uprobes: Suppress uprobe_munmap() from mmput()
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66
67 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79
80 struct uprobe {
81         struct rb_node          rb_node;        /* node in the rb tree */
82         atomic_t                ref;
83         struct rw_semaphore     consumer_rwsem;
84         struct list_head        pending_list;
85         struct uprobe_consumer  *consumers;
86         struct inode            *inode;         /* Also hold a ref to inode */
87         loff_t                  offset;
88         int                     flags;
89         struct arch_uprobe      arch;
90 };
91
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *      - is_register: indicates if we are in register context.
97  *      - Return 1 if the specified virtual address is in an
98  *        executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102         if (!vma->vm_file)
103                 return false;
104
105         if (!is_register)
106                 return true;
107
108         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109                                 == (VM_READ|VM_EXEC))
110                 return true;
111
112         return false;
113 }
114
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117         loff_t vaddr;
118
119         vaddr = vma->vm_start + offset;
120         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121
122         return vaddr;
123 }
124
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @addr:     address the old @page is mapped at
131  * @page:     the cowed page we are replacing by kpage
132  * @kpage:    the modified page we replace page by
133  *
134  * Returns 0 on success, -EFAULT on failure.
135  */
136 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
137                                 struct page *page, struct page *kpage)
138 {
139         struct mm_struct *mm = vma->vm_mm;
140         spinlock_t *ptl;
141         pte_t *ptep;
142         int err;
143
144         /* freeze PageSwapCache() for try_to_free_swap() below */
145         lock_page(page);
146
147         err = -EAGAIN;
148         ptep = page_check_address(page, mm, addr, &ptl, 0);
149         if (!ptep)
150                 goto unlock;
151
152         get_page(kpage);
153         page_add_new_anon_rmap(kpage, vma, addr);
154
155         if (!PageAnon(page)) {
156                 dec_mm_counter(mm, MM_FILEPAGES);
157                 inc_mm_counter(mm, MM_ANONPAGES);
158         }
159
160         flush_cache_page(vma, addr, pte_pfn(*ptep));
161         ptep_clear_flush(vma, addr, ptep);
162         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
163
164         page_remove_rmap(page);
165         if (!page_mapped(page))
166                 try_to_free_swap(page);
167         put_page(page);
168         pte_unmap_unlock(ptep, ptl);
169
170         err = 0;
171  unlock:
172         unlock_page(page);
173         return err;
174 }
175
176 /**
177  * is_swbp_insn - check if instruction is breakpoint instruction.
178  * @insn: instruction to be checked.
179  * Default implementation of is_swbp_insn
180  * Returns true if @insn is a breakpoint instruction.
181  */
182 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
183 {
184         return *insn == UPROBE_SWBP_INSN;
185 }
186
187 /*
188  * NOTE:
189  * Expect the breakpoint instruction to be the smallest size instruction for
190  * the architecture. If an arch has variable length instruction and the
191  * breakpoint instruction is not of the smallest length instruction
192  * supported by that architecture then we need to modify read_opcode /
193  * write_opcode accordingly. This would never be a problem for archs that
194  * have fixed length instructions.
195  */
196
197 /*
198  * write_opcode - write the opcode at a given virtual address.
199  * @auprobe: arch breakpointing information.
200  * @mm: the probed process address space.
201  * @vaddr: the virtual address to store the opcode.
202  * @opcode: opcode to be written at @vaddr.
203  *
204  * Called with mm->mmap_sem held (for read and with a reference to
205  * mm).
206  *
207  * For mm @mm, write the opcode at @vaddr.
208  * Return 0 (success) or a negative errno.
209  */
210 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
211                         unsigned long vaddr, uprobe_opcode_t opcode)
212 {
213         struct page *old_page, *new_page;
214         void *vaddr_old, *vaddr_new;
215         struct vm_area_struct *vma;
216         int ret;
217
218 retry:
219         /* Read the page with vaddr into memory */
220         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
221         if (ret <= 0)
222                 return ret;
223
224         ret = -ENOMEM;
225         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
226         if (!new_page)
227                 goto put_old;
228
229         __SetPageUptodate(new_page);
230
231         /* copy the page now that we've got it stable */
232         vaddr_old = kmap_atomic(old_page);
233         vaddr_new = kmap_atomic(new_page);
234
235         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
236         memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
237
238         kunmap_atomic(vaddr_new);
239         kunmap_atomic(vaddr_old);
240
241         ret = anon_vma_prepare(vma);
242         if (ret)
243                 goto put_new;
244
245         ret = __replace_page(vma, vaddr, old_page, new_page);
246
247 put_new:
248         page_cache_release(new_page);
249 put_old:
250         put_page(old_page);
251
252         if (unlikely(ret == -EAGAIN))
253                 goto retry;
254         return ret;
255 }
256
257 /**
258  * read_opcode - read the opcode at a given virtual address.
259  * @mm: the probed process address space.
260  * @vaddr: the virtual address to read the opcode.
261  * @opcode: location to store the read opcode.
262  *
263  * Called with mm->mmap_sem held (for read and with a reference to
264  * mm.
265  *
266  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
267  * Return 0 (success) or a negative errno.
