uprobes: Introduce get_uprobe()
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 struct return_instance {
90         struct uprobe           *uprobe;
91         unsigned long           func;
92         unsigned long           orig_ret_vaddr; /* original return address */
93         bool                    chained;        /* true, if instance is nested */
94
95         struct return_instance  *next;          /* keep as stack */
96 };
97
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108         wait_queue_head_t       wq;             /* if all slots are busy */
109         atomic_t                slot_count;     /* number of in-use slots */
110         unsigned long           *bitmap;        /* 0 = free slot */
111         struct page             *page;
112
113         /*
114          * We keep the vma's vm_start rather than a pointer to the vma
115          * itself.  The probed process or a naughty kernel module could make
116          * the vma go away, and we must handle that reasonably gracefully.
117          */
118         unsigned long           vaddr;          /* Page(s) of instruction slots */
119 };
120
121 /*
122  * valid_vma: Verify if the specified vma is an executable vma
123  * Relax restrictions while unregistering: vm_flags might have
124  * changed after breakpoint was inserted.
125  *      - is_register: indicates if we are in register context.
126  *      - Return 1 if the specified virtual address is in an
127  *        executable vma.
128  */
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132
133         if (is_register)
134                 flags |= VM_WRITE;
135
136         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148
149 /**
150  * __replace_page - replace page in vma by new page.
151  * based on replace_page in mm/ksm.c
152  *
153  * @vma:      vma that holds the pte pointing to page
154  * @addr:     address the old @page is mapped at
155  * @page:     the cowed page we are replacing by kpage
156  * @kpage:    the modified page we replace page by
157  *
158  * Returns 0 on success, -EFAULT on failure.
159  */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161                                 struct page *page, struct page *kpage)
162 {
163         struct mm_struct *mm = vma->vm_mm;
164         spinlock_t *ptl;
165         pte_t *ptep;
166         int err;
167         /* For mmu_notifiers */
168         const unsigned long mmun_start = addr;
169         const unsigned long mmun_end   = addr + PAGE_SIZE;
170         struct mem_cgroup *memcg;
171
172         err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
173         if (err)
174                 return err;
175
176         /* For try_to_free_swap() and munlock_vma_page() below */
177         lock_page(page);
178
179         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180         err = -EAGAIN;
181         ptep = page_check_address(page, mm, addr, &ptl, 0);
182         if (!ptep)
183                 goto unlock;
184
185         get_page(kpage);
186         page_add_new_anon_rmap(kpage, vma, addr);
187         mem_cgroup_commit_charge(kpage, memcg, false);
188         lru_cache_add_active_or_unevictable(kpage, vma);
189
190         if (!PageAnon(page)) {
191                 dec_mm_counter(mm, MM_FILEPAGES);
192                 inc_mm_counter(mm, MM_ANONPAGES);
193         }
194
195         flush_cache_page(vma, addr, pte_pfn(*ptep));
196         ptep_clear_flush_notify(vma, addr, ptep);
197         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
198
199         page_remove_rmap(page);
200         if (!page_mapped(page))
201                 try_to_free_swap(page);
202         pte_unmap_unlock(ptep, ptl);
203
204         if (vma->vm_flags & VM_LOCKED)
205                 munlock_vma_page(page);
206         put_page(page);
207
208         err = 0;
209  unlock:
210         mem_cgroup_cancel_charge(kpage, memcg);
211         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
212         unlock_page(page);
213         return err;
214 }
215
216 /**
217  * is_swbp_insn - check if instruction is breakpoint instruction.
218  * @insn: instruction to be checked.
219  * Default implementation of is_swbp_insn
220  * Returns true if @insn is a breakpoint instruction.
221  */
222 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
223 {
224         return *insn == UPROBE_SWBP_INSN;
225 }
226
227 /**
228  * is_trap_insn - check if instruction is breakpoint instruction.
229  * @insn: instruction to be checked.
230  * Default implementation of is_trap_insn
231  * Returns true if @insn is a breakpoint instruction.
232  *
233  * This function is needed for the case where an architecture has multiple
234  * trap instructions (like powerpc).
