b9c61bda9029d15db22d242d1b21d875945102b2
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66
67 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79
80 struct uprobe {
81         struct rb_node          rb_node;        /* node in the rb tree */
82         atomic_t                ref;
83         struct rw_semaphore     consumer_rwsem;
84         struct list_head        pending_list;
85         struct uprobe_consumer  *consumers;
86         struct inode            *inode;         /* Also hold a ref to inode */
87         loff_t                  offset;
88         int                     flags;
89         struct arch_uprobe      arch;
90 };
91
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *      - is_register: indicates if we are in register context.
97  *      - Return 1 if the specified virtual address is in an
98  *        executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102         if (!vma->vm_file)
103                 return false;
104
105         if (!is_register)
106                 return true;
107
108         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109                                 == (VM_READ|VM_EXEC))
110                 return true;
111
112         return false;
113 }
114
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117         loff_t vaddr;
118
119         vaddr = vma->vm_start + offset;
120         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121
122         return vaddr;
123 }
124
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @page:     the cowed page we are replacing by kpage
131  * @kpage:    the modified page we replace page by
132  *
133  * Returns 0 on success, -EFAULT on failure.
134  */
135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
136 {
137         struct mm_struct *mm = vma->vm_mm;
138         unsigned long addr;
139         spinlock_t *ptl;
140         pte_t *ptep;
141
142         addr = page_address_in_vma(page, vma);
143         if (addr == -EFAULT)
144                 return -EFAULT;
145
146         ptep = page_check_address(page, mm, addr, &ptl, 0);
147         if (!ptep)
148                 return -EAGAIN;
149
150         get_page(kpage);
151         page_add_new_anon_rmap(kpage, vma, addr);
152
153         if (!PageAnon(page)) {
154                 dec_mm_counter(mm, MM_FILEPAGES);
155                 inc_mm_counter(mm, MM_ANONPAGES);
156         }
157
158         flush_cache_page(vma, addr, pte_pfn(*ptep));
159         ptep_clear_flush(vma, addr, ptep);
160         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
161
162         page_remove_rmap(page);
163         if (!page_mapped(page))
164                 try_to_free_swap(page);
165         put_page(page);
166         pte_unmap_unlock(ptep, ptl);
167
168         return 0;
169 }
170
171 /**
172  * is_swbp_insn - check if instruction is breakpoint instruction.
173  * @insn: instruction to be checked.
174  * Default implementation of is_swbp_insn
175  * Returns true if @insn is a breakpoint instruction.
176  */
177 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
178 {
179         return *insn == UPROBE_SWBP_INSN;
180 }
181
182 /*
183  * NOTE:
184  * Expect the breakpoint instruction to be the smallest size instruction for
185  * the architecture. If an arch has variable length instruction and the
186  * breakpoint instruction is not of the smallest length instruction
187  * supported by that architecture then we need to modify read_opcode /
188  * write_opcode accordingly. This would never be a problem for archs that
189  * have fixed length instructions.
190  */
191
192 /*
193  * write_opcode - write the opcode at a given virtual address.
194  * @auprobe: arch breakpointing information.
195  * @mm: the probed process address space.
196  * @vaddr: the virtual address to store the opcode.
197  * @opcode: opcode to be written at @vaddr.
198  *
199  * Called with mm->mmap_sem held (for read and with a reference to
200  * mm).
201  *
202  * For mm @mm, write the opcode at @vaddr.
203  * Return 0 (success) or a negative errno.
204  */
205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206                         unsigned long vaddr, uprobe_opcode_t opcode)
207 {
208         struct page *old_page, *new_page;
209         struct address_space *mapping;
210         void *vaddr_old, *vaddr_new;
211         struct vm_area_struct *vma;
212         struct uprobe *uprobe;
213         int ret;
214 retry:
215         /* Read the page with vaddr into memory */
216         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
217         if (ret <= 0)
218                 return ret;
219
220         ret = -EINVAL;
221
222         /*
223          * We are interested in text pages only. Our pages of interest
224          * should be mapped for read and execute only. We desist from
225          * adding probes in write mapped pages since the breakpoints
226          * might end up in the file copy.
227          */
228         if (!valid_vma(vma, is_swbp_insn(&opcode)))
229                 goto put_out;
230
231         uprobe = container_of(auprobe, struct uprobe, arch);
232         mapping = uprobe->inode->i_mapping;
233         if (mapping != vma->vm_file->f_mapping)
234                 goto put_out;
235
236         ret = -ENOMEM;
237         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
238         if (!new_page)
239                 goto put_out;
240
241         __SetPageUptodate(new_page);
242
243         /*
244          * lock page will serialize against do_wp_page()'s
245          * PageAnon() handling
246          */
247         lock_page(old_page);
248         /* copy the page now that we've got it stable */
249         vaddr_old = kmap_atomic(old_page);
250         vaddr_new = kmap_atomic(new_page);
251
252         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
253         memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
254
255         kunmap_atomic(vaddr_new);
256         kunmap_atomic(vaddr_old);
257
258         ret = anon_vma_prepare(vma);
259         if (ret)
260                 goto unlock_out;
261
262         lock_page(new_page);
263         ret = __replace_page(vma, old_page, new_page);
264         unlock_page(new_page);
265
266 unlock_out:
267         unlock_page(old_page);
268         page_cache_release(new_page);
269
270 put_out:
271         put_page(old_page);
272
273         if (unlikely(ret == -EAGAIN))
274                 goto retry;
275         return ret;
276 }
277
278 /**
279  * read_opcode - read the opcode at a given virtual address.
