f0d04530af632f0fad0575d35204d9096600110a
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /* serialize (un)register */
48 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
49
50 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
51
52 /* serialize uprobe->pending_list */
53 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
54 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
55
56 /*
57  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
58  * events active at this time.  Probably a fine grained per inode count is
59  * better?
60  */
61 static atomic_t uprobe_events = ATOMIC_INIT(0);
62
63 /*
64  * Maintain a temporary per vma info that can be used to search if a vma
65  * has already been handled. This structure is introduced since extending
66  * vm_area_struct wasnt recommended.
67  */
68 struct vma_info {
69         struct list_head        probe_list;
70         struct mm_struct        *mm;
71         loff_t                  vaddr;
72 };
73
74 struct uprobe {
75         struct rb_node          rb_node;        /* node in the rb tree */
76         atomic_t                ref;
77         struct rw_semaphore     consumer_rwsem;
78         struct list_head        pending_list;
79         struct uprobe_consumer  *consumers;
80         struct inode            *inode;         /* Also hold a ref to inode */
81         loff_t                  offset;
82         int                     flags;
83         struct arch_uprobe      arch;
84 };
85
86 /*
87  * valid_vma: Verify if the specified vma is an executable vma
88  * Relax restrictions while unregistering: vm_flags might have
89  * changed after breakpoint was inserted.
90  *      - is_register: indicates if we are in register context.
91  *      - Return 1 if the specified virtual address is in an
92  *        executable vma.
93  */
94 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
95 {
96         if (!vma->vm_file)
97                 return false;
98
99         if (!is_register)
100                 return true;
101
102         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
103                                 == (VM_READ|VM_EXEC))
104                 return true;
105
106         return false;
107 }
108
109 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
110 {
111         loff_t vaddr;
112
113         vaddr = vma->vm_start + offset;
114         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
115
116         return vaddr;
117 }
118
119 /**
120  * __replace_page - replace page in vma by new page.
121  * based on replace_page in mm/ksm.c
122  *
123  * @vma:      vma that holds the pte pointing to page
124  * @page:     the cowed page we are replacing by kpage
125  * @kpage:    the modified page we replace page by
126  *
127  * Returns 0 on success, -EFAULT on failure.
128  */
129 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
130 {
131         struct mm_struct *mm = vma->vm_mm;
132         pgd_t *pgd;
133         pud_t *pud;
134         pmd_t *pmd;
135         pte_t *ptep;
136         spinlock_t *ptl;
137         unsigned long addr;
138         int err = -EFAULT;
139
140         addr = page_address_in_vma(page, vma);
141         if (addr == -EFAULT)
142                 goto out;
143
144         pgd = pgd_offset(mm, addr);
145         if (!pgd_present(*pgd))
146                 goto out;
147
148         pud = pud_offset(pgd, addr);
149         if (!pud_present(*pud))
150                 goto out;
151
152         pmd = pmd_offset(pud, addr);
153         if (!pmd_present(*pmd))
154                 goto out;
155
156         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
157         if (!ptep)
158                 goto out;
159
160         get_page(kpage);
161         page_add_new_anon_rmap(kpage, vma, addr);
162
163         if (!PageAnon(page)) {
164                 dec_mm_counter(mm, MM_FILEPAGES);
165                 inc_mm_counter(mm, MM_ANONPAGES);
166         }
167
168         flush_cache_page(vma, addr, pte_pfn(*ptep));
169         ptep_clear_flush(vma, addr, ptep);
170         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171
172         page_remove_rmap(page);
173         if (!page_mapped(page))
174                 try_to_free_swap(page);
175         put_page(page);
176         pte_unmap_unlock(ptep, ptl);
177         err = 0;
178
179 out:
180         return err;
181 }
182
183 /**
184  * is_swbp_insn - check if instruction is breakpoint instruction.
185  * @insn: instruction to be checked.
186  * Default implementation of is_swbp_insn
187  * Returns true if @insn is a breakpoint instruction.
188  */
189 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
190 {
191         return *insn == UPROBE_SWBP_INSN;
192 }
193
194 /*
195  * NOTE:
196  * Expect the breakpoint instruction to be the smallest size instruction for
197  * the architecture. If an arch has variable length instruction and the
198  * breakpoint instruction is not of the smallest length instruction
199  * supported by that architecture then we need to modify read_opcode /
200  * write_opcode accordingly. This would never be a problem for archs that
201  * have fixed length instructions.
202  */
203
204 /*
205  * write_opcode - write the opcode at a given virtual address.
206  * @auprobe: arch breakpointing information.
207  * @mm: the probed process address space.
208  * @vaddr: the virtual address to store the opcode.
209  * @opcode: opcode to be written at @vaddr.
210  *
211  * Called with mm->mmap_sem held (for read and with a reference to
212  * mm).
213  *
214  * For mm @mm, write the opcode at @vaddr.
215  * Return 0 (success) or a negative errno.
216  */
217 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
218                         unsigned long vaddr, uprobe_opcode_t opcode)
219 {
220         struct page *old_page, *new_page;
221         struct address_space *mapping;
222         void *vaddr_old, *vaddr_new;
223         struct vm_area_struct *vma;
224         struct uprobe *uprobe;
225         loff_t addr;
226         int ret;
227
228         /* Read the page with vaddr into memory */
229         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
230         if (ret <= 0)
231                 return ret;
232
233         ret = -EINVAL;
234
235         /*
236          * We are interested in text pages only. Our pages of interest
237          * should be mapped for read and execute only. We desist from
238          * adding probes in write mapped pages since the breakpoints
239          * might end up in the file copy.