235  */
236 bool __weak is_trap_insn(uprobe_opcode_t *insn)
237 {
238         return is_swbp_insn(insn);
239 }
240
241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
242 {
243         void *kaddr = kmap_atomic(page);
244         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
245         kunmap_atomic(kaddr);
246 }
247
248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
249 {
250         void *kaddr = kmap_atomic(page);
251         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
252         kunmap_atomic(kaddr);
253 }
254
255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
256 {
257         uprobe_opcode_t old_opcode;
258         bool is_swbp;
259
260         /*
261          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
262          * We do not check if it is any other 'trap variant' which could
263          * be conditional trap instruction such as the one powerpc supports.
264          *
265          * The logic is that we do not care if the underlying instruction
266          * is a trap variant; uprobes always wins over any other (gdb)
267          * breakpoint.
268          */
269         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
270         is_swbp = is_swbp_insn(&old_opcode);
271
272         if (is_swbp_insn(new_opcode)) {
273                 if (is_swbp)            /* register: already installed? */
274                         return 0;
275         } else {
276                 if (!is_swbp)           /* unregister: was it changed by us? */
277                         return 0;
278         }
279
280         return 1;
281 }
282
283 /*
284  * NOTE:
285  * Expect the breakpoint instruction to be the smallest size instruction for
286  * the architecture. If an arch has variable length instruction and the
287  * breakpoint instruction is not of the smallest length instruction
288  * supported by that architecture then we need to modify is_trap_at_addr and
289  * uprobe_write_opcode accordingly. This would never be a problem for archs
290  * that have fixed length instructions.
291  *
292  * uprobe_write_opcode - write the opcode at a given virtual address.
293  * @mm: the probed process address space.
294  * @vaddr: the virtual address to store the opcode.
295  * @opcode: opcode to be written at @vaddr.
296  *
297  * Called with mm->mmap_sem held for write.
298  * Return 0 (success) or a negative errno.
299  */
300 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
301                         uprobe_opcode_t opcode)
302 {
303         struct page *old_page, *new_page;
304         struct vm_area_struct *vma;
305         int ret;
306
307 retry:
308         /* Read the page with vaddr into memory */
309         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
310         if (ret <= 0)
311                 return ret;
312
313         ret = verify_opcode(old_page, vaddr, &opcode);
314         if (ret <= 0)
315                 goto put_old;
316
317         ret = anon_vma_prepare(vma);
318         if (ret)
319                 goto put_old;
320
321         ret = -ENOMEM;
322         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
323         if (!new_page)
324                 goto put_old;
325
326         __SetPageUptodate(new_page);
327         copy_highpage(new_page, old_page);
328         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
329
330         ret = __replace_page(vma, vaddr, old_page, new_page);
331         page_cache_release(new_page);
332 put_old:
333         put_page(old_page);
334
335         if (unlikely(ret == -EAGAIN))
336                 goto retry;
337         return ret;
338 }
339
340 /**
341  * set_swbp - store breakpoint at a given address.
342  * @auprobe: arch specific probepoint information.
343  * @mm: the probed process address space.
344  * @vaddr: the virtual address to insert the opcode.
345  *
346  * For mm @mm, store the breakpoint instruction at @vaddr.
347  * Return 0 (success) or a negative errno.
348  */
349 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
350 {
351         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
352 }
353
354 /**
355  * set_orig_insn - Restore the original instruction.
356  * @mm: the probed process address space.
357  * @auprobe: arch specific probepoint information.
358  * @vaddr: the virtual address to insert the opcode.
359  *
360  * For mm @mm, restore the original opcode (opcode) at @vaddr.
361  * Return 0 (success) or a negative errno.