280  * @mm: the probed process address space.
281  * @vaddr: the virtual address to read the opcode.
282  * @opcode: location to store the read opcode.
283  *
284  * Called with mm->mmap_sem held (for read and with a reference to
285  * mm.
286  *
287  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
288  * Return 0 (success) or a negative errno.
289  */
290 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
291 {
292         struct page *page;
293         void *vaddr_new;
294         int ret;
295
296         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
297         if (ret <= 0)
298                 return ret;
299
300         lock_page(page);
301         vaddr_new = kmap_atomic(page);
302         vaddr &= ~PAGE_MASK;
303         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
304         kunmap_atomic(vaddr_new);
305         unlock_page(page);
306
307         put_page(page);
308
309         return 0;
310 }
311
312 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
313 {
314         uprobe_opcode_t opcode;
315         int result;
316
317         if (current->mm == mm) {
318                 pagefault_disable();
319                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
320                                                                 sizeof(opcode));
321                 pagefault_enable();
322
323                 if (likely(result == 0))
324                         goto out;
325         }
326
327         result = read_opcode(mm, vaddr, &opcode);
328         if (result)
329                 return result;
330 out:
331         if (is_swbp_insn(&opcode))
332                 return 1;
333
334         return 0;
335 }
336
337 /**
338  * set_swbp - store breakpoint at a given address.
339  * @auprobe: arch specific probepoint information.
340  * @mm: the probed process address space.
341  * @vaddr: the virtual address to insert the opcode.
342  *
343  * For mm @mm, store the breakpoint instruction at @vaddr.
344  * Return 0 (success) or a negative errno.
345  */
346 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
347 {
348         int result;
349         /*
350          * See the comment near uprobes_hash().
351          */
352         result = is_swbp_at_addr(mm, vaddr);
353         if (result == 1)
354                 return -EEXIST;
355
356         if (result)
357                 return result;
358
359         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
360 }
361
362 /**
363  * set_orig_insn - Restore the original instruction.
364  * @mm: the probed process address space.
365  * @auprobe: arch specific probepoint information.
366  * @vaddr: the virtual address to insert the opcode.
367  * @verify: if true, verify existance of breakpoint instruction.
368  *
369  * For mm @mm, restore the original opcode (opcode) at @vaddr.
370  * Return 0 (success) or a negative errno.
371  */
372 int __weak
373 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
374 {
375         if (verify) {
376                 int result;
377
378                 result = is_swbp_at_addr(mm, vaddr);
379                 if (!result)
380                         return -EINVAL;
381
382                 if (result != 1)
383                         return result;
384         }
385         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
386 }
387
388 static int match_uprobe(struct uprobe *l, struct uprobe *r)
389 {
390         if (l->inode < r->inode)
391                 return -1;
392
393         if (l->inode > r->inode)
394                 return 1;
395
396         if (l->offset < r->offset)
397                 return -1;
398
399         if (l->offset > r->offset)
400                 return 1;
401
402         return 0;
403 }
404
405 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
406 {
407         struct uprobe u = { .inode = inode, .offset = offset };
408         struct rb_node *n = uprobes_tree.rb_node;
409         struct uprobe *uprobe;
410         int match;
411
412         while (n) {
413                 uprobe = rb_entry(n, struct uprobe, rb_node);
414                 match = match_uprobe(&u, uprobe);
415                 if (!match) {
416                         atomic_inc(&uprobe->ref);
417                         return uprobe;
418                 }
419
420                 if (match < 0)
421                         n = n->rb_left;
422                 else
423                         n = n->rb_right;
424         }
425         return NULL;
426 }
427
428 /*
429  * Find a uprobe corresponding to a given inode:offset
430  * Acquires uprobes_treelock
431  */
432 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
433 {
434         struct uprobe *uprobe;
435         unsigned long flags;
436
437         spin_lock_irqsave(&uprobes_treelock, flags);
438         uprobe = __find_uprobe(inode, offset);
439         spin_unlock_irqrestore(&uprobes_treelock, flags);
440
441         return uprobe;
442 }
443
444 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
445 {
446         struct rb_node **p = &uprobes_tree.rb_node;
447         struct rb_node *parent = NULL;
448         struct uprobe *u;
449         int match;
450
451         while (*p) {
452                 parent = *p;
453                 u = rb_entry(parent, struct uprobe, rb_node);
454                 match = match_uprobe(uprobe, u);
455                 if (!match) {
456                         atomic_inc(&u->ref);
457                         return u;
458                 }
459
460                 if (match < 0)
461                         p = &parent->rb_left;
462                 else
463                         p = &parent->rb_right;
464
465         }
466
467         u = NULL;
468         rb_link_node(&uprobe->rb_node, parent, p);
469         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
470         /* get access + creation ref */
471         atomic_set(&uprobe->ref, 2);
472
473         return u;
474 }
475
476 /*
477  * Acquire uprobes_treelock.
478  * Matching uprobe already exists in rbtree;
479  *      increment (access refcount) and return the matching uprobe.
480  *
481  * No matching uprobe; insert the uprobe in rb_tree;
482  *      get a double refcount (access + creation) and return NULL.