240          */
241         if (!valid_vma(vma, is_swbp_insn(&opcode)))
242                 goto put_out;
243
244         uprobe = container_of(auprobe, struct uprobe, arch);
245         mapping = uprobe->inode->i_mapping;
246         if (mapping != vma->vm_file->f_mapping)
247                 goto put_out;
248
249         addr = vma_address(vma, uprobe->offset);
250         if (vaddr != (unsigned long)addr)
251                 goto put_out;
252
253         ret = -ENOMEM;
254         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
255         if (!new_page)
256                 goto put_out;
257
258         __SetPageUptodate(new_page);
259
260         /*
261          * lock page will serialize against do_wp_page()'s
262          * PageAnon() handling
263          */
264         lock_page(old_page);
265         /* copy the page now that we've got it stable */
266         vaddr_old = kmap_atomic(old_page);
267         vaddr_new = kmap_atomic(new_page);
268
269         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
270
271         /* poke the new insn in, ASSUMES we don't cross page boundary */
272         vaddr &= ~PAGE_MASK;
273         BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
274         memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
275
276         kunmap_atomic(vaddr_new);
277         kunmap_atomic(vaddr_old);
278
279         ret = anon_vma_prepare(vma);
280         if (ret)
281                 goto unlock_out;
282
283         lock_page(new_page);
284         ret = __replace_page(vma, old_page, new_page);
285         unlock_page(new_page);
286
287 unlock_out:
288         unlock_page(old_page);
289         page_cache_release(new_page);
290
291 put_out:
292         put_page(old_page);
293
294         return ret;
295 }
296
297 /**
298  * read_opcode - read the opcode at a given virtual address.
299  * @mm: the probed process address space.
300  * @vaddr: the virtual address to read the opcode.
301  * @opcode: location to store the read opcode.
302  *
303  * Called with mm->mmap_sem held (for read and with a reference to
304  * mm.
305  *
306  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
307  * Return 0 (success) or a negative errno.
308  */
309 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
310 {
311         struct page *page;
312         void *vaddr_new;
313         int ret;
314
315         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
316         if (ret <= 0)
317                 return ret;
318
319         lock_page(page);
320         vaddr_new = kmap_atomic(page);
321         vaddr &= ~PAGE_MASK;
322         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
323         kunmap_atomic(vaddr_new);
324         unlock_page(page);
325
326         put_page(page);
327
328         return 0;
329 }
330
331 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
332 {
333         uprobe_opcode_t opcode;
334         int result;
335
336         if (current->mm == mm) {
337                 pagefault_disable();
338                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
339                                                                 sizeof(opcode));
340                 pagefault_enable();
341
342                 if (likely(result == 0))
343                         goto out;
344         }
345
346         result = read_opcode(mm, vaddr, &opcode);
347         if (result)
348                 return result;
349 out:
350         if (is_swbp_insn(&opcode))
351                 return 1;
352
353         return 0;
354 }
355
356 /**
357  * set_swbp - store breakpoint at a given address.
358  * @auprobe: arch specific probepoint information.
359  * @mm: the probed process address space.
360  * @vaddr: the virtual address to insert the opcode.
361  *
362  * For mm @mm, store the breakpoint instruction at @vaddr.
363  * Return 0 (success) or a negative errno.
364  */
365 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
366 {
367         int result;
368
369         result = is_swbp_at_addr(mm, vaddr);
370         if (result == 1)
371                 return -EEXIST;
372
373         if (result)
374                 return result;
375
376         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
377 }
378
379 /**
380  * set_orig_insn - Restore the original instruction.
381  * @mm: the probed process address space.
382  * @auprobe: arch specific probepoint information.
383  * @vaddr: the virtual address to insert the opcode.
384  * @verify: if true, verify existance of breakpoint instruction.
385  *
386  * For mm @mm, restore the original opcode (opcode) at @vaddr.
387  * Return 0 (success) or a negative errno.
388  */
389 int __weak
390 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
391 {
392         if (verify) {
393                 int result;
394
395                 result = is_swbp_at_addr(mm, vaddr);
396                 if (!result)
397                         return -EINVAL;
398
399                 if (result != 1)
400                         return result;
401         }
402         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
403 }
404
405 static int match_uprobe(struct uprobe *l, struct uprobe *r)
406 {
407         if (l->inode < r->inode)
408                 return -1;
409
410         if (l->inode > r->inode)
411                 return 1;
412
413         if (l->offset < r->offset)
414                 return -1;
415
416         if (l->offset > r->offset)
417                 return 1;
418
419         return 0;
420 }
421
422 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
423 {
424         struct uprobe u = { .inode = inode, .offset = offset };
425         struct rb_node *n = uprobes_tree.rb_node;
426         struct uprobe *uprobe;
427         int match;
428
429         while (n) {
430                 uprobe = rb_entry(n, struct uprobe, rb_node);
431                 match = match_uprobe(&u, uprobe);
432                 if (!match) {
433                         atomic_inc(&uprobe->ref);
434                         return uprobe;
435                 }
436
437                 if (match < 0)
438                         n = n->rb_left;
439                 else
440                         n = n->rb_right;
441         }
442         return NULL;
443 }
444
445 /*
446  * Find a uprobe corresponding to a given inode:offset
447  * Acquires uprobes_treelock
448  */
449 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
450 {
451         struct uprobe *uprobe;
452         unsigned long flags;
453
454         spin_lock_irqsave(&uprobes_treelock, flags);
455         uprobe = __find_uprobe(inode, offset);
456         spin_unlock_irqrestore(&uprobes_treelock, flags);
457
458         return uprobe;
459 }
460
461 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
462 {
463         struct rb_node **p = &uprobes_tree.rb_node;
464         struct rb_node *parent = NULL;
465         struct uprobe *u;
466         int match;
467
468         while (*p) {
469                 parent = *p;
470                 u = rb_entry(parent, struct uprobe, rb_node);
471                 match = match_uprobe(uprobe, u);
472                 if (!match) {
473                         atomic_inc(&u->ref);
474                         return u;
475                 }
476
477                 if (match < 0)
478                         p = &parent->rb_left;
479                 else
480                         p = &parent->rb_right;
481
482         }
483
484         u = NULL;
485         rb_link_node(&uprobe->rb_node, parent, p);
486         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
487         /* get access + creation ref */
488         atomic_set(&uprobe->ref, 2);
489
490         return u;
491 }
492
493 /*
494  * Acquire uprobes_treelock.
