;
1648 }
1649
1650 static struct notifier_block uprobe_exception_nb = {
1651         .notifier_call          = arch_uprobe_exception_notify,
1652         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1653 };
1654
1655 static int __init init_uprobes(void)
1656 {
1657         int i;
1658
1659         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1660                 mutex_init(&uprobes_mutex[i]);
1661                 mutex_init(&uprobes_mmap_mutex[i]);
1662         }
1663
1664         return register_die_notifier(&uprobe_exception_nb);
1665 }
1666 module_init(init_uprobes);
1667
1668 static void __exit exit_uprobes(void)
1669 {
1670 }
1671 module_exit(exit_uprobes);