362  */
363 int __weak
364 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
365 {
366         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
367 }
368
369 static struct uprobe *get_uprobe(struct uprobe *uprobe)
370 {
371         atomic_inc(&uprobe->ref);
372         return uprobe;
373 }
374
375 static void put_uprobe(struct uprobe *uprobe)
376 {
377         if (atomic_dec_and_test(&uprobe->ref))
378                 kfree(uprobe);
379 }
380
381 static int match_uprobe(struct uprobe *l, struct uprobe *r)
382 {
383         if (l->inode < r->inode)
384                 return -1;
385
386         if (l->inode > r->inode)
387                 return 1;
388
389         if (l->offset < r->offset)
390                 return -1;
391
392         if (l->offset > r->offset)
393                 return 1;
394
395         return 0;
396 }
397
398 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
399 {
400         struct uprobe u = { .inode = inode, .offset = offset };
401         struct rb_node *n = uprobes_tree.rb_node;
402         struct uprobe *uprobe;
403         int match;
404
405         while (n) {
406                 uprobe = rb_entry(n, struct uprobe, rb_node);
407                 match = match_uprobe(&u, uprobe);
408                 if (!match)
409                         return get_uprobe(uprobe);
410
411                 if (match < 0)
412                         n = n->rb_left;
413                 else
414                         n = n->rb_right;
415         }
416         return NULL;
417 }
418
419 /*
420  * Find a uprobe corresponding to a given inode:offset
421  * Acquires uprobes_treelock
422  */
423 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
424 {
425         struct uprobe *uprobe;
426
427         spin_lock(&uprobes_treelock);
428         uprobe = __find_uprobe(inode, offset);
429         spin_unlock(&uprobes_treelock);
430
431         return uprobe;
432 }
433
434 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
435 {
436         struct rb_node **p = &uprobes_tree.rb_node;
437         struct rb_node *parent = NULL;
438         struct uprobe *u;
439         int match;
440
441         while (*p) {
442                 parent = *p;
443                 u = rb_entry(parent, struct uprobe, rb_node);
444                 match = match_uprobe(uprobe, u);
445                 if (!match)
446                         return get_uprobe(u);
447
448                 if (match < 0)
449                         p = &parent->rb_left;
450                 else
451                         p = &parent->rb_right;
452
453         }
454
455         u = NULL;
456         rb_link_node(&uprobe->rb_node, parent, p);
457         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
458         /* get access + creation ref */
459         atomic_set(&uprobe->ref, 2);
460
461         return u;
462 }
463
464 /*
465  * Acquire uprobes_treelock.
466  * Matching uprobe already exists in rbtree;
467  *      increment (access refcount) and return the matching uprobe.
468  *
469  * No matching uprobe; insert the uprobe in rb_tree;
470  *      get a double refcount (access + creation) and return NULL.
471  */
472 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
473 {
474         struct uprobe *u;
475
476         spin_lock(&uprobes_treelock);
477         u = __insert_uprobe(uprobe);
478         spin_unlock(&uprobes_treelock);
479
480         return u;
481 }
482
483 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
484 {
485         struct uprobe *uprobe, *cur_uprobe;
486
487         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
488         if (!uprobe)
489                 return NULL;
490
491         uprobe->inode = igrab(inode);
492         uprobe->offset = offset;
493         init_rwsem(&uprobe->register_rwsem);
494         init_rwsem(&uprobe->consumer_rwsem);
495
496         /* add to uprobes_tree, sorted on inode:offset */
497         cur_uprobe = insert_uprobe(uprobe);
498         /* a uprobe exists for this inode:offset combination */
499         if (cur_uprobe) {
500                 kfree(uprobe);
501                 uprobe = cur_uprobe;
502                 iput(inode);
503         }
504
505         return uprobe;
506 }
507
508 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
509 {
510         down_write(&uprobe->consumer_rwsem);
511         uc->next = uprobe->consumers;
512         uprobe->consumers = uc;
513         up_write(&uprobe->consumer_rwsem);
514 }
515
516 /*
517  * For uprobe @uprobe, delete the consumer @uc.
518  * Return true if the @uc is deleted successfully
519  * or return false.
520  */
521 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
522 {
523         struct uprobe_consumer **con;
524         bool ret = false;
525
526         down_write(&uprobe->consumer_rwsem);
527         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
528                 if (*con == uc) {
529                         *con = uc->next;
530                         ret = true;
531                         break;
532                 }
533         }
534         up_write(&uprobe->consumer_rwsem);
535
536         return ret;
537 }
538
539 static int __copy_insn(struct address_space *mapping, struct file *filp,
540                         void *insn, int nbytes, loff_t offset)
541 {
542         struct page *page;
543         /*
544          * Ensure that the page that has the original instruction is populated
545          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
546          * see uprobe_register().