495  * Matching uprobe already exists in rbtree;
496  *      increment (access refcount) and return the matching uprobe.
497  *
498  * No matching uprobe; insert the uprobe in rb_tree;
499  *      get a double refcount (access + creation) and return NULL.
500  */
501 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
502 {
503         unsigned long flags;
504         struct uprobe *u;
505
506         spin_lock_irqsave(&uprobes_treelock, flags);
507         u = __insert_uprobe(uprobe);
508         spin_unlock_irqrestore(&uprobes_treelock, flags);
509
510         /* For now assume that the instruction need not be single-stepped */
511         uprobe->flags |= UPROBE_SKIP_SSTEP;
512
513         return u;
514 }
515
516 static void put_uprobe(struct uprobe *uprobe)
517 {
518         if (atomic_dec_and_test(&uprobe->ref))
519                 kfree(uprobe);
520 }
521
522 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
523 {
524         struct uprobe *uprobe, *cur_uprobe;
525
526         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
527         if (!uprobe)
528                 return NULL;
529
530         uprobe->inode = igrab(inode);
531         uprobe->offset = offset;
532         init_rwsem(&uprobe->consumer_rwsem);
533         INIT_LIST_HEAD(&uprobe->pending_list);
534
535         /* add to uprobes_tree, sorted on inode:offset */
536         cur_uprobe = insert_uprobe(uprobe);
537
538         /* a uprobe exists for this inode:offset combination */
539         if (cur_uprobe) {
540                 kfree(uprobe);
541                 uprobe = cur_uprobe;
542                 iput(inode);
543         } else {
544                 atomic_inc(&uprobe_events);
545         }
546
547         return uprobe;
548 }
549
550 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
551 {
552         struct uprobe_consumer *uc;
553
554         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
555                 return;
556
557         down_read(&uprobe->consumer_rwsem);
558         for (uc = uprobe->consumers; uc; uc = uc->next) {
559                 if (!uc->filter || uc->filter(uc, current))
560                         uc->handler(uc, regs);
561         }
562         up_read(&uprobe->consumer_rwsem);
563 }
564
565 /* Returns the previous consumer */
566 static struct uprobe_consumer *
567 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
568 {
569         down_write(&uprobe->consumer_rwsem);
570         uc->next = uprobe->consumers;
571         uprobe->consumers = uc;
572         up_write(&uprobe->consumer_rwsem);
573
574         return uc->next;
575 }
576
577 /*
578  * For uprobe @uprobe, delete the consumer @uc.
579  * Return true if the @uc is deleted successfully
580  * or return false.
581  */
582 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
583 {
584         struct uprobe_consumer **con;
585         bool ret = false;
586
587         down_write(&uprobe->consumer_rwsem);
588         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
589                 if (*con == uc) {
590                         *con = uc->next;
591                         ret = true;
592                         break;
593                 }
594         }
595         up_write(&uprobe->consumer_rwsem);
596
597         return ret;
598 }
599
600 static int
601 __copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
602                         unsigned long nbytes, unsigned long offset)
603 {
604         struct file *filp = vma->vm_file;
605         struct page *page;
606         void *vaddr;
607         unsigned long off1;
608         unsigned long idx;
609
610         if (!filp)
611                 return -EINVAL;
612
613         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
614         off1 = offset &= ~PAGE_MASK;
615
616         /*
617          * Ensure that the page that has the original instruction is
618          * populated and in page-cache.
619          */
620         page = read_mapping_page(mapping, idx, filp);
621         if (IS_ERR(page))
622                 return PTR_ERR(page);
623
624         vaddr = kmap_atomic(page);
625         memcpy(insn, vaddr + off1, nbytes);
626         kunmap_atomic(vaddr);
627         page_cache_release(page);
628
629         return 0;
630 }
631
632 static int
633 copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
634 {
635         struct address_space *mapping;
636         unsigned long nbytes;
637         int bytes;
638
639         addr &= ~PAGE_MASK;
640         nbytes = PAGE_SIZE - addr;
641         mapping = uprobe->inode->i_mapping;
642
643         /* Instruction at end of binary; copy only available bytes */
644         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
645                 bytes = uprobe->inode->i_size - uprobe->offset;
646         else
647                 bytes = MAX_UINSN_BYTES;
648
649         /* Instruction at the page-boundary; copy bytes in second page */
650         if (nbytes < bytes) {
651                 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
652                                 bytes - nbytes, uprobe->offset + nbytes))
653                         return -ENOMEM;
654
655                 bytes = nbytes;
656         }
657         return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
658 }
659
660 /*
661  * How mm->uprobes_state.count gets updated
662  * uprobe_mmap() increments the count if
663  *      - it successfully adds a breakpoint.
664  *      - it cannot add a breakpoint, but sees that there is a underlying
665  *        breakpoint (via a is_swbp_at_addr()).
666  *
667  * uprobe_munmap() decrements the count if
668  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
669  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
670  *        unless a uprobe_mmap kicks in, since the old vma would be
671  *        dropped just after uprobe_munmap.)
672  *
673  * uprobe_register increments the count if:
674  *      - it successfully adds a breakpoint.