268  */
269 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
270 {
271         struct page *page;
272         void *vaddr_new;
273         int ret;
274
275         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
276         if (ret <= 0)
277                 return ret;
278
279         lock_page(page);
280         vaddr_new = kmap_atomic(page);
281         vaddr &= ~PAGE_MASK;
282         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
283         kunmap_atomic(vaddr_new);
284         unlock_page(page);
285
286         put_page(page);
287
288         return 0;
289 }
290
291 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
292 {
293         uprobe_opcode_t opcode;
294         int result;
295
296         if (current->mm == mm) {
297                 pagefault_disable();
298                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
299                                                                 sizeof(opcode));
300                 pagefault_enable();
301
302                 if (likely(result == 0))
303                         goto out;
304         }
305
306         result = read_opcode(mm, vaddr, &opcode);
307         if (result)
308                 return result;
309 out:
310         if (is_swbp_insn(&opcode))
311                 return 1;
312
313         return 0;
314 }
315
316 /**
317  * set_swbp - store breakpoint at a given address.
318  * @auprobe: arch specific probepoint information.
319  * @mm: the probed process address space.
320  * @vaddr: the virtual address to insert the opcode.
321  *
322  * For mm @mm, store the breakpoint instruction at @vaddr.
323  * Return 0 (success) or a negative errno.
324  */
325 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
326 {
327         int result;
328         /*
329          * See the comment near uprobes_hash().
330          */
331         result = is_swbp_at_addr(mm, vaddr);
332         if (result == 1)
333                 return -EEXIST;
334
335         if (result)
336                 return result;
337
338         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
339 }
340
341 /**
342  * set_orig_insn - Restore the original instruction.
343  * @mm: the probed process address space.
344  * @auprobe: arch specific probepoint information.
345  * @vaddr: the virtual address to insert the opcode.
346  * @verify: if true, verify existance of breakpoint instruction.
347  *
348  * For mm @mm, restore the original opcode (opcode) at @vaddr.
349  * Return 0 (success) or a negative errno.
350  */
351 int __weak
352 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
353 {
354         if (verify) {
355                 int result;
356
357                 result = is_swbp_at_addr(mm, vaddr);
358                 if (!result)
359                         return -EINVAL;
360
361                 if (result != 1)
362                         return result;
363         }
364         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
365 }
366
367 static int match_uprobe(struct uprobe *l, struct uprobe *r)
368 {
369         if (l->inode < r->inode)
370                 return -1;
371
372         if (l->inode > r->inode)
373                 return 1;
374
375         if (l->offset < r->offset)
376                 return -1;
377
378         if (l->offset > r->offset)
379                 return 1;
380
381         return 0;
382 }
383
384 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385 {
386         struct uprobe u = { .inode = inode, .offset = offset };
387         struct rb_node *n = uprobes_tree.rb_node;
388         struct uprobe *uprobe;
389         int match;
390
391         while (n) {
392                 uprobe = rb_entry(n, struct uprobe, rb_node);
393                 match = match_uprobe(&u, uprobe);
394                 if (!match) {
395                         atomic_inc(&uprobe->ref);
396                         return uprobe;
397                 }
398
399                 if (match < 0)
400                         n = n->rb_left;
401                 else
402                         n = n->rb_right;
403         }
404         return NULL;
405 }
406
407 /*
408  * Find a uprobe corresponding to a given inode:offset
409  * Acquires uprobes_treelock
410  */
411 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412 {
413         struct uprobe *uprobe;
414         unsigned long flags;
415
416         spin_lock_irqsave(&uprobes_treelock, flags);
417         uprobe = __find_uprobe(inode, offset);
418         spin_unlock_irqrestore(&uprobes_treelock, flags);
419
420         return uprobe;
421 }
422
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424 {
425         struct rb_node **p = &uprobes_tree.rb_node;
426         struct rb_node *parent = NULL;
427         struct uprobe *u;
428         int match;
429
430         while (*p) {
431                 parent = *p;
432                 u = rb_entry(parent, struct uprobe, rb_node);
433                 match = match_uprobe(uprobe, u);
434                 if (!match) {
435                         atomic_inc(&u->ref);
436                         return u;
437                 }
438
439                 if (match < 0)
440                         p = &parent->rb_left;
441                 else
442                         p = &parent->rb_right;
443
444         }
445
446         u = NULL;
447         rb_link_node(&uprobe->rb_node, parent, p);
448         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449         /* get access + creation ref */
450         atomic_set(&uprobe->ref, 2);
451
452         return u;
453 }
454
455 /*
456  * Acquire uprobes_treelock.
457  * Matching uprobe already exists in rbtree;
458  *      increment (access refcount) and return the matching uprobe.
459  *
460  * No matching uprobe; insert the uprobe in rb_tree;
461  *      get a double refcount (access + creation) and return NULL.