547          */
548         if (mapping->a_ops->readpage)
549                 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
550         else
551                 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
552         if (IS_ERR(page))
553                 return PTR_ERR(page);
554
555         copy_from_page(page, offset, insn, nbytes);
556         page_cache_release(page);
557
558         return 0;
559 }
560
561 static int copy_insn(struct uprobe *uprobe, struct file *filp)
562 {
563         struct address_space *mapping = uprobe->inode->i_mapping;
564         loff_t offs = uprobe->offset;
565         void *insn = &uprobe->arch.insn;
566         int size = sizeof(uprobe->arch.insn);
567         int len, err = -EIO;
568
569         /* Copy only available bytes, -EIO if nothing was read */
570         do {
571                 if (offs >= i_size_read(uprobe->inode))
572                         break;
573
574                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
575                 err = __copy_insn(mapping, filp, insn, len, offs);
576                 if (err)
577                         break;
578
579                 insn += len;
580                 offs += len;
581                 size -= len;
582         } while (size);
583
584         return err;
585 }
586
587 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
588                                 struct mm_struct *mm, unsigned long vaddr)
589 {
590         int ret = 0;
591
592         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593                 return ret;
594
595         /* TODO: move this into _register, until then we abuse this sem. */
596         down_write(&uprobe->consumer_rwsem);
597         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
598                 goto out;
599
600         ret = copy_insn(uprobe, file);
601         if (ret)
602                 goto out;
603
604         ret = -ENOTSUPP;
605         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
606                 goto out;
607
608         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
609         if (ret)
610                 goto out;
611
612         /* uprobe_write_opcode() assumes we don't cross page boundary */
613         BUG_ON((uprobe->offset & ~PAGE_MASK) +
614                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
615
616         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
617         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
618
619  out:
620         up_write(&uprobe->consumer_rwsem);
621
622         return ret;
623 }
624
625 static inline bool consumer_filter(struct uprobe_consumer *uc,
626                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
627 {
628         return !uc->filter || uc->filter(uc, ctx, mm);
629 }
630
631 static bool filter_chain(struct uprobe *uprobe,
632                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
633 {
634         struct uprobe_consumer *uc;
635         bool ret = false;
636
637         down_read(&uprobe->consumer_rwsem);
638         for (uc = uprobe->consumers; uc; uc = uc->next) {
639                 ret = consumer_filter(uc, ctx, mm);
640                 if (ret)
641                         break;
642         }
643         up_read(&uprobe->consumer_rwsem);
644
645         return ret;
646 }
647
648 static int
649 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
650                         struct vm_area_struct *vma, unsigned long vaddr)
651 {
652         bool first_uprobe;
653         int ret;
654
655         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
656         if (ret)
657                 return ret;
658
659         /*
660          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
661          * the task can hit this breakpoint right after __replace_page().
662          */
663         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
664         if (first_uprobe)
665                 set_bit(MMF_HAS_UPROBES, &mm->flags);
666
667         ret = set_swbp(&uprobe->arch, mm, vaddr);
668         if (!ret)
669                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
670         else if (first_uprobe)
671                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
672
673         return ret;
674 }
675
676 static int
677 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
678 {
679         set_bit(MMF_RECALC_UPROBES, &mm->flags);
680         return set_orig_insn(&uprobe->arch, mm, vaddr);
681 }
682
683 static inline bool uprobe_is_active(struct uprobe *uprobe)
684 {
685         return !RB_EMPTY_NODE(&uprobe->rb_node);
686 }
687 /*
688  * There could be threads that have already hit the breakpoint. They
689  * will recheck the current insn and restart if find_uprobe() fails.
690  * See find_active_uprobe().
691  */
692 static void delete_uprobe(struct uprobe *uprobe)
693 {
694         if (WARN_ON(!uprobe_is_active(uprobe)))
695                 return;
696
697         spin_lock(&uprobes_treelock);
698         rb_erase(&uprobe->rb_node, &uprobes_tree);
699         spin_unlock(&uprobes_treelock);
700         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
701         iput(uprobe->inode);
702         put_uprobe(uprobe);
703 }
704
705 struct map_info {
706         struct map_info *next;
707         struct mm_struct *mm;
708         unsigned long vaddr;
709 };
710
711 static inline struct map_info *free_map_info(struct map_info *info)
712 {
713         struct map_info *next = info->next;
714         kfree(info);
715         return next;
716 }
717
718 static struct map_info *
719 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
720 {
721         unsigned long pgoff = offset >> PAGE_SHIFT;
722         struct vm_area_struct *vma;
723         struct map_info *curr = NULL;
724         struct map_info *prev = NULL;
725         struct map_info *info;
726         int more = 0;
727
728  again:
729         i_mmap_lock_read(mapping);
730         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
731                 if (!valid_vma(vma, is_register))
732                         continue;
733
734                 if (!prev && !more) {
735                         /*
736                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
737                          * reclaim. This is optimistic, no harm done if it fails.