675  *
676  * uprobe_unregister decrements the count if:
677  *      - it sees a underlying breakpoint and removes successfully.
678  *        (via is_swbp_at_addr)
679  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
680  *        since there is no underlying breakpoint after the
681  *        breakpoint removal.)
682  */
683 static int
684 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
685                         struct vm_area_struct *vma, loff_t vaddr)
686 {
687         unsigned long addr;
688         int ret;
689
690         /*
691          * If probe is being deleted, unregister thread could be done with
692          * the vma-rmap-walk through. Adding a probe now can be fatal since
693          * nobody will be able to cleanup. Also we could be from fork or
694          * mremap path, where the probe might have already been inserted.
695          * Hence behave as if probe already existed.
696          */
697         if (!uprobe->consumers)
698                 return -EEXIST;
699
700         addr = (unsigned long)vaddr;
701
702         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
703                 ret = copy_insn(uprobe, vma, addr);
704                 if (ret)
705                         return ret;
706
707                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
708                         return -EEXIST;
709
710                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
711                 if (ret)
712                         return ret;
713
714                 uprobe->flags |= UPROBE_COPY_INSN;
715         }
716
717         /*
718          * Ideally, should be updating the probe count after the breakpoint
719          * has been successfully inserted. However a thread could hit the
720          * breakpoint we just inserted even before the probe count is
721          * incremented. If this is the first breakpoint placed, breakpoint
722          * notifier might ignore uprobes and pass the trap to the thread.
723          * Hence increment before and decrement on failure.
724          */
725         atomic_inc(&mm->uprobes_state.count);
726         ret = set_swbp(&uprobe->arch, mm, addr);
727         if (ret)
728                 atomic_dec(&mm->uprobes_state.count);
729
730         return ret;
731 }
732
733 static void
734 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
735 {
736         if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
737                 atomic_dec(&mm->uprobes_state.count);
738 }
739
740 /*
741  * There could be threads that have already hit the breakpoint. They
742  * will recheck the current insn and restart if find_uprobe() fails.
743  * See find_active_uprobe().
744  */
745 static void delete_uprobe(struct uprobe *uprobe)
746 {
747         unsigned long flags;
748
749         spin_lock_irqsave(&uprobes_treelock, flags);
750         rb_erase(&uprobe->rb_node, &uprobes_tree);
751         spin_unlock_irqrestore(&uprobes_treelock, flags);
752         iput(uprobe->inode);
753         put_uprobe(uprobe);
754         atomic_dec(&uprobe_events);
755 }
756
757 static struct vma_info *
758 __find_next_vma_info(struct address_space *mapping, struct list_head *head,
759                         struct vma_info *vi, loff_t offset, bool is_register)
760 {
761         struct prio_tree_iter iter;
762         struct vm_area_struct *vma;
763         struct vma_info *tmpvi;
764         unsigned long pgoff;
765         int existing_vma;
766         loff_t vaddr;
767
768         pgoff = offset >> PAGE_SHIFT;
769
770         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
771                 if (!valid_vma(vma, is_register))
772                         continue;
773
774                 existing_vma = 0;
775                 vaddr = vma_address(vma, offset);
776
777                 list_for_each_entry(tmpvi, head, probe_list) {
778                         if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
779                                 existing_vma = 1;
780                                 break;
781                         }
782                 }
783
784                 /*
785                  * Another vma needs a probe to be installed. However skip
786                  * installing the probe if the vma is about to be unlinked.
787                  */
788                 if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
789                         vi->mm = vma->vm_mm;
790                         vi->vaddr = vaddr;
791                         list_add(&vi->probe_list, head);
792
793                         return vi;
794                 }
795         }
796
797         return NULL;
798 }
799
800 /*
801  * Iterate in the rmap prio tree  and find a vma where a probe has not
802  * yet been inserted.
803  */
804 static struct vma_info *
805 find_next_vma_info(struct address_space *mapping, struct list_head *head,
806                 loff_t offset, bool is_register)
807 {
808         struct vma_info *vi, *retvi;
809
810         vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
811         if (!vi)
812                 return ERR_PTR(-ENOMEM);
813
814         mutex_lock(&mapping->i_mmap_mutex);
815         retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
816         mutex_unlock(&mapping->i_mmap_mutex);
817
818         if (!retvi)
819                 kfree(vi);
820
821         return retvi;
822 }
823
824 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
825 {
826         struct list_head try_list;
827         struct vm_area_struct *vma;
828         struct address_space *mapping;
829         struct vma_info *vi, *tmpvi;
830         struct mm_struct *mm;
831         loff_t vaddr;
832         int ret;
833
834         mapping = uprobe->inode->i_mapping;
835         INIT_LIST_HEAD(&try_list);
836
837         ret = 0;
838
839         for (;;) {
840                 vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
841                 if (!vi)
842                         break;
843
844                 if (IS_ERR(vi)) {
845                         ret = PTR_ERR(vi);
846                         break;
847                 }
848
849                 mm = vi->mm;
850                 down_write(&mm->mmap_sem);
851                 vma = find_vma(mm, (unsigned long)vi->vaddr);
852                 if (!vma || !valid_vma(vma, is_register)) {
853                         list_del(&vi->probe_list);
854                         kfree(vi);
855                         up_write(&mm->mmap_sem);
856                         mmput(mm);
857                         continue;
858                 }
859                 vaddr = vma_address(vma, uprobe->offset);
860                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
861                                                 vaddr != vi->vaddr) {
862                         list_del(&vi->probe_list);
863                         kfree(vi);
864                         up_write(&mm->mmap_sem);
865                         mmput(mm);
866                         continue;
867                 }
868
869                 if (is_register)
870                         ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
871                 else
872                         remove_breakpoint(uprobe, mm, vi->vaddr);
873
874                 up_write(&mm->mmap_sem);
875                 mmput(mm);
876                 if (is_register) {
877                         if (ret && ret == -EEXIST)
878                                 ret = 0;
879                         if (ret)
880                                 break;
881                 }
882         }
883
884         list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
885                 list_del(&vi->probe_list);
886                 kfree(vi);
887         }
888
889         return ret;
890 }
891
892 static int __uprobe_register(struct uprobe *uprobe)
893 {
894         return register_for_each_vma(uprobe, true);
895 }
896
897 static void __uprobe_unregister(struct uprobe *uprobe)
898 {
899         if (!register_for_each_vma(uprobe, false))
900                 delete_uprobe(uprobe);
901
902         /* TODO : cant unregister? schedule a worker thread */
903 }
904
905 /*
906  * uprobe_register - register a probe
907  * @inode: the file in which the probe has to be placed.