462  */
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464 {
465         unsigned long flags;
466         struct uprobe *u;
467
468         spin_lock_irqsave(&uprobes_treelock, flags);
469         u = __insert_uprobe(uprobe);
470         spin_unlock_irqrestore(&uprobes_treelock, flags);
471
472         /* For now assume that the instruction need not be single-stepped */
473         uprobe->flags |= UPROBE_SKIP_SSTEP;
474
475         return u;
476 }
477
478 static void put_uprobe(struct uprobe *uprobe)
479 {
480         if (atomic_dec_and_test(&uprobe->ref))
481                 kfree(uprobe);
482 }
483
484 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
485 {
486         struct uprobe *uprobe, *cur_uprobe;
487
488         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
489         if (!uprobe)
490                 return NULL;
491
492         uprobe->inode = igrab(inode);
493         uprobe->offset = offset;
494         init_rwsem(&uprobe->consumer_rwsem);
495
496         /* add to uprobes_tree, sorted on inode:offset */
497         cur_uprobe = insert_uprobe(uprobe);
498
499         /* a uprobe exists for this inode:offset combination */
500         if (cur_uprobe) {
501                 kfree(uprobe);
502                 uprobe = cur_uprobe;
503                 iput(inode);
504         } else {
505                 atomic_inc(&uprobe_events);
506         }
507
508         return uprobe;
509 }
510
511 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
512 {
513         struct uprobe_consumer *uc;
514
515         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
516                 return;
517
518         down_read(&uprobe->consumer_rwsem);
519         for (uc = uprobe->consumers; uc; uc = uc->next) {
520                 if (!uc->filter || uc->filter(uc, current))
521                         uc->handler(uc, regs);
522         }
523         up_read(&uprobe->consumer_rwsem);
524 }
525
526 /* Returns the previous consumer */
527 static struct uprobe_consumer *
528 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
529 {
530         down_write(&uprobe->consumer_rwsem);
531         uc->next = uprobe->consumers;
532         uprobe->consumers = uc;
533         up_write(&uprobe->consumer_rwsem);
534
535         return uc->next;
536 }
537
538 /*
539  * For uprobe @uprobe, delete the consumer @uc.
540  * Return true if the @uc is deleted successfully
541  * or return false.
542  */
543 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
544 {
545         struct uprobe_consumer **con;
546         bool ret = false;
547
548         down_write(&uprobe->consumer_rwsem);
549         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
550                 if (*con == uc) {
551                         *con = uc->next;
552                         ret = true;
553                         break;
554                 }
555         }
556         up_write(&uprobe->consumer_rwsem);
557
558         return ret;
559 }
560
561 static int
562 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
563                         unsigned long nbytes, loff_t offset)
564 {
565         struct page *page;
566         void *vaddr;
567         unsigned long off;
568         pgoff_t idx;
569
570         if (!filp)
571                 return -EINVAL;
572
573         if (!mapping->a_ops->readpage)
574                 return -EIO;
575
576         idx = offset >> PAGE_CACHE_SHIFT;
577         off = offset & ~PAGE_MASK;
578
579         /*
580          * Ensure that the page that has the original instruction is
581          * populated and in page-cache.
582          */
583         page = read_mapping_page(mapping, idx, filp);
584         if (IS_ERR(page))
585                 return PTR_ERR(page);
586
587         vaddr = kmap_atomic(page);
588         memcpy(insn, vaddr + off, nbytes);
589         kunmap_atomic(vaddr);
590         page_cache_release(page);
591
592         return 0;
593 }
594
595 static int copy_insn(struct uprobe *uprobe, struct file *filp)
596 {
597         struct address_space *mapping;
598         unsigned long nbytes;
599         int bytes;
600
601         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
602         mapping = uprobe->inode->i_mapping;
603
604         /* Instruction at end of binary; copy only available bytes */
605         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
606                 bytes = uprobe->inode->i_size - uprobe->offset;
607         else
608                 bytes = MAX_UINSN_BYTES;
609
610         /* Instruction at the page-boundary; copy bytes in second page */
611         if (nbytes < bytes) {
612                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
613                                 bytes - nbytes, uprobe->offset + nbytes);
614                 if (err)
615                         return err;
616                 bytes = nbytes;
617         }
618         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
619 }
620
621 /*
622  * How mm->uprobes_state.count gets updated
623  * uprobe_mmap() increments the count if
624  *      - it successfully adds a breakpoint.
625  *      - it cannot add a breakpoint, but sees that there is a underlying
626  *        breakpoint (via a is_swbp_at_addr()).
627  *
628  * uprobe_munmap() decrements the count if
629  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
630  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
631  *        unless a uprobe_mmap kicks in, since the old vma would be
632  *        dropped just after uprobe_munmap.)
633  *
634  * uprobe_register increments the count if:
635  *      - it successfully adds a breakpoint.
636  *
637  * uprobe_unregister decrements the count if:
638  *      - it sees a underlying breakpoint and removes successfully.
639  *        (via is_swbp_at_addr)
640  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
641  *        since there is no underlying breakpoint after the
642  *        breakpoint removal.)
643  */
644 static int
645 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
646                         struct vm_area_struct *vma, unsigned long vaddr)
647 {
648         int ret;
649
650         /*
651          * If probe is being deleted, unregister thread could be done with
652          * the vma-rmap-walk through. Adding a probe now can be fatal since
653          * nobody will be able to cleanup. Also we could be from fork or
654          * mremap path, where the probe might have already been inserted.
655          * Hence behave as if probe already existed.
656          */
657         if (!uprobe->consumers)
658                 return -EEXIST;
659
660         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
661                 ret = copy_insn(uprobe, vma->vm_file);
662                 if (ret)
663                         return ret;
664
665                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
666                         return -ENOTSUPP;
667
668                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
669                 if (ret)
670                         return ret;
671
672                 /* write_opcode() assumes we don't cross page boundary */
673                 BUG_ON((uprobe->offset & ~PAGE_MASK) +
674                                 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
675
676                 uprobe->flags |= UPROBE_COPY_INSN;
677         }
678
679         /*
680          * Ideally, should be updating the probe count after the breakpoint
681          * has been successfully inserted. However a thread could hit the
682          * breakpoint we just inserted even before the probe count is
683          * incremented. If this is the first breakpoint placed, breakpoint
684          * notifier might ignore uprobes and pass the trap to the thread.