738                          */
739                         prev = kmalloc(sizeof(struct map_info),
740                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
741                         if (prev)
742                                 prev->next = NULL;
743                 }
744                 if (!prev) {
745                         more++;
746                         continue;
747                 }
748
749                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
750                         continue;
751
752                 info = prev;
753                 prev = prev->next;
754                 info->next = curr;
755                 curr = info;
756
757                 info->mm = vma->vm_mm;
758                 info->vaddr = offset_to_vaddr(vma, offset);
759         }
760         i_mmap_unlock_read(mapping);
761
762         if (!more)
763                 goto out;
764
765         prev = curr;
766         while (curr) {
767                 mmput(curr->mm);
768                 curr = curr->next;
769         }
770
771         do {
772                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
773                 if (!info) {
774                         curr = ERR_PTR(-ENOMEM);
775                         goto out;
776                 }
777                 info->next = prev;
778                 prev = info;
779         } while (--more);
780
781         goto again;
782  out:
783         while (prev)
784                 prev = free_map_info(prev);
785         return curr;
786 }
787
788 static int
789 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
790 {
791         bool is_register = !!new;
792         struct map_info *info;
793         int err = 0;
794
795         percpu_down_write(&dup_mmap_sem);
796         info = build_map_info(uprobe->inode->i_mapping,
797                                         uprobe->offset, is_register);
798         if (IS_ERR(info)) {
799                 err = PTR_ERR(info);
800                 goto out;
801         }
802
803         while (info) {
804                 struct mm_struct *mm = info->mm;
805                 struct vm_area_struct *vma;
806
807                 if (err && is_register)
808                         goto free;
809
810                 down_write(&mm->mmap_sem);
811                 vma = find_vma(mm, info->vaddr);
812                 if (!vma || !valid_vma(vma, is_register) ||
813                     file_inode(vma->vm_file) != uprobe->inode)
814                         goto unlock;
815
816                 if (vma->vm_start > info->vaddr ||
817                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
818                         goto unlock;
819
820                 if (is_register) {
821                         /* consult only the "caller", new consumer. */
822                         if (consumer_filter(new,
823                                         UPROBE_FILTER_REGISTER, mm))
824                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
825                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
826                         if (!filter_chain(uprobe,
827                                         UPROBE_FILTER_UNREGISTER, mm))
828                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
829                 }
830
831  unlock:
832                 up_write(&mm->mmap_sem);
833  free:
834                 mmput(mm);
835                 info = free_map_info(info);
836         }
837  out:
838         percpu_up_write(&dup_mmap_sem);
839         return err;
840 }
841
842 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
843 {
844         consumer_add(uprobe, uc);
845         return register_for_each_vma(uprobe, uc);
846 }
847
848 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
849 {
850         int err;
851
852         if (WARN_ON(!consumer_del(uprobe, uc)))
853                 return;
854
855         err = register_for_each_vma(uprobe, NULL);
856         /* TODO : cant unregister? schedule a worker thread */
857         if (!uprobe->consumers && !err)
858                 delete_uprobe(uprobe);
859 }
860
861 /*
862  * uprobe_register - register a probe
863  * @inode: the file in which the probe has to be placed.
864  * @offset: offset from the start of the file.
865  * @uc: information on howto handle the probe..
866  *
867  * Apart from the access refcount, uprobe_register() takes a creation
868  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
869  * inserted into the rbtree (i.e first consumer for a @inode:@offset
870  * tuple).  Creation refcount stops uprobe_unregister from freeing the
871  * @uprobe even before the register operation is complete. Creation
872  * refcount is released when the last @uc for the @uprobe
873  * unregisters.
874  *
875  * Return errno if it cannot successully install probes
876  * else return 0 (success)
877  */
878 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
879 {
880         struct uprobe *uprobe;
881         int ret;
882
883         /* Uprobe must have at least one set consumer */
884         if (!uc->handler && !uc->ret_handler)
885                 return -EINVAL;
886
887         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
888         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
889                 return -EIO;
890         /* Racy, just to catch the obvious mistakes */
891         if (offset > i_size_read(inode))
892                 return -EINVAL;
893
894  retry:
895         uprobe = alloc_uprobe(inode, offset);
896         if (!uprobe)
897                 return -ENOMEM;
898         /*
899          * We can race with uprobe_unregister()->delete_uprobe().
900          * Check uprobe_is_active() and retry if it is false.