483  */
484 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
485 {
486         unsigned long flags;
487         struct uprobe *u;
488
489         spin_lock_irqsave(&uprobes_treelock, flags);
490         u = __insert_uprobe(uprobe);
491         spin_unlock_irqrestore(&uprobes_treelock, flags);
492
493         /* For now assume that the instruction need not be single-stepped */
494         uprobe->flags |= UPROBE_SKIP_SSTEP;
495
496         return u;
497 }
498
499 static void put_uprobe(struct uprobe *uprobe)
500 {
501         if (atomic_dec_and_test(&uprobe->ref))
502                 kfree(uprobe);
503 }
504
505 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
506 {
507         struct uprobe *uprobe, *cur_uprobe;
508
509         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
510         if (!uprobe)
511                 return NULL;
512
513         uprobe->inode = igrab(inode);
514         uprobe->offset = offset;
515         init_rwsem(&uprobe->consumer_rwsem);
516         INIT_LIST_HEAD(&uprobe->pending_list);
517
518         /* add to uprobes_tree, sorted on inode:offset */
519         cur_uprobe = insert_uprobe(uprobe);
520
521         /* a uprobe exists for this inode:offset combination */
522         if (cur_uprobe) {
523                 kfree(uprobe);
524                 uprobe = cur_uprobe;
525                 iput(inode);
526         } else {
527                 atomic_inc(&uprobe_events);
528         }
529
530         return uprobe;
531 }
532
533 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
534 {
535         struct uprobe_consumer *uc;
536
537         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
538                 return;
539
540         down_read(&uprobe->consumer_rwsem);
541         for (uc = uprobe->consumers; uc; uc = uc->next) {
542                 if (!uc->filter || uc->filter(uc, current))
543                         uc->handler(uc, regs);
544         }
545         up_read(&uprobe->consumer_rwsem);
546 }
547
548 /* Returns the previous consumer */
549 static struct uprobe_consumer *
550 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
551 {
552         down_write(&uprobe->consumer_rwsem);
553         uc->next = uprobe->consumers;
554         uprobe->consumers = uc;
555         up_write(&uprobe->consumer_rwsem);
556
557         return uc->next;
558 }
559
560 /*
561  * For uprobe @uprobe, delete the consumer @uc.
562  * Return true if the @uc is deleted successfully
563  * or return false.
564  */
565 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
566 {
567         struct uprobe_consumer **con;
568         bool ret = false;
569
570         down_write(&uprobe->consumer_rwsem);
571         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
572                 if (*con == uc) {
573                         *con = uc->next;
574                         ret = true;
575                         break;
576                 }
577         }
578         up_write(&uprobe->consumer_rwsem);
579
580         return ret;
581 }
582
583 static int
584 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
585                         unsigned long nbytes, unsigned long offset)
586 {
587         struct page *page;
588         void *vaddr;
589         unsigned long off1;
590         unsigned long idx;
591
592         if (!filp)
593                 return -EINVAL;
594
595         if (!mapping->a_ops->readpage)
596                 return -EIO;
597
598         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
599         off1 = offset &= ~PAGE_MASK;
600
601         /*
602          * Ensure that the page that has the original instruction is
603          * populated and in page-cache.
604          */
605         page = read_mapping_page(mapping, idx, filp);
606         if (IS_ERR(page))
607                 return PTR_ERR(page);
608
609         vaddr = kmap_atomic(page);
610         memcpy(insn, vaddr + off1, nbytes);
611         kunmap_atomic(vaddr);
612         page_cache_release(page);
613
614         return 0;
615 }
616
617 static int copy_insn(struct uprobe *uprobe, struct file *filp)
618 {
619         struct address_space *mapping;
620         unsigned long nbytes;
621         int bytes;
622
623         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
624         mapping = uprobe->inode->i_mapping;
625
626         /* Instruction at end of binary; copy only available bytes */
627         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
628                 bytes = uprobe->inode->i_size - uprobe->offset;
629         else
630                 bytes = MAX_UINSN_BYTES;
631
632         /* Instruction at the page-boundary; copy bytes in second page */
633         if (nbytes < bytes) {
634                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
635                                 bytes - nbytes, uprobe->offset + nbytes);
636                 if (err)
637                         return err;
638                 bytes = nbytes;
639         }
640         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
641 }
642
643 /*
644  * How mm->uprobes_state.count gets updated
645  * uprobe_mmap() increments the count if
646  *      - it successfully adds a breakpoint.
647  *      - it cannot add a breakpoint, but sees that there is a underlying
648  *        breakpoint (via a is_swbp_at_addr()).
649  *
650  * uprobe_munmap() decrements the count if
651  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
652  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
653  *        unless a uprobe_mmap kicks in, since the old vma would be
654  *        dropped just after uprobe_munmap.)
655  *
656  * uprobe_register increments the count if:
657  *      - it successfully adds a breakpoint.
658  *
659  * uprobe_unregister decrements the count if:
660  *      - it sees a underlying breakpoint and removes successfully.
661  *        (via is_swbp_at_addr)
662  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
663  *        since there is no underlying breakpoint after the
664  *        breakpoint removal.)
665  */
666 static int
667 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
668                         struct vm_area_struct *vma, loff_t vaddr)
669 {
670         unsigned long addr;
671         int ret;
672
673         /*
674          * If probe is being deleted, unregister thread could be done with
675          * the vma-rmap-walk through. Adding a probe now can be fatal since
676          * nobody will be able to cleanup. Also we could be from fork or
677          * mremap path, where the probe might have already been inserted.
678          * Hence behave as if probe already existed.