685          * Hence increment before and decrement on failure.
686          */
687         atomic_inc(&mm->uprobes_state.count);
688         ret = set_swbp(&uprobe->arch, mm, vaddr);
689         if (ret)
690                 atomic_dec(&mm->uprobes_state.count);
691
692         return ret;
693 }
694
695 static void
696 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
697 {
698         if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
699                 atomic_dec(&mm->uprobes_state.count);
700 }
701
702 /*
703  * There could be threads that have already hit the breakpoint. They
704  * will recheck the current insn and restart if find_uprobe() fails.
705  * See find_active_uprobe().
706  */
707 static void delete_uprobe(struct uprobe *uprobe)
708 {
709         unsigned long flags;
710
711         spin_lock_irqsave(&uprobes_treelock, flags);
712         rb_erase(&uprobe->rb_node, &uprobes_tree);
713         spin_unlock_irqrestore(&uprobes_treelock, flags);
714         iput(uprobe->inode);
715         put_uprobe(uprobe);
716         atomic_dec(&uprobe_events);
717 }
718
719 struct map_info {
720         struct map_info *next;
721         struct mm_struct *mm;
722         unsigned long vaddr;
723 };
724
725 static inline struct map_info *free_map_info(struct map_info *info)
726 {
727         struct map_info *next = info->next;
728         kfree(info);
729         return next;
730 }
731
732 static struct map_info *
733 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
734 {
735         unsigned long pgoff = offset >> PAGE_SHIFT;
736         struct prio_tree_iter iter;
737         struct vm_area_struct *vma;
738         struct map_info *curr = NULL;
739         struct map_info *prev = NULL;
740         struct map_info *info;
741         int more = 0;
742
743  again:
744         mutex_lock(&mapping->i_mmap_mutex);
745         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
746                 if (!valid_vma(vma, is_register))
747                         continue;
748
749                 if (!prev && !more) {
750                         /*
751                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
752                          * reclaim. This is optimistic, no harm done if it fails.
753                          */
754                         prev = kmalloc(sizeof(struct map_info),
755                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
756                         if (prev)
757                                 prev->next = NULL;
758                 }
759                 if (!prev) {
760                         more++;
761                         continue;
762                 }
763
764                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
765                         continue;
766
767                 info = prev;
768                 prev = prev->next;
769                 info->next = curr;
770                 curr = info;
771
772                 info->mm = vma->vm_mm;
773                 info->vaddr = vma_address(vma, offset);
774         }
775         mutex_unlock(&mapping->i_mmap_mutex);
776
777         if (!more)
778                 goto out;
779
780         prev = curr;
781         while (curr) {
782                 mmput(curr->mm);
783                 curr = curr->next;
784         }
785
786         do {
787                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
788                 if (!info) {
789                         curr = ERR_PTR(-ENOMEM);
790                         goto out;
791                 }
792                 info->next = prev;
793                 prev = info;
794         } while (--more);
795
796         goto again;
797  out:
798         while (prev)
799                 prev = free_map_info(prev);
800         return curr;
801 }
802
803 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
804 {
805         struct map_info *info;
806         int err = 0;
807
808         info = build_map_info(uprobe->inode->i_mapping,
809                                         uprobe->offset, is_register);
810         if (IS_ERR(info))
811                 return PTR_ERR(info);
812
813         while (info) {
814                 struct mm_struct *mm = info->mm;
815                 struct vm_area_struct *vma;
816
817                 if (err)
818                         goto free;
819
820                 down_write(&mm->mmap_sem);
821                 vma = find_vma(mm, (unsigned long)info->vaddr);
822                 if (!vma || !valid_vma(vma, is_register))
823                         goto unlock;
824
825                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
826                     vma_address(vma, uprobe->offset) != info->vaddr)
827                         goto unlock;
828
829                 if (is_register) {
830                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
831                         /*
832                          * We can race against uprobe_mmap(), see the
833                          * comment near uprobe_hash().
834                          */
835                         if (err == -EEXIST)
836                                 err = 0;
837                 } else {
838                         remove_breakpoint(uprobe, mm, info->vaddr);
839                 }
840  unlock:
841                 up_write(&mm->mmap_sem);
842  free:
843                 mmput(mm);
844                 info = free_map_info(info);
845         }
846
847         return err;
848 }
849
850 static int __uprobe_register(struct uprobe *uprobe)
851 {
852         return register_for_each_vma(uprobe, true);
853 }
854
855 static void __uprobe_unregister(struct uprobe *uprobe)
856 {
857         if (!register_for_each_vma(uprobe, false))
858                 delete_uprobe(uprobe);
859
860         /* TODO : cant unregister? schedule a worker thread */
861 }
862
863 /*
864  * uprobe_register - register a probe
865  * @inode: the file in which the probe has to be placed.
866  * @offset: offset from the start of the file.
867  * @uc: information on howto handle the probe..
868  *
869  * Apart from the access refcount, uprobe_register() takes a creation
870  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
871  * inserted into the rbtree (i.e first consumer for a @inode:@offset
872  * tuple).  Creation refcount stops uprobe_unregister from freeing the
873  * @uprobe even before the register operation is complete. Creation
874  * refcount is released when the last @uc for the @uprobe
875  * unregisters.