908  * @offset: offset from the start of the file.
909  * @uc: information on howto handle the probe..
910  *
911  * Apart from the access refcount, uprobe_register() takes a creation
912  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
913  * inserted into the rbtree (i.e first consumer for a @inode:@offset
914  * tuple).  Creation refcount stops uprobe_unregister from freeing the
915  * @uprobe even before the register operation is complete. Creation
916  * refcount is released when the last @uc for the @uprobe
917  * unregisters.
918  *
919  * Return errno if it cannot successully install probes
920  * else return 0 (success)
921  */
922 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
923 {
924         struct uprobe *uprobe;
925         int ret;
926
927         if (!inode || !uc || uc->next)
928                 return -EINVAL;
929
930         if (offset > i_size_read(inode))
931                 return -EINVAL;
932
933         ret = 0;
934         mutex_lock(uprobes_hash(inode));
935         uprobe = alloc_uprobe(inode, offset);
936
937         if (uprobe && !consumer_add(uprobe, uc)) {
938                 ret = __uprobe_register(uprobe);
939                 if (ret) {
940                         uprobe->consumers = NULL;
941                         __uprobe_unregister(uprobe);
942                 } else {
943                         uprobe->flags |= UPROBE_RUN_HANDLER;
944                 }
945         }
946
947         mutex_unlock(uprobes_hash(inode));
948         put_uprobe(uprobe);
949
950         return ret;
951 }
952
953 /*
954  * uprobe_unregister - unregister a already registered probe.
955  * @inode: the file in which the probe has to be removed.
956  * @offset: offset from the start of the file.
957  * @uc: identify which probe if multiple probes are colocated.
958  */
959 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
960 {
961         struct uprobe *uprobe;
962
963         if (!inode || !uc)
964                 return;
965
966         uprobe = find_uprobe(inode, offset);
967         if (!uprobe)
968                 return;
969
970         mutex_lock(uprobes_hash(inode));
971
972         if (consumer_del(uprobe, uc)) {
973                 if (!uprobe->consumers) {
974                         __uprobe_unregister(uprobe);
975                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
976                 }
977         }
978
979         mutex_unlock(uprobes_hash(inode));
980         if (uprobe)
981                 put_uprobe(uprobe);
982 }
983
984 /*
985  * Of all the nodes that correspond to the given inode, return the node
986  * with the least offset.
987  */
988 static struct rb_node *find_least_offset_node(struct inode *inode)
989 {
990         struct uprobe u = { .inode = inode, .offset = 0};
991         struct rb_node *n = uprobes_tree.rb_node;
992         struct rb_node *close_node = NULL;
993         struct uprobe *uprobe;
994         int match;
995
996         while (n) {
997                 uprobe = rb_entry(n, struct uprobe, rb_node);
998                 match = match_uprobe(&u, uprobe);
999
1000                 if (uprobe->inode == inode)
1001                         close_node = n;
1002
1003                 if (!match)
1004                         return close_node;
1005
1006                 if (match < 0)
1007                         n = n->rb_left;
1008                 else
1009                         n = n->rb_right;
1010         }
1011
1012         return close_node;
1013 }
1014
1015 /*
1016  * For a given inode, build a list of probes that need to be inserted.
1017  */
1018 static void build_probe_list(struct inode *inode, struct list_head *head)
1019 {
1020         struct uprobe *uprobe;
1021         unsigned long flags;
1022         struct rb_node *n;
1023
1024         spin_lock_irqsave(&uprobes_treelock, flags);
1025
1026         n = find_least_offset_node(inode);
1027
1028         for (; n; n = rb_next(n)) {
1029                 uprobe = rb_entry(n, struct uprobe, rb_node);
1030                 if (uprobe->inode != inode)
1031                         break;
1032
1033                 list_add(&uprobe->pending_list, head);
1034                 atomic_inc(&uprobe->ref);
1035         }
1036
1037         spin_unlock_irqrestore(&uprobes_treelock, flags);
1038 }
1039
1040 /*
1041  * Called from mmap_region.
1042  * called with mm->mmap_sem acquired.
1043  *
1044  * Return -ve no if we fail to insert probes and we cannot
1045  * bail-out.
1046  * Return 0 otherwise. i.e:
1047  *
1048  *      - successful insertion of probes
1049  *      - (or) no possible probes to be inserted.
1050  *      - (or) insertion of probes failed but we can bail-out.