679          */
680         if (!uprobe->consumers)
681                 return -EEXIST;
682
683         addr = (unsigned long)vaddr;
684
685         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
686                 ret = copy_insn(uprobe, vma->vm_file);
687                 if (ret)
688                         return ret;
689
690                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
691                         return -ENOTSUPP;
692
693                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
694                 if (ret)
695                         return ret;
696
697                 /* write_opcode() assumes we don't cross page boundary */
698                 BUG_ON((uprobe->offset & ~PAGE_MASK) +
699                                 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
700
701                 uprobe->flags |= UPROBE_COPY_INSN;
702         }
703
704         /*
705          * Ideally, should be updating the probe count after the breakpoint
706          * has been successfully inserted. However a thread could hit the
707          * breakpoint we just inserted even before the probe count is
708          * incremented. If this is the first breakpoint placed, breakpoint
709          * notifier might ignore uprobes and pass the trap to the thread.
710          * Hence increment before and decrement on failure.
711          */
712         atomic_inc(&mm->uprobes_state.count);
713         ret = set_swbp(&uprobe->arch, mm, addr);
714         if (ret)
715                 atomic_dec(&mm->uprobes_state.count);
716
717         return ret;
718 }
719
720 static void
721 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
722 {
723         if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
724                 atomic_dec(&mm->uprobes_state.count);
725 }
726
727 /*
728  * There could be threads that have already hit the breakpoint. They
729  * will recheck the current insn and restart if find_uprobe() fails.
730  * See find_active_uprobe().
731  */
732 static void delete_uprobe(struct uprobe *uprobe)
733 {
734         unsigned long flags;
735
736         spin_lock_irqsave(&uprobes_treelock, flags);
737         rb_erase(&uprobe->rb_node, &uprobes_tree);
738         spin_unlock_irqrestore(&uprobes_treelock, flags);
739         iput(uprobe->inode);
740         put_uprobe(uprobe);
741         atomic_dec(&uprobe_events);
742 }
743
744 struct map_info {
745         struct map_info *next;
746         struct mm_struct *mm;
747         loff_t vaddr;
748 };
749
750 static inline struct map_info *free_map_info(struct map_info *info)
751 {
752         struct map_info *next = info->next;
753         kfree(info);
754         return next;
755 }
756
757 static struct map_info *
758 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
759 {
760         unsigned long pgoff = offset >> PAGE_SHIFT;
761         struct prio_tree_iter iter;
762         struct vm_area_struct *vma;
763         struct map_info *curr = NULL;
764         struct map_info *prev = NULL;
765         struct map_info *info;
766         int more = 0;
767
768  again:
769         mutex_lock(&mapping->i_mmap_mutex);
770         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
771                 if (!valid_vma(vma, is_register))
772                         continue;
773
774                 if (!prev && !more) {
775                         /*
776                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
777                          * reclaim. This is optimistic, no harm done if it fails.
778                          */
779                         prev = kmalloc(sizeof(struct map_info),
780                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
781                         if (prev)
782                                 prev->next = NULL;
783                 }
784                 if (!prev) {
785                         more++;
786                         continue;
787                 }
788
789                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
790                         continue;
791
792                 info = prev;
793                 prev = prev->next;
794                 info->next = curr;
795                 curr = info;
796
797                 info->mm = vma->vm_mm;
798                 info->vaddr = vma_address(vma, offset);
799         }
800         mutex_unlock(&mapping->i_mmap_mutex);
801
802         if (!more)
803                 goto out;
804
805         prev = curr;
806         while (curr) {
807                 mmput(curr->mm);
808                 curr = curr->next;
809         }
810
811         do {
812                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
813                 if (!info) {
814                         curr = ERR_PTR(-ENOMEM);
815                         goto out;
816                 }
817                 info->next = prev;
818                 prev = info;
819         } while (--more);
820
821         goto again;
822  out:
823         while (prev)
824                 prev = free_map_info(prev);
825         return curr;
826 }
827
828 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
829 {
830         struct map_info *info;
831         int err = 0;
832
833         info = build_map_info(uprobe->inode->i_mapping,
834                                         uprobe->offset, is_register);
835         if (IS_ERR(info))
836                 return PTR_ERR(info);
837
838         while (info) {
839                 struct mm_struct *mm = info->mm;
840                 struct vm_area_struct *vma;
841                 loff_t vaddr;
842
843                 if (err)
844                         goto free;
845
846                 down_write(&mm->mmap_sem);
847                 vma = find_vma(mm, (unsigned long)info->vaddr);
848                 if (!vma || !valid_vma(vma, is_register))
849                         goto unlock;
850
851                 vaddr = vma_address(vma, uprobe->offset);
852                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
853                                                 vaddr != info->vaddr)
854                         goto unlock;
855
856                 if (is_register) {
857                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
858                         /*
859                          * We can race against uprobe_mmap(), see the
860                          * comment near uprobe_hash().
861                          */
862                         if (err == -EEXIST)
863                                 err = 0;
864                 } else {
865                         remove_breakpoint(uprobe, mm, info->vaddr);
866                 }
867  unlock:
868                 up_write(&mm->mmap_sem);
869  free:
870                 mmput(mm);
871                 info = free_map_info(info);
872         }
873
874         return err;
875 }
876
877 static int __uprobe_register(struct uprobe *uprobe)
878 {
879         return register_for_each_vma(uprobe, true);
880 }
881
882 static void __uprobe_unregister(struct uprobe *uprobe)
883 {
884         if (!register_for_each_vma(uprobe, false))
885                 delete_uprobe(uprobe);
886
887         /* TODO : cant unregister? schedule a worker thread */
888 }
889
890 /*
891  * uprobe_register - register a probe
892  * @inode: the file in which the probe has to be placed.
893  * @offset: offset from the start of the file.