876  *
877  * Return errno if it cannot successully install probes
878  * else return 0 (success)
879  */
880 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
881 {
882         struct uprobe *uprobe;
883         int ret;
884
885         if (!inode || !uc || uc->next)
886                 return -EINVAL;
887
888         if (offset > i_size_read(inode))
889                 return -EINVAL;
890
891         ret = 0;
892         mutex_lock(uprobes_hash(inode));
893         uprobe = alloc_uprobe(inode, offset);
894
895         if (uprobe && !consumer_add(uprobe, uc)) {
896                 ret = __uprobe_register(uprobe);
897                 if (ret) {
898                         uprobe->consumers = NULL;
899                         __uprobe_unregister(uprobe);
900                 } else {
901                         uprobe->flags |= UPROBE_RUN_HANDLER;
902                 }
903         }
904
905         mutex_unlock(uprobes_hash(inode));
906         put_uprobe(uprobe);
907
908         return ret;
909 }
910
911 /*
912  * uprobe_unregister - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: identify which probe if multiple probes are colocated.
916  */
917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
918 {
919         struct uprobe *uprobe;
920
921         if (!inode || !uc)
922                 return;
923
924         uprobe = find_uprobe(inode, offset);
925         if (!uprobe)
926                 return;
927
928         mutex_lock(uprobes_hash(inode));
929
930         if (consumer_del(uprobe, uc)) {
931                 if (!uprobe->consumers) {
932                         __uprobe_unregister(uprobe);
933                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
934                 }
935         }
936
937         mutex_unlock(uprobes_hash(inode));
938         if (uprobe)
939                 put_uprobe(uprobe);
940 }
941
942 /*
943  * Of all the nodes that correspond to the given inode, return the node
944  * with the least offset.
945  */
946 static struct rb_node *find_least_offset_node(struct inode *inode)
947 {
948         struct uprobe u = { .inode = inode, .offset = 0};
949         struct rb_node *n = uprobes_tree.rb_node;
950         struct rb_node *close_node = NULL;
951         struct uprobe *uprobe;
952         int match;
953
954         while (n) {
955                 uprobe = rb_entry(n, struct uprobe, rb_node);
956                 match = match_uprobe(&u, uprobe);
957
958                 if (uprobe->inode == inode)
959                         close_node = n;
960
961                 if (!match)
962                         return close_node;
963
964                 if (match < 0)
965                         n = n->rb_left;
966                 else
967                         n = n->rb_right;
968         }
969
970         return close_node;
971 }
972
973 /*
974  * For a given inode, build a list of probes that need to be inserted.
975  */
976 static void build_probe_list(struct inode *inode, struct list_head *head)
977 {
978         struct uprobe *uprobe;
979         unsigned long flags;
980         struct rb_node *n;
981
982         spin_lock_irqsave(&uprobes_treelock, flags);
983
984         n = find_least_offset_node(inode);
985
986         for (; n; n = rb_next(n)) {
987                 uprobe = rb_entry(n, struct uprobe, rb_node);
988                 if (uprobe->inode != inode)
989                         break;
990
991                 list_add(&uprobe->pending_list, head);
992                 atomic_inc(&uprobe->ref);
993         }
994
995         spin_unlock_irqrestore(&uprobes_treelock, flags);
996 }
997
998 /*
999  * Called from mmap_region.
1000  * called with mm->mmap_sem acquired.
1001  *
1002  * Return -ve no if we fail to insert probes and we cannot
1003  * bail-out.
1004  * Return 0 otherwise. i.e:
1005  *
1006  *      - successful insertion of probes
1007  *      - (or) no possible probes to be inserted.
1008  *      - (or) insertion of probes failed but we can bail-out.
1009  */
1010 int uprobe_mmap(struct vm_area_struct *vma)
1011 {
1012         struct list_head tmp_list;
1013         struct uprobe *uprobe, *u;
1014         struct inode *inode;
1015         int ret, count;
1016
1017         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1018                 return 0;
1019
1020         inode = vma->vm_file->f_mapping->host;
1021         if (!inode)
1022                 return 0;
1023
1024         INIT_LIST_HEAD(&tmp_list);
1025         mutex_lock(uprobes_mmap_hash(inode));
1026         build_probe_list(inode, &tmp_list);
1027
1028         ret = 0;
1029         count = 0;
1030
1031         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1032                 if (!ret) {
1033                         loff_t vaddr = vma_address(vma, uprobe->offset);
1034
1035                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1036                                 put_uprobe(uprobe);
1037                                 continue;
1038                         }
1039
1040                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1041                         /*
1042                          * We can race against uprobe_register(), see the
1043                          * comment near uprobe_hash().
1044                          */
1045                         if (ret == -EEXIST) {
1046                                 ret = 0;
1047
1048                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1049                                         continue;
1050
1051                                 /*
1052                                  * Unable to insert a breakpoint, but
1053                                  * breakpoint lies underneath. Increment the
1054                                  * probe count.
1055                                  */
1056                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1057                         }
1058
1059                         if (!ret)
1060                                 count++;
1061                 }
1062                 put_uprobe(uprobe);
1063         }
1064
1065         mutex_unlock(uprobes_mmap_hash(inode));
1066
1067         if (ret)
1068                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1069
1070         return ret;
1071 }
1072
1073 /*
1074  * Called in context of a munmap of a vma.