1051  */
1052 int uprobe_mmap(struct vm_area_struct *vma)
1053 {
1054         struct list_head tmp_list;
1055         struct uprobe *uprobe, *u;
1056         struct inode *inode;
1057         int ret, count;
1058
1059         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1060                 return 0;
1061
1062         inode = vma->vm_file->f_mapping->host;
1063         if (!inode)
1064                 return 0;
1065
1066         INIT_LIST_HEAD(&tmp_list);
1067         mutex_lock(uprobes_mmap_hash(inode));
1068         build_probe_list(inode, &tmp_list);
1069
1070         ret = 0;
1071         count = 0;
1072
1073         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1074                 loff_t vaddr;
1075
1076                 list_del(&uprobe->pending_list);
1077                 if (!ret) {
1078                         vaddr = vma_address(vma, uprobe->offset);
1079
1080                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1081                                 put_uprobe(uprobe);
1082                                 continue;
1083                         }
1084
1085                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086
1087                         /* Ignore double add: */
1088                         if (ret == -EEXIST) {
1089                                 ret = 0;
1090
1091                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1092                                         continue;
1093
1094                                 /*
1095                                  * Unable to insert a breakpoint, but
1096                                  * breakpoint lies underneath. Increment the
1097                                  * probe count.
1098                                  */
1099                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1100                         }
1101
1102                         if (!ret)
1103                                 count++;
1104                 }
1105                 put_uprobe(uprobe);
1106         }
1107
1108         mutex_unlock(uprobes_mmap_hash(inode));
1109
1110         if (ret)
1111                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1112
1113         return ret;
1114 }
1115
1116 /*
1117  * Called in context of a munmap of a vma.
1118  */
1119 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1120 {
1121         struct list_head tmp_list;
1122         struct uprobe *uprobe, *u;
1123         struct inode *inode;
1124
1125         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1126                 return;
1127
1128         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1129                 return;
1130
1131         inode = vma->vm_file->f_mapping->host;
1132         if (!inode)
1133                 return;
1134
1135         INIT_LIST_HEAD(&tmp_list);
1136         mutex_lock(uprobes_mmap_hash(inode));
1137         build_probe_list(inode, &tmp_list);
1138
1139         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1140                 loff_t vaddr;
1141
1142                 list_del(&uprobe->pending_list);
1143                 vaddr = vma_address(vma, uprobe->offset);
1144
1145                 if (vaddr >= start && vaddr < end) {
1146                         /*
1147                          * An unregister could have removed the probe before
1148                          * unmap. So check before we decrement the count.
1149                          */
1150                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1151                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1152                 }
1153                 put_uprobe(uprobe);
1154         }
1155         mutex_unlock(uprobes_mmap_hash(inode));
1156 }
1157
1158 /* Slot allocation for XOL */
1159 static int xol_add_vma(struct xol_area *area)
1160 {
1161         struct mm_struct *mm;
1162         int ret;
1163
1164         area->page = alloc_page(GFP_HIGHUSER);
1165         if (!area->page)
1166                 return -ENOMEM;
1167
1168         ret = -EALREADY;
1169         mm = current->mm;
1170
1171         down_write(&mm->mmap_sem);
1172         if (mm->uprobes_state.xol_area)
1173                 goto fail;
1174
1175         ret = -ENOMEM;
1176
1177         /* Try to map as high as possible, this is only a hint. */
1178         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1179         if (area->vaddr & ~PAGE_MASK) {
1180                 ret = area->vaddr;
1181                 goto fail;
1182         }
1183
1184         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1185                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1186         if (ret)
1187                 goto fail;
1188
1189         smp_wmb();      /* pairs with get_xol_area() */
1190         mm->uprobes_state.xol_area = area;
1191         ret = 0;
1192
1193 fail:
1194         up_write(&mm->mmap_sem);
1195         if (ret)
1196                 __free_page(area->page);
1197
1198         return ret;
1199 }
1200
1201 static struct xol_area *get_xol_area(struct mm_struct *mm)
1202 {
1203         struct xol_area *area;
1204
1205         area = mm->uprobes_state.xol_area;
1206         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1207
1208         return area;
1209 }
1210
1211 /*
1212  * xol_alloc_area - Allocate process's xol_area.
1213  * This area will be used for storing instructions for execution out of
1214  * line.
1215  *
1216  * Returns the allocated area or NULL.
1217  */
1218 static struct xol_area *xol_alloc_area(void)
1219 {
1220         struct xol_area *area;
1221
1222         area = kzalloc(sizeof(*area), GFP_KERNEL);
1223         if (unlikely(!area))
1224                 return NULL;
1225
1226         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1227
1228         if (!area->bitmap)
1229                 goto fail;
1230
1231         init_waitqueue_head(&area->wq);
1232         if (!xol_add_vma(area))
1233                 return area;
1234
1235 fail:
1236         kfree(area->bitmap);
1237         kfree(area);
1238
1239         return get_xol_area(current->mm);
1240 }
1241
1242 /*
1243  * uprobe_clear_state - Free the area allocated for slots.
1244  */
1245 void uprobe_clear_state(struct mm_struct *mm)
1246 {
1247         struct xol_area *area = mm->uprobes_state.xol_area;
1248
1249         if (!area)
1250                 return;
1251
1252         put_page(area->page);
1253         kfree(area->bitmap);
1254         kfree(area);
1255 }
1256
1257 /*
1258  * uprobe_reset_state - Free the area allocated for slots.
1259  */
1260 void uprobe_reset_state(struct mm_struct *mm)
1261 {
1262         mm->uprobes_state.xol_area = NULL;
1263         atomic_set(&mm->uprobes_state.count, 0);
1264 }
1265
1266 /*
1267  *  - search for a free slot.
1268  */
1269 static unsigned long xol_take_insn_slot(struct xol_area *area)
1270 {
1271         unsigned long slot_addr;
1272         int slot_nr;
1273
1274         do {
1275                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1276                 if (slot_nr < UINSNS_PER_PAGE) {
1277                         if (!test_and_set_bit(slot_nr, area->bitmap))
1278                                 break;
1279
1280                         slot_nr = UINSNS_PER_PAGE;
1281                         continue;
1282                 }
1283                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1284         } while (slot_nr >= UINSNS_PER_PAGE);
1285
1286         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1287         atomic_inc(&area->slot_count);
1288
1289         return slot_addr;
1290 }
1291
1292 /*
1293  * xol_get_insn_slot - If was not allocated a slot, then
1294  * allocate a slot.