894  * @uc: information on howto handle the probe..
895  *
896  * Apart from the access refcount, uprobe_register() takes a creation
897  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
898  * inserted into the rbtree (i.e first consumer for a @inode:@offset
899  * tuple).  Creation refcount stops uprobe_unregister from freeing the
900  * @uprobe even before the register operation is complete. Creation
901  * refcount is released when the last @uc for the @uprobe
902  * unregisters.
903  *
904  * Return errno if it cannot successully install probes
905  * else return 0 (success)
906  */
907 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
908 {
909         struct uprobe *uprobe;
910         int ret;
911
912         if (!inode || !uc || uc->next)
913                 return -EINVAL;
914
915         if (offset > i_size_read(inode))
916                 return -EINVAL;
917
918         ret = 0;
919         mutex_lock(uprobes_hash(inode));
920         uprobe = alloc_uprobe(inode, offset);
921
922         if (uprobe && !consumer_add(uprobe, uc)) {
923                 ret = __uprobe_register(uprobe);
924                 if (ret) {
925                         uprobe->consumers = NULL;
926                         __uprobe_unregister(uprobe);
927                 } else {
928                         uprobe->flags |= UPROBE_RUN_HANDLER;
929                 }
930         }
931
932         mutex_unlock(uprobes_hash(inode));
933         put_uprobe(uprobe);
934
935         return ret;
936 }
937
938 /*
939  * uprobe_unregister - unregister a already registered probe.
940  * @inode: the file in which the probe has to be removed.
941  * @offset: offset from the start of the file.
942  * @uc: identify which probe if multiple probes are colocated.
943  */
944 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
945 {
946         struct uprobe *uprobe;
947
948         if (!inode || !uc)
949                 return;
950
951         uprobe = find_uprobe(inode, offset);
952         if (!uprobe)
953                 return;
954
955         mutex_lock(uprobes_hash(inode));
956
957         if (consumer_del(uprobe, uc)) {
958                 if (!uprobe->consumers) {
959                         __uprobe_unregister(uprobe);
960                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
961                 }
962         }
963
964         mutex_unlock(uprobes_hash(inode));
965         if (uprobe)
966                 put_uprobe(uprobe);
967 }
968
969 /*
970  * Of all the nodes that correspond to the given inode, return the node
971  * with the least offset.
972  */
973 static struct rb_node *find_least_offset_node(struct inode *inode)
974 {
975         struct uprobe u = { .inode = inode, .offset = 0};
976         struct rb_node *n = uprobes_tree.rb_node;
977         struct rb_node *close_node = NULL;
978         struct uprobe *uprobe;
979         int match;
980
981         while (n) {
982                 uprobe = rb_entry(n, struct uprobe, rb_node);
983                 match = match_uprobe(&u, uprobe);
984
985                 if (uprobe->inode == inode)
986                         close_node = n;
987
988                 if (!match)
989                         return close_node;
990
991                 if (match < 0)
992                         n = n->rb_left;
993                 else
994                         n = n->rb_right;
995         }
996
997         return close_node;
998 }
999
1000 /*
1001  * For a given inode, build a list of probes that need to be inserted.
1002  */
1003 static void build_probe_list(struct inode *inode, struct list_head *head)
1004 {
1005         struct uprobe *uprobe;
1006         unsigned long flags;
1007         struct rb_node *n;
1008
1009         spin_lock_irqsave(&uprobes_treelock, flags);
1010
1011         n = find_least_offset_node(inode);
1012
1013         for (; n; n = rb_next(n)) {
1014                 uprobe = rb_entry(n, struct uprobe, rb_node);
1015                 if (uprobe->inode != inode)
1016                         break;
1017
1018                 list_add(&uprobe->pending_list, head);
1019                 atomic_inc(&uprobe->ref);
1020         }
1021
1022         spin_unlock_irqrestore(&uprobes_treelock, flags);
1023 }
1024
1025 /*
1026  * Called from mmap_region.
1027  * called with mm->mmap_sem acquired.
1028  *
1029  * Return -ve no if we fail to insert probes and we cannot
1030  * bail-out.
1031  * Return 0 otherwise. i.e:
1032  *
1033  *      - successful insertion of probes
1034  *      - (or) no possible probes to be inserted.
1035  *      - (or) insertion of probes failed but we can bail-out.
1036  */
1037 int uprobe_mmap(struct vm_area_struct *vma)
1038 {
1039         struct list_head tmp_list;
1040         struct uprobe *uprobe, *u;
1041         struct inode *inode;
1042         int ret, count;
1043
1044         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1045                 return 0;
1046
1047         inode = vma->vm_file->f_mapping->host;
1048         if (!inode)
1049                 return 0;
1050
1051         INIT_LIST_HEAD(&tmp_list);
1052         mutex_lock(uprobes_mmap_hash(inode));
1053         build_probe_list(inode, &tmp_list);
1054
1055         ret = 0;
1056         count = 0;
1057
1058         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1059                 loff_t vaddr;
1060
1061                 list_del(&uprobe->pending_list);
1062                 if (!ret) {
1063                         vaddr = vma_address(vma, uprobe->offset);
1064
1065                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1066                                 put_uprobe(uprobe);
1067                                 continue;
1068                         }
1069
1070                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1071                         /*
1072                          * We can race against uprobe_register(), see the
1073                          * comment near uprobe_hash().
1074                          */
1075                         if (ret == -EEXIST) {
1076                                 ret = 0;
1077
1078                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1079                                         continue;
1080
1081                                 /*
1082                                  * Unable to insert a breakpoint, but
1083                                  * breakpoint lies underneath. Increment the
1084                                  * probe count.