1075  */
1076 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1077 {
1078         struct list_head tmp_list;
1079         struct uprobe *uprobe, *u;
1080         struct inode *inode;
1081
1082         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1083                 return;
1084
1085         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1086                 return;
1087
1088         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1089                 return;
1090
1091         inode = vma->vm_file->f_mapping->host;
1092         if (!inode)
1093                 return;
1094
1095         INIT_LIST_HEAD(&tmp_list);
1096         mutex_lock(uprobes_mmap_hash(inode));
1097         build_probe_list(inode, &tmp_list);
1098
1099         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1100                 loff_t vaddr = vma_address(vma, uprobe->offset);
1101
1102                 if (vaddr >= start && vaddr < end) {
1103                         /*
1104                          * An unregister could have removed the probe before
1105                          * unmap. So check before we decrement the count.
1106                          */
1107                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1108                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1109                 }
1110                 put_uprobe(uprobe);
1111         }
1112         mutex_unlock(uprobes_mmap_hash(inode));
1113 }
1114
1115 /* Slot allocation for XOL */
1116 static int xol_add_vma(struct xol_area *area)
1117 {
1118         struct mm_struct *mm;
1119         int ret;
1120
1121         area->page = alloc_page(GFP_HIGHUSER);
1122         if (!area->page)
1123                 return -ENOMEM;
1124
1125         ret = -EALREADY;
1126         mm = current->mm;
1127
1128         down_write(&mm->mmap_sem);
1129         if (mm->uprobes_state.xol_area)
1130                 goto fail;
1131
1132         ret = -ENOMEM;
1133
1134         /* Try to map as high as possible, this is only a hint. */
1135         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1136         if (area->vaddr & ~PAGE_MASK) {
1137                 ret = area->vaddr;
1138                 goto fail;
1139         }
1140
1141         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1142                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1143         if (ret)
1144                 goto fail;
1145
1146         smp_wmb();      /* pairs with get_xol_area() */
1147         mm->uprobes_state.xol_area = area;
1148         ret = 0;
1149
1150 fail:
1151         up_write(&mm->mmap_sem);
1152         if (ret)
1153                 __free_page(area->page);
1154
1155         return ret;
1156 }
1157
1158 static struct xol_area *get_xol_area(struct mm_struct *mm)
1159 {
1160         struct xol_area *area;
1161
1162         area = mm->uprobes_state.xol_area;
1163         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1164
1165         return area;
1166 }
1167
1168 /*
1169  * xol_alloc_area - Allocate process's xol_area.
1170  * This area will be used for storing instructions for execution out of
1171  * line.
1172  *
1173  * Returns the allocated area or NULL.
1174  */
1175 static struct xol_area *xol_alloc_area(void)
1176 {
1177         struct xol_area *area;
1178
1179         area = kzalloc(sizeof(*area), GFP_KERNEL);
1180         if (unlikely(!area))
1181                 return NULL;
1182
1183         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1184
1185         if (!area->bitmap)
1186                 goto fail;
1187
1188         init_waitqueue_head(&area->wq);
1189         if (!xol_add_vma(area))
1190                 return area;
1191
1192 fail:
1193         kfree(area->bitmap);
1194         kfree(area);
1195
1196         return get_xol_area(current->mm);
1197 }
1198
1199 /*
1200  * uprobe_clear_state - Free the area allocated for slots.
1201  */
1202 void uprobe_clear_state(struct mm_struct *mm)
1203 {
1204         struct xol_area *area = mm->uprobes_state.xol_area;
1205
1206         if (!area)
1207                 return;
1208
1209         put_page(area->page);
1210         kfree(area->bitmap);
1211         kfree(area);
1212 }
1213
1214 /*
1215  * uprobe_reset_state - Free the area allocated for slots.
1216  */
1217 void uprobe_reset_state(struct mm_struct *mm)
1218 {
1219         mm->uprobes_state.xol_area = NULL;
1220         atomic_set(&mm->uprobes_state.count, 0);
1221 }
1222
1223 /*
1224  *  - search for a free slot.
1225  */
1226 static unsigned long xol_take_insn_slot(struct xol_area *area)
1227 {
1228         unsigned long slot_addr;
1229         int slot_nr;
1230
1231         do {
1232                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1233                 if (slot_nr < UINSNS_PER_PAGE) {
1234                         if (!test_and_set_bit(slot_nr, area->bitmap))
1235                                 break;
1236
1237                         slot_nr = UINSNS_PER_PAGE;
1238                         continue;
1239                 }
1240                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1241         } while (slot_nr >= UINSNS_PER_PAGE);
1242
1243         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1244         atomic_inc(&area->slot_count);
1245
1246         return slot_addr;
1247 }
1248
1249 /*
1250  * xol_get_insn_slot - If was not allocated a slot, then
1251  * allocate a slot.
1252  * Returns the allocated slot address or 0.
1253  */
1254 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1255 {
1256         struct xol_area *area;
1257         unsigned long offset;
1258         void *vaddr;
1259
1260         area = get_xol_area(current->mm);
1261         if (!area) {
1262                 area = xol_alloc_area();
1263                 if (!area)
1264                         return 0;
1265         }
1266         current->utask->xol_vaddr = xol_take_insn_slot(area);
1267
1268         /*
1269          * Initialize the slot if xol_vaddr points to valid
1270          * instruction slot.