901          */
902         down_write(&uprobe->register_rwsem);
903         ret = -EAGAIN;
904         if (likely(uprobe_is_active(uprobe))) {
905                 ret = __uprobe_register(uprobe, uc);
906                 if (ret)
907                         __uprobe_unregister(uprobe, uc);
908         }
909         up_write(&uprobe->register_rwsem);
910         put_uprobe(uprobe);
911
912         if (unlikely(ret == -EAGAIN))
913                 goto retry;
914         return ret;
915 }
916 EXPORT_SYMBOL_GPL(uprobe_register);
917
918 /*
919  * uprobe_apply - unregister a already registered probe.
920  * @inode: the file in which the probe has to be removed.
921  * @offset: offset from the start of the file.
922  * @uc: consumer which wants to add more or remove some breakpoints
923  * @add: add or remove the breakpoints
924  */
925 int uprobe_apply(struct inode *inode, loff_t offset,
926                         struct uprobe_consumer *uc, bool add)
927 {
928         struct uprobe *uprobe;
929         struct uprobe_consumer *con;
930         int ret = -ENOENT;
931
932         uprobe = find_uprobe(inode, offset);
933         if (WARN_ON(!uprobe))
934                 return ret;
935
936         down_write(&uprobe->register_rwsem);
937         for (con = uprobe->consumers; con && con != uc ; con = con->next)
938                 ;
939         if (con)
940                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
941         up_write(&uprobe->register_rwsem);
942         put_uprobe(uprobe);
943
944         return ret;
945 }
946
947 /*
948  * uprobe_unregister - unregister a already registered probe.
949  * @inode: the file in which the probe has to be removed.
950  * @offset: offset from the start of the file.
951  * @uc: identify which probe if multiple probes are colocated.
952  */
953 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
954 {
955         struct uprobe *uprobe;
956
957         uprobe = find_uprobe(inode, offset);
958         if (WARN_ON(!uprobe))
959                 return;
960
961         down_write(&uprobe->register_rwsem);
962         __uprobe_unregister(uprobe, uc);
963         up_write(&uprobe->register_rwsem);
964         put_uprobe(uprobe);
965 }
966 EXPORT_SYMBOL_GPL(uprobe_unregister);
967
968 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
969 {
970         struct vm_area_struct *vma;
971         int err = 0;
972
973         down_read(&mm->mmap_sem);
974         for (vma = mm->mmap; vma; vma = vma->vm_next) {
975                 unsigned long vaddr;
976                 loff_t offset;
977
978                 if (!valid_vma(vma, false) ||
979                     file_inode(vma->vm_file) != uprobe->inode)
980                         continue;
981
982                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
983                 if (uprobe->offset <  offset ||
984                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
985                         continue;
986
987                 vaddr = offset_to_vaddr(vma, uprobe->offset);
988                 err |= remove_breakpoint(uprobe, mm, vaddr);
989         }
990         up_read(&mm->mmap_sem);
991
992         return err;
993 }
994
995 static struct rb_node *
996 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
997 {
998         struct rb_node *n = uprobes_tree.rb_node;
999
1000         while (n) {
1001                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1002
1003                 if (inode < u->inode) {
1004                         n = n->rb_left;
1005                 } else if (inode > u->inode) {
1006                         n = n->rb_right;
1007                 } else {
1008                         if (max < u->offset)
1009                                 n = n->rb_left;
1010                         else if (min > u->offset)
1011                                 n = n->rb_right;
1012                         else
1013                                 break;
1014                 }
1015         }
1016
1017         return n;
1018 }
1019
1020 /*
1021  * For a given range in vma, build a list of probes that need to be inserted.
1022  */
1023 static void build_probe_list(struct inode *inode,
1024                                 struct vm_area_struct *vma,
1025                                 unsigned long start, unsigned long end,
1026                                 struct list_head *head)
1027 {
1028         loff_t min, max;
1029         struct rb_node *n, *t;
1030         struct uprobe *u;
1031
1032         INIT_LIST_HEAD(head);
1033         min = vaddr_to_offset(vma, start);
1034         max = min + (end - start) - 1;
1035
1036         spin_lock(&uprobes_treelock);
1037         n = find_node_in_range(inode, min, max);
1038         if (n) {
1039                 for (t = n; t; t = rb_prev(t)) {
1040                         u = rb_entry(t, struct uprobe, rb_node);
1041                         if (u->inode != inode || u->offset < min)
1042                                 break;
1043                         list_add(&u->pending_list, head);
1044                         get_uprobe(u);
1045                 }
1046                 for (t = n; (t = rb_next(t)); ) {
1047                         u = rb_entry(t, struct uprobe, rb_node);
1048                         if (u->inode != inode || u->offset > max)
1049                                 break;
1050                         list_add(&u->pending_list, head);
1051                         get_uprobe(u);
1052                 }
1053         }
1054         spin_unlock(&uprobes_treelock);
1055 }
1056
1057 /*
1058  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1059  *
1060  * Currently we ignore all errors and always return 0, the callers
1061  * can't handle the failure anyway.