1085                                  */
1086                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1087                         }
1088
1089                         if (!ret)
1090                                 count++;
1091                 }
1092                 put_uprobe(uprobe);
1093         }
1094
1095         mutex_unlock(uprobes_mmap_hash(inode));
1096
1097         if (ret)
1098                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1099
1100         return ret;
1101 }
1102
1103 /*
1104  * Called in context of a munmap of a vma.
1105  */
1106 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1107 {
1108         struct list_head tmp_list;
1109         struct uprobe *uprobe, *u;
1110         struct inode *inode;
1111
1112         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1113                 return;
1114
1115         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1116                 return;
1117
1118         inode = vma->vm_file->f_mapping->host;
1119         if (!inode)
1120                 return;
1121
1122         INIT_LIST_HEAD(&tmp_list);
1123         mutex_lock(uprobes_mmap_hash(inode));
1124         build_probe_list(inode, &tmp_list);
1125
1126         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1127                 loff_t vaddr;
1128
1129                 list_del(&uprobe->pending_list);
1130                 vaddr = vma_address(vma, uprobe->offset);
1131
1132                 if (vaddr >= start && vaddr < end) {
1133                         /*
1134                          * An unregister could have removed the probe before
1135                          * unmap. So check before we decrement the count.
1136                          */
1137                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1138                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1139                 }
1140                 put_uprobe(uprobe);
1141         }
1142         mutex_unlock(uprobes_mmap_hash(inode));
1143 }
1144
1145 /* Slot allocation for XOL */
1146 static int xol_add_vma(struct xol_area *area)
1147 {
1148         struct mm_struct *mm;
1149         int ret;
1150
1151         area->page = alloc_page(GFP_HIGHUSER);
1152         if (!area->page)
1153                 return -ENOMEM;
1154
1155         ret = -EALREADY;
1156         mm = current->mm;
1157
1158         down_write(&mm->mmap_sem);
1159         if (mm->uprobes_state.xol_area)
1160                 goto fail;
1161
1162         ret = -ENOMEM;
1163
1164         /* Try to map as high as possible, this is only a hint. */
1165         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1166         if (area->vaddr & ~PAGE_MASK) {
1167                 ret = area->vaddr;
1168                 goto fail;
1169         }
1170
1171         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1172                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1173         if (ret)
1174                 goto fail;
1175
1176         smp_wmb();      /* pairs with get_xol_area() */
1177         mm->uprobes_state.xol_area = area;
1178         ret = 0;
1179
1180 fail:
1181         up_write(&mm->mmap_sem);
1182         if (ret)
1183                 __free_page(area->page);
1184
1185         return ret;
1186 }
1187
1188 static struct xol_area *get_xol_area(struct mm_struct *mm)
1189 {
1190         struct xol_area *area;
1191
1192         area = mm->uprobes_state.xol_area;
1193         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1194
1195         return area;
1196 }
1197
1198 /*
1199  * xol_alloc_area - Allocate process's xol_area.
1200  * This area will be used for storing instructions for execution out of
1201  * line.
1202  *
1203  * Returns the allocated area or NULL.
1204  */
1205 static struct xol_area *xol_alloc_area(void)
1206 {
1207         struct xol_area *area;
1208
1209         area = kzalloc(sizeof(*area), GFP_KERNEL);
1210         if (unlikely(!area))
1211                 return NULL;
1212
1213         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1214
1215         if (!area->bitmap)
1216                 goto fail;
1217
1218         init_waitqueue_head(&area->wq);
1219         if (!xol_add_vma(area))
1220                 return area;
1221
1222 fail:
1223         kfree(area->bitmap);
1224         kfree(area);
1225
1226         return get_xol_area(current->mm);
1227 }
1228
1229 /*
1230  * uprobe_clear_state - Free the area allocated for slots.
1231  */
1232 void uprobe_clear_state(struct mm_struct *mm)
1233 {
1234         struct xol_area *area = mm->uprobes_state.xol_area;
1235
1236         if (!area)
1237                 return;
1238
1239         put_page(area->page);
1240         kfree(area->bitmap);
1241         kfree(area);
1242 }
1243
1244 /*
1245  * uprobe_reset_state - Free the area allocated for slots.
1246  */
1247 void uprobe_reset_state(struct mm_struct *mm)
1248 {
1249         mm->uprobes_state.xol_area = NULL;
1250         atomic_set(&mm->uprobes_state.count, 0);
1251 }
1252
1253 /*
1254  *  - search for a free slot.
1255  */
1256 static unsigned long xol_take_insn_slot(struct xol_area *area)
1257 {
1258         unsigned long slot_addr;
1259         int slot_nr;
1260
1261         do {
1262                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1263                 if (slot_nr < UINSNS_PER_PAGE) {
1264                         if (!test_and_set_bit(slot_nr, area->bitmap))
1265                                 break;
1266
1267                         slot_nr = UINSNS_PER_PAGE;
1268                         continue;
1269                 }
1270                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1271         } while (slot_nr >= UINSNS_PER_PAGE);
1272
1273         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1274         atomic_inc(&area->slot_count);
1275
1276         return slot_addr;
1277 }
1278
1279 /*
1280  * xol_get_insn_slot - If was not allocated a slot, then
1281  * allocate a slot.
1282  * Returns the allocated slot address or 0.