1295  * Returns the allocated slot address or 0.
1296  */
1297 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1298 {
1299         struct xol_area *area;
1300         unsigned long offset;
1301         void *vaddr;
1302
1303         area = get_xol_area(current->mm);
1304         if (!area) {
1305                 area = xol_alloc_area();
1306                 if (!area)
1307                         return 0;
1308         }
1309         current->utask->xol_vaddr = xol_take_insn_slot(area);
1310
1311         /*
1312          * Initialize the slot if xol_vaddr points to valid
1313          * instruction slot.
1314          */
1315         if (unlikely(!current->utask->xol_vaddr))
1316                 return 0;
1317
1318         current->utask->vaddr = slot_addr;
1319         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1320         vaddr = kmap_atomic(area->page);
1321         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1322         kunmap_atomic(vaddr);
1323
1324         return current->utask->xol_vaddr;
1325 }
1326
1327 /*
1328  * xol_free_insn_slot - If slot was earlier allocated by
1329  * @xol_get_insn_slot(), make the slot available for
1330  * subsequent requests.
1331  */
1332 static void xol_free_insn_slot(struct task_struct *tsk)
1333 {
1334         struct xol_area *area;
1335         unsigned long vma_end;
1336         unsigned long slot_addr;
1337
1338         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1339                 return;
1340
1341         slot_addr = tsk->utask->xol_vaddr;
1342
1343         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1344                 return;
1345
1346         area = tsk->mm->uprobes_state.xol_area;
1347         vma_end = area->vaddr + PAGE_SIZE;
1348         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1349                 unsigned long offset;
1350                 int slot_nr;
1351
1352                 offset = slot_addr - area->vaddr;
1353                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1354                 if (slot_nr >= UINSNS_PER_PAGE)
1355                         return;
1356
1357                 clear_bit(slot_nr, area->bitmap);
1358                 atomic_dec(&area->slot_count);
1359                 if (waitqueue_active(&area->wq))
1360                         wake_up(&area->wq);
1361
1362                 tsk->utask->xol_vaddr = 0;
1363         }
1364 }
1365
1366 /**
1367  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1368  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1369  * instruction.
1370  * Return the address of the breakpoint instruction.
1371  */
1372 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1373 {
1374         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1375 }
1376
1377 /*
1378  * Called with no locks held.
1379  * Called in context of a exiting or a exec-ing thread.
1380  */
1381 void uprobe_free_utask(struct task_struct *t)
1382 {
1383         struct uprobe_task *utask = t->utask;
1384
1385         if (!utask)
1386                 return;
1387
1388         if (utask->active_uprobe)
1389                 put_uprobe(utask->active_uprobe);
1390
1391         xol_free_insn_slot(t);
1392         kfree(utask);
1393         t->utask = NULL;
1394 }
1395
1396 /*
1397  * Called in context of a new clone/fork from copy_process.
1398  */
1399 void uprobe_copy_process(struct task_struct *t)
1400 {
1401         t->utask = NULL;
1402 }
1403
1404 /*
1405  * Allocate a uprobe_task object for the task.
1406  * Called when the thread hits a breakpoint for the first time.
1407  *
1408  * Returns:
1409  * - pointer to new uprobe_task on success
1410  * - NULL otherwise
1411  */
1412 static struct uprobe_task *add_utask(void)
1413 {
1414         struct uprobe_task *utask;
1415
1416         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1417         if (unlikely(!utask))
1418                 return NULL;
1419
1420         utask->active_uprobe = NULL;
1421         current->utask = utask;
1422         return utask;
1423 }
1424
1425 /* Prepare to single-step probed instruction out of line. */
1426 static int
1427 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1428 {
1429         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1430                 return 0;
1431
1432         return -EFAULT;
1433 }
1434
1435 /*
1436  * If we are singlestepping, then ensure this thread is not connected to
1437  * non-fatal signals until completion of singlestep.  When xol insn itself
1438  * triggers the signal,  restart the original insn even if the task is
1439  * already SIGKILL'ed (since coredump should report the correct ip).  This
1440  * is even more important if the task has a handler for SIGSEGV/etc, The
1441  * _same_ instruction should be repeated again after return from the signal
1442  * handler, and SSTEP can never finish in this case.
1443  */
1444 bool uprobe_deny_signal(void)
1445 {
1446         struct task_struct *t = current;
1447         struct uprobe_task *utask = t->utask;
1448
1449         if (likely(!utask || !utask->active_uprobe))
1450                 return false;
1451
1452         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1453
1454         if (signal_pending(t)) {
1455                 spin_lock_irq(&t->sighand->siglock);
1456                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1457                 spin_unlock_irq(&t->sighand->siglock);
1458
1459                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1460                         utask->state = UTASK_SSTEP_TRAPPED;
1461                         set_tsk_thread_flag(t, TIF_UPROBE);
1462                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1463                 }
1464         }
1465
1466         return true;
1467 }
1468
1469 /*
1470  * Avoid singlestepping the original instruction if the original instruction
1471  * is a NOP or can be emulated.