1271          */
1272         if (unlikely(!current->utask->xol_vaddr))
1273                 return 0;
1274
1275         current->utask->vaddr = slot_addr;
1276         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1277         vaddr = kmap_atomic(area->page);
1278         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1279         kunmap_atomic(vaddr);
1280
1281         return current->utask->xol_vaddr;
1282 }
1283
1284 /*
1285  * xol_free_insn_slot - If slot was earlier allocated by
1286  * @xol_get_insn_slot(), make the slot available for
1287  * subsequent requests.
1288  */
1289 static void xol_free_insn_slot(struct task_struct *tsk)
1290 {
1291         struct xol_area *area;
1292         unsigned long vma_end;
1293         unsigned long slot_addr;
1294
1295         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1296                 return;
1297
1298         slot_addr = tsk->utask->xol_vaddr;
1299
1300         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1301                 return;
1302
1303         area = tsk->mm->uprobes_state.xol_area;
1304         vma_end = area->vaddr + PAGE_SIZE;
1305         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1306                 unsigned long offset;
1307                 int slot_nr;
1308
1309                 offset = slot_addr - area->vaddr;
1310                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1311                 if (slot_nr >= UINSNS_PER_PAGE)
1312                         return;
1313
1314                 clear_bit(slot_nr, area->bitmap);
1315                 atomic_dec(&area->slot_count);
1316                 if (waitqueue_active(&area->wq))
1317                         wake_up(&area->wq);
1318
1319                 tsk->utask->xol_vaddr = 0;
1320         }
1321 }
1322
1323 /**
1324  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1325  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1326  * instruction.
1327  * Return the address of the breakpoint instruction.
1328  */
1329 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1330 {
1331         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1332 }
1333
1334 /*
1335  * Called with no locks held.
1336  * Called in context of a exiting or a exec-ing thread.
1337  */
1338 void uprobe_free_utask(struct task_struct *t)
1339 {
1340         struct uprobe_task *utask = t->utask;
1341
1342         if (!utask)
1343                 return;
1344
1345         if (utask->active_uprobe)
1346                 put_uprobe(utask->active_uprobe);
1347
1348         xol_free_insn_slot(t);
1349         kfree(utask);
1350         t->utask = NULL;
1351 }
1352
1353 /*
1354  * Called in context of a new clone/fork from copy_process.
1355  */
1356 void uprobe_copy_process(struct task_struct *t)
1357 {
1358         t->utask = NULL;
1359 }
1360
1361 /*
1362  * Allocate a uprobe_task object for the task.
1363  * Called when the thread hits a breakpoint for the first time.
1364  *
1365  * Returns:
1366  * - pointer to new uprobe_task on success
1367  * - NULL otherwise
1368  */
1369 static struct uprobe_task *add_utask(void)
1370 {
1371         struct uprobe_task *utask;
1372
1373         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1374         if (unlikely(!utask))
1375                 return NULL;
1376
1377         current->utask = utask;
1378         return utask;
1379 }
1380
1381 /* Prepare to single-step probed instruction out of line. */
1382 static int
1383 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1384 {
1385         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1386                 return 0;
1387
1388         return -EFAULT;
1389 }
1390
1391 /*
1392  * If we are singlestepping, then ensure this thread is not connected to
1393  * non-fatal signals until completion of singlestep.  When xol insn itself
1394  * triggers the signal,  restart the original insn even if the task is
1395  * already SIGKILL'ed (since coredump should report the correct ip).  This
1396  * is even more important if the task has a handler for SIGSEGV/etc, The
1397  * _same_ instruction should be repeated again after return from the signal
1398  * handler, and SSTEP can never finish in this case.
1399  */
1400 bool uprobe_deny_signal(void)
1401 {
1402         struct task_struct *t = current;
1403         struct uprobe_task *utask = t->utask;
1404
1405         if (likely(!utask || !utask->active_uprobe))
1406                 return false;
1407
1408         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1409
1410         if (signal_pending(t)) {
1411                 spin_lock_irq(&t->sighand->siglock);
1412                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1413                 spin_unlock_irq(&t->sighand->siglock);
1414
1415                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1416                         utask->state = UTASK_SSTEP_TRAPPED;
1417                         set_tsk_thread_flag(t, TIF_UPROBE);
1418                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1419                 }
1420         }
1421
1422         return true;
1423 }
1424
1425 /*
1426  * Avoid singlestepping the original instruction if the original instruction
1427  * is a NOP or can be emulated.
1428  */
1429 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1430 {
1431         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1432                 return true;
1433
1434         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1435         return false;
1436 }
1437
1438 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1439 {
1440         struct mm_struct *mm = current->mm;
1441         struct uprobe *uprobe = NULL;
1442         struct vm_area_struct *vma;
1443
1444         down_read(&mm->mmap_sem);
1445         vma = find_vma(mm, bp_vaddr);
1446         if (vma && vma->vm_start <= bp_vaddr) {
1447                 if (valid_vma(vma, false)) {
1448                         struct inode *inode;
1449                         loff_t offset;
1450
1451                         inode = vma->vm_file->f_mapping->host;
1452                         offset = bp_vaddr - vma->vm_start;
1453                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1454                         uprobe = find_uprobe(inode, offset);
1455                 }
1456
1457                 if (!uprobe)
1458                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1459         } else {
1460                 *is_swbp = -EFAULT;
1461         }
1462         up_read(&mm->mmap_sem);
1463
1464         return uprobe;
1465 }
1466
1467 /*
1468  * Run handler and ask thread to singlestep.