1283  */
1284 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1285 {
1286         struct xol_area *area;
1287         unsigned long offset;
1288         void *vaddr;
1289
1290         area = get_xol_area(current->mm);
1291         if (!area) {
1292                 area = xol_alloc_area();
1293                 if (!area)
1294                         return 0;
1295         }
1296         current->utask->xol_vaddr = xol_take_insn_slot(area);
1297
1298         /*
1299          * Initialize the slot if xol_vaddr points to valid
1300          * instruction slot.
1301          */
1302         if (unlikely(!current->utask->xol_vaddr))
1303                 return 0;
1304
1305         current->utask->vaddr = slot_addr;
1306         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1307         vaddr = kmap_atomic(area->page);
1308         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1309         kunmap_atomic(vaddr);
1310
1311         return current->utask->xol_vaddr;
1312 }
1313
1314 /*
1315  * xol_free_insn_slot - If slot was earlier allocated by
1316  * @xol_get_insn_slot(), make the slot available for
1317  * subsequent requests.
1318  */
1319 static void xol_free_insn_slot(struct task_struct *tsk)
1320 {
1321         struct xol_area *area;
1322         unsigned long vma_end;
1323         unsigned long slot_addr;
1324
1325         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1326                 return;
1327
1328         slot_addr = tsk->utask->xol_vaddr;
1329
1330         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1331                 return;
1332
1333         area = tsk->mm->uprobes_state.xol_area;
1334         vma_end = area->vaddr + PAGE_SIZE;
1335         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1336                 unsigned long offset;
1337                 int slot_nr;
1338
1339                 offset = slot_addr - area->vaddr;
1340                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1341                 if (slot_nr >= UINSNS_PER_PAGE)
1342                         return;
1343
1344                 clear_bit(slot_nr, area->bitmap);
1345                 atomic_dec(&area->slot_count);
1346                 if (waitqueue_active(&area->wq))
1347                         wake_up(&area->wq);
1348
1349                 tsk->utask->xol_vaddr = 0;
1350         }
1351 }
1352
1353 /**
1354  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1355  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1356  * instruction.
1357  * Return the address of the breakpoint instruction.
1358  */
1359 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1360 {
1361         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1362 }
1363
1364 /*
1365  * Called with no locks held.
1366  * Called in context of a exiting or a exec-ing thread.
1367  */
1368 void uprobe_free_utask(struct task_struct *t)
1369 {
1370         struct uprobe_task *utask = t->utask;
1371
1372         if (!utask)
1373                 return;
1374
1375         if (utask->active_uprobe)
1376                 put_uprobe(utask->active_uprobe);
1377
1378         xol_free_insn_slot(t);
1379         kfree(utask);
1380         t->utask = NULL;
1381 }
1382
1383 /*
1384  * Called in context of a new clone/fork from copy_process.
1385  */
1386 void uprobe_copy_process(struct task_struct *t)
1387 {
1388         t->utask = NULL;
1389 }
1390
1391 /*
1392  * Allocate a uprobe_task object for the task.
1393  * Called when the thread hits a breakpoint for the first time.
1394  *
1395  * Returns:
1396  * - pointer to new uprobe_task on success
1397  * - NULL otherwise
1398  */
1399 static struct uprobe_task *add_utask(void)
1400 {
1401         struct uprobe_task *utask;
1402
1403         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1404         if (unlikely(!utask))
1405                 return NULL;
1406
1407         utask->active_uprobe = NULL;
1408         current->utask = utask;
1409         return utask;
1410 }
1411
1412 /* Prepare to single-step probed instruction out of line. */
1413 static int
1414 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1415 {
1416         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1417                 return 0;
1418
1419         return -EFAULT;
1420 }
1421
1422 /*
1423  * If we are singlestepping, then ensure this thread is not connected to
1424  * non-fatal signals until completion of singlestep.  When xol insn itself
1425  * triggers the signal,  restart the original insn even if the task is
1426  * already SIGKILL'ed (since coredump should report the correct ip).  This
1427  * is even more important if the task has a handler for SIGSEGV/etc, The
1428  * _same_ instruction should be repeated again after return from the signal
1429  * handler, and SSTEP can never finish in this case.
1430  */
1431 bool uprobe_deny_signal(void)
1432 {
1433         struct task_struct *t = current;
1434         struct uprobe_task *utask = t->utask;
1435
1436         if (likely(!utask || !utask->active_uprobe))
1437                 return false;
1438
1439         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1440
1441         if (signal_pending(t)) {
1442                 spin_lock_irq(&t->sighand->siglock);
1443                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1444                 spin_unlock_irq(&t->sighand->siglock);
1445
1446                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1447                         utask->state = UTASK_SSTEP_TRAPPED;
1448                         set_tsk_thread_flag(t, TIF_UPROBE);
1449                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1450                 }
1451         }
1452
1453         return true;
1454 }
1455
1456 /*
1457  * Avoid singlestepping the original instruction if the original instruction
1458  * is a NOP or can be emulated.
1459  */
1460 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1461 {
1462         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1463                 return true;
1464
1465         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1466         return false;
1467 }
1468
1469 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1470 {
1471         struct mm_struct *mm = current->mm;
1472         struct uprobe *uprobe = NULL;
1473         struct vm_area_struct *vma;
1474
1475         down_read(&mm->mmap_sem);
1476         vma = find_vma(mm, bp_vaddr);
1477         if (vma && vma->vm_start <= bp_vaddr) {
1478                 if (valid_vma(vma, false)) {
1479                         struct inode *inode;
1480                         loff_t offset;
1481
1482                         inode = vma->vm_file->f_mapping->host;
1483                         offset = bp_vaddr - vma->vm_start;
1484                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1485                         uprobe = find_uprobe(inode, offset);
1486                 }
1487
1488                 if (!uprobe)
1489                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1490         } else {
1491                 *is_swbp = -EFAULT;
1492         }
1493         up_read(&mm->mmap_sem);
1494
1495         return uprobe;
1496 }
1497
1498 /*
1499  * Run handler and ask thread to singlestep.