1472  */
1473 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1474 {
1475         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1476                 return true;
1477
1478         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1479         return false;
1480 }
1481
1482 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1483 {
1484         struct mm_struct *mm = current->mm;
1485         struct uprobe *uprobe = NULL;
1486         struct vm_area_struct *vma;
1487
1488         down_read(&mm->mmap_sem);
1489         vma = find_vma(mm, bp_vaddr);
1490         if (vma && vma->vm_start <= bp_vaddr) {
1491                 if (valid_vma(vma, false)) {
1492                         struct inode *inode;
1493                         loff_t offset;
1494
1495                         inode = vma->vm_file->f_mapping->host;
1496                         offset = bp_vaddr - vma->vm_start;
1497                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1498                         uprobe = find_uprobe(inode, offset);
1499                 }
1500
1501                 if (!uprobe)
1502                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1503         } else {
1504                 *is_swbp = -EFAULT;
1505         }
1506         up_read(&mm->mmap_sem);
1507
1508         return uprobe;
1509 }
1510
1511 /*
1512  * Run handler and ask thread to singlestep.
1513  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1514  */
1515 static void handle_swbp(struct pt_regs *regs)
1516 {
1517         struct uprobe_task *utask;
1518         struct uprobe *uprobe;
1519         unsigned long bp_vaddr;
1520         int uninitialized_var(is_swbp);
1521
1522         bp_vaddr = uprobe_get_swbp_addr(regs);
1523         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1524
1525         if (!uprobe) {
1526                 if (is_swbp > 0) {
1527                         /* No matching uprobe; signal SIGTRAP. */
1528                         send_sig(SIGTRAP, current, 0);
1529                 } else {
1530                         /*
1531                          * Either we raced with uprobe_unregister() or we can't
1532                          * access this memory. The latter is only possible if
1533                          * another thread plays with our ->mm. In both cases
1534                          * we can simply restart. If this vma was unmapped we
1535                          * can pretend this insn was not executed yet and get
1536                          * the (correct) SIGSEGV after restart.
1537                          */
1538                         instruction_pointer_set(regs, bp_vaddr);
1539                 }
1540                 return;
1541         }
1542
1543         utask = current->utask;
1544         if (!utask) {
1545                 utask = add_utask();
1546                 /* Cannot allocate; re-execute the instruction. */
1547                 if (!utask)
1548                         goto cleanup_ret;
1549         }
1550         utask->active_uprobe = uprobe;
1551         handler_chain(uprobe, regs);
1552         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1553                 goto cleanup_ret;
1554
1555         utask->state = UTASK_SSTEP;
1556         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1557                 user_enable_single_step(current);
1558                 return;
1559         }
1560
1561 cleanup_ret:
1562         if (utask) {
1563                 utask->active_uprobe = NULL;
1564                 utask->state = UTASK_RUNNING;
1565         }
1566         if (uprobe) {
1567                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1568
1569                         /*
1570                          * cannot singlestep; cannot skip instruction;
1571                          * re-execute the instruction.
1572                          */
1573                         instruction_pointer_set(regs, bp_vaddr);
1574
1575                 put_uprobe(uprobe);
1576         }
1577 }
1578
1579 /*
1580  * Perform required fix-ups and disable singlestep.
1581  * Allow pending signals to take effect.
1582  */
1583 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1584 {
1585         struct uprobe *uprobe;
1586
1587         uprobe = utask->active_uprobe;
1588         if (utask->state == UTASK_SSTEP_ACK)
1589                 arch_uprobe_post_xol(&uprobe->arch, regs);
1590         else if (utask->state == UTASK_SSTEP_TRAPPED)
1591                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1592         else
1593                 WARN_ON_ONCE(1);
1594
1595         put_uprobe(uprobe);
1596         utask->active_uprobe = NULL;
1597         utask->state = UTASK_RUNNING;
1598         user_disable_single_step(current);
1599         xol_free_insn_slot(current);
1600
1601         spin_lock_irq(&current->sighand->siglock);
1602         recalc_sigpending(); /* see uprobe_deny_signal() */
1603         spin_unlock_irq(&current->sighand->siglock);
1604 }
1605
1606 /*
1607  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1608  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1609  * allows the thread to return from interrupt.
1610  *
1611  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1612  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1613  * interrupt.
1614  *
1615  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1616  * uprobe_notify_resume().
1617  */
1618 void uprobe_notify_resume(struct pt_regs *regs)
1619 {
1620         struct uprobe_task *utask;
1621
1622         utask = current->utask;
1623         if (!utask || utask->state == UTASK_BP_HIT)
1624                 handle_swbp(regs);
1625         else
1626                 handle_singlestep(utask, regs);
1627 }
1628
1629 /*
1630  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1631  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1632  */
1633 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1634 {
1635         struct uprobe_task *utask;
1636
1637         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1638                 /* task is currently not uprobed */
1639                 return 0;
1640
1641         utask = current->utask;
1642         if (utask)
1643                 utask->state = UTASK_BP_HIT;
1644
1645         set_thread_flag(TIF_UPROBE);
1646
1647         return 1;
1648 }
1649
1650 /*
1651  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1652  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1653  */
1654 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1655 {
1656         struct uprobe_task *utask = current->utask;
1657
1658         if (!current->mm || !utask || !utask->active_uprobe)
1659                 /* task is currently not uprobed */
1660                 return 0;
1661
1662         utask->state = UTASK_SSTEP_ACK;
1663         set_thread_flag(TIF_UPROBE);
1664         return 1;
1665 }
1666
1667 static struct notifier_block uprobe_exception_nb = {
1668         .notifier_call          = arch_uprobe_exception_notify,
1669         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1670 };
1671
1672 static int __init init_uprobes(void)
1673 {
1674         int i;
1675
1676         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1677                 mutex_init(&uprobes_mutex[i]);
1678                 mutex_init(&uprobes_mmap_mutex[i]);
1679         }
1680
1681         return register_die_notifier(&uprobe_exception_nb);
1682 }
1683 module_init(init_uprobes);
1684
1685 static void __exit exit_uprobes(void)
1686 {
1687 }
1688 module_exit(exit_uprobes);