1469  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1470  */
1471 static void handle_swbp(struct pt_regs *regs)
1472 {
1473         struct uprobe_task *utask;
1474         struct uprobe *uprobe;
1475         unsigned long bp_vaddr;
1476         int uninitialized_var(is_swbp);
1477
1478         bp_vaddr = uprobe_get_swbp_addr(regs);
1479         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1480
1481         if (!uprobe) {
1482                 if (is_swbp > 0) {
1483                         /* No matching uprobe; signal SIGTRAP. */
1484                         send_sig(SIGTRAP, current, 0);
1485                 } else {
1486                         /*
1487                          * Either we raced with uprobe_unregister() or we can't
1488                          * access this memory. The latter is only possible if
1489                          * another thread plays with our ->mm. In both cases
1490                          * we can simply restart. If this vma was unmapped we
1491                          * can pretend this insn was not executed yet and get
1492                          * the (correct) SIGSEGV after restart.
1493                          */
1494                         instruction_pointer_set(regs, bp_vaddr);
1495                 }
1496                 return;
1497         }
1498
1499         utask = current->utask;
1500         if (!utask) {
1501                 utask = add_utask();
1502                 /* Cannot allocate; re-execute the instruction. */
1503                 if (!utask)
1504                         goto cleanup_ret;
1505         }
1506         utask->active_uprobe = uprobe;
1507         handler_chain(uprobe, regs);
1508         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1509                 goto cleanup_ret;
1510
1511         utask->state = UTASK_SSTEP;
1512         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1513                 user_enable_single_step(current);
1514                 return;
1515         }
1516
1517 cleanup_ret:
1518         if (utask) {
1519                 utask->active_uprobe = NULL;
1520                 utask->state = UTASK_RUNNING;
1521         }
1522         if (uprobe) {
1523                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1524
1525                         /*
1526                          * cannot singlestep; cannot skip instruction;
1527                          * re-execute the instruction.
1528                          */
1529                         instruction_pointer_set(regs, bp_vaddr);
1530
1531                 put_uprobe(uprobe);
1532         }
1533 }
1534
1535 /*
1536  * Perform required fix-ups and disable singlestep.
1537  * Allow pending signals to take effect.
1538  */
1539 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1540 {
1541         struct uprobe *uprobe;
1542
1543         uprobe = utask->active_uprobe;
1544         if (utask->state == UTASK_SSTEP_ACK)
1545                 arch_uprobe_post_xol(&uprobe->arch, regs);
1546         else if (utask->state == UTASK_SSTEP_TRAPPED)
1547                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1548         else
1549                 WARN_ON_ONCE(1);
1550
1551         put_uprobe(uprobe);
1552         utask->active_uprobe = NULL;
1553         utask->state = UTASK_RUNNING;
1554         user_disable_single_step(current);
1555         xol_free_insn_slot(current);
1556
1557         spin_lock_irq(&current->sighand->siglock);
1558         recalc_sigpending(); /* see uprobe_deny_signal() */
1559         spin_unlock_irq(&current->sighand->siglock);
1560 }
1561
1562 /*
1563  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1564  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1565  * allows the thread to return from interrupt.
1566  *
1567  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1568  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1569  * interrupt.
1570  *
1571  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1572  * uprobe_notify_resume().
1573  */
1574 void uprobe_notify_resume(struct pt_regs *regs)
1575 {
1576         struct uprobe_task *utask;
1577
1578         utask = current->utask;
1579         if (!utask || utask->state == UTASK_BP_HIT)
1580                 handle_swbp(regs);
1581         else
1582                 handle_singlestep(utask, regs);
1583 }
1584
1585 /*
1586  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1587  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1588  */
1589 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1590 {
1591         struct uprobe_task *utask;
1592
1593         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1594                 /* task is currently not uprobed */
1595                 return 0;
1596
1597         utask = current->utask;
1598         if (utask)
1599                 utask->state = UTASK_BP_HIT;
1600
1601         set_thread_flag(TIF_UPROBE);
1602
1603         return 1;
1604 }
1605
1606 /*
1607  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1608  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1609  */
1610 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1611 {
1612         struct uprobe_task *utask = current->utask;
1613
1614         if (!current->mm || !utask || !utask->active_uprobe)
1615                 /* task is currently not uprobed */
1616                 return 0;
1617
1618         utask->state = UTASK_SSTEP_ACK;
1619         set_thread_flag(TIF_UPROBE);
1620         return 1;
1621 }
1622
1623 static struct notifier_block uprobe_exception_nb = {
1624         .notifier_call          = arch_uprobe_exception_notify,
1625         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1626 };
1627
1628 static int __init init_uprobes(void)
1629 {
1630         int i;
1631
1632         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1633                 mutex_init(&uprobes_mutex[i]);
1634                 mutex_init(&uprobes_mmap_mutex[i]);
1635         }
1636
1637         return register_die_notifier(&uprobe_exception_nb);
1638 }
1639 module_init(init_uprobes);
1640
1641 static void __exit exit_uprobes(void)
1642 {
1643 }
1644 module_exit(exit_uprobes);