1500  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1501  */
1502 static void handle_swbp(struct pt_regs *regs)
1503 {
1504         struct uprobe_task *utask;
1505         struct uprobe *uprobe;
1506         unsigned long bp_vaddr;
1507         int uninitialized_var(is_swbp);
1508
1509         bp_vaddr = uprobe_get_swbp_addr(regs);
1510         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1511
1512         if (!uprobe) {
1513                 if (is_swbp > 0) {
1514                         /* No matching uprobe; signal SIGTRAP. */
1515                         send_sig(SIGTRAP, current, 0);
1516                 } else {
1517                         /*
1518                          * Either we raced with uprobe_unregister() or we can't
1519                          * access this memory. The latter is only possible if
1520                          * another thread plays with our ->mm. In both cases
1521                          * we can simply restart. If this vma was unmapped we
1522                          * can pretend this insn was not executed yet and get
1523                          * the (correct) SIGSEGV after restart.
1524                          */
1525                         instruction_pointer_set(regs, bp_vaddr);
1526                 }
1527                 return;
1528         }
1529
1530         utask = current->utask;
1531         if (!utask) {
1532                 utask = add_utask();
1533                 /* Cannot allocate; re-execute the instruction. */
1534                 if (!utask)
1535                         goto cleanup_ret;
1536         }
1537         utask->active_uprobe = uprobe;
1538         handler_chain(uprobe, regs);
1539         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1540                 goto cleanup_ret;
1541
1542         utask->state = UTASK_SSTEP;
1543         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1544                 user_enable_single_step(current);
1545                 return;
1546         }
1547
1548 cleanup_ret:
1549         if (utask) {
1550                 utask->active_uprobe = NULL;
1551                 utask->state = UTASK_RUNNING;
1552         }
1553         if (uprobe) {
1554                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1555
1556                         /*
1557                          * cannot singlestep; cannot skip instruction;
1558                          * re-execute the instruction.
1559                          */
1560                         instruction_pointer_set(regs, bp_vaddr);
1561
1562                 put_uprobe(uprobe);
1563         }
1564 }
1565
1566 /*
1567  * Perform required fix-ups and disable singlestep.
1568  * Allow pending signals to take effect.
1569  */
1570 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1571 {
1572         struct uprobe *uprobe;
1573
1574         uprobe = utask->active_uprobe;
1575         if (utask->state == UTASK_SSTEP_ACK)
1576                 arch_uprobe_post_xol(&uprobe->arch, regs);
1577         else if (utask->state == UTASK_SSTEP_TRAPPED)
1578                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1579         else
1580                 WARN_ON_ONCE(1);
1581
1582         put_uprobe(uprobe);
1583         utask->active_uprobe = NULL;
1584         utask->state = UTASK_RUNNING;
1585         user_disable_single_step(current);
1586         xol_free_insn_slot(current);
1587
1588         spin_lock_irq(&current->sighand->siglock);
1589         recalc_sigpending(); /* see uprobe_deny_signal() */
1590         spin_unlock_irq(&current->sighand->siglock);
1591 }
1592
1593 /*
1594  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1595  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1596  * allows the thread to return from interrupt.
1597  *
1598  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1599  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1600  * interrupt.
1601  *
1602  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1603  * uprobe_notify_resume().
1604  */
1605 void uprobe_notify_resume(struct pt_regs *regs)
1606 {
1607         struct uprobe_task *utask;
1608
1609         utask = current->utask;
1610         if (!utask || utask->state == UTASK_BP_HIT)
1611                 handle_swbp(regs);
1612         else
1613                 handle_singlestep(utask, regs);
1614 }
1615
1616 /*
1617  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1618  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1619  */
1620 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1621 {
1622         struct uprobe_task *utask;
1623
1624         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1625                 /* task is currently not uprobed */
1626                 return 0;
1627
1628         utask = current->utask;
1629         if (utask)
1630                 utask->state = UTASK_BP_HIT;
1631
1632         set_thread_flag(TIF_UPROBE);
1633
1634         return 1;
1635 }
1636
1637 /*
1638  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1639  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1640  */
1641 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1642 {
1643         struct uprobe_task *utask = current->utask;
1644
1645         if (!current->mm || !utask || !utask->active_uprobe)
1646                 /* task is currently not uprobed */
1647                 return 0;
1648
1649         utask->state = UTASK_SSTEP_ACK;
1650         set_thread_flag(TIF_UPROBE);
1651         return 1;
1652 }
1653
1654 static struct notifier_block uprobe_exception_nb = {
1655         .notifier_call          = arch_uprobe_exception_notify,
1656         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1657 };
1658
1659 static int __init init_uprobes(void)
1660 {
1661         int i;
1662
1663         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1664                 mutex_init(&uprobes_mutex[i]);
1665                 mutex_init(&uprobes_mmap_mutex[i]);
1666         }
1667
1668         return register_die_notifier(&uprobe_exception_nb);
1669 }
1670 module_init(init_uprobes);
1671
1672 static void __exit exit_uprobes(void)
1673 {
1674 }
1675 module_exit(exit_uprobes);