1062  */
1063 int uprobe_mmap(struct vm_area_struct *vma)
1064 {
1065         struct list_head tmp_list;
1066         struct uprobe *uprobe, *u;
1067         struct inode *inode;
1068
1069         if (no_uprobe_events() || !valid_vma(vma, true))
1070                 return 0;
1071
1072         inode = file_inode(vma->vm_file);
1073         if (!inode)
1074                 return 0;
1075
1076         mutex_lock(uprobes_mmap_hash(inode));
1077         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1078         /*
1079          * We can race with uprobe_unregister(), this uprobe can be already
1080          * removed. But in this case filter_chain() must return false, all
1081          * consumers have gone away.
1082          */
1083         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1084                 if (!fatal_signal_pending(current) &&
1085                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1086                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1087                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1088                 }
1089                 put_uprobe(uprobe);
1090         }
1091         mutex_unlock(uprobes_mmap_hash(inode));
1092
1093         return 0;
1094 }
1095
1096 static bool
1097 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1098 {
1099         loff_t min, max;
1100         struct inode *inode;
1101         struct rb_node *n;
1102
1103         inode = file_inode(vma->vm_file);
1104
1105         min = vaddr_to_offset(vma, start);
1106         max = min + (end - start) - 1;
1107
1108         spin_lock(&uprobes_treelock);
1109         n = find_node_in_range(inode, min, max);
1110         spin_unlock(&uprobes_treelock);
1111
1112         return !!n;
1113 }
1114
1115 /*
1116  * Called in context of a munmap of a vma.
1117  */
1118 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1119 {
1120         if (no_uprobe_events() || !valid_vma(vma, false))
1121                 return;
1122
1123         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1124                 return;
1125
1126         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1127              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1128                 return;
1129
1130         if (vma_has_uprobes(vma, start, end))
1131                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1132 }
1133
1134 /* Slot allocation for XOL */
1135 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1136 {
1137         int ret = -EALREADY;
1138
1139         down_write(&mm->mmap_sem);
1140         if (mm->uprobes_state.xol_area)
1141                 goto fail;
1142
1143         if (!area->vaddr) {
1144                 /* Try to map as high as possible, this is only a hint. */
1145                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1146                                                 PAGE_SIZE, 0, 0);
1147                 if (area->vaddr & ~PAGE_MASK) {
1148                         ret = area->vaddr;
1149                         goto fail;
1150                 }
1151         }
1152
1153         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1154                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1155         if (ret)
1156                 goto fail;
1157
1158         smp_wmb();      /* pairs with get_xol_area() */
1159         mm->uprobes_state.xol_area = area;
1160  fail:
1161         up_write(&mm->mmap_sem);
1162
1163         return ret;
1164 }
1165
1166 static struct xol_area *__create_xol_area(unsigned long vaddr)
1167 {
1168         struct mm_struct *mm = current->mm;
1169         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1170         struct xol_area *area;
1171
1172         area = kmalloc(sizeof(*area), GFP_KERNEL);
1173         if (unlikely(!area))
1174                 goto out;
1175
1176         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1177         if (!area->bitmap)
1178                 goto free_area;
1179
1180         area->page = alloc_page(GFP_HIGHUSER);
1181         if (!area->page)
1182                 goto free_bitmap;
1183
1184         area->vaddr = vaddr;
1185         init_waitqueue_head(&area->wq);
1186         /* Reserve the 1st slot for get_trampoline_vaddr() */
1187         set_bit(0, area->bitmap);
1188         atomic_set(&area->slot_count, 1);
1189         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1190
1191         if (!xol_add_vma(mm, area))
1192                 return area;
1193
1194         __free_page(area->page);
1195  free_bitmap:
1196         kfree(area->bitmap);
1197  free_area:
1198         kfree(area);
1199  out:
1200         return NULL;
1201 }
1202
1203 /*
1204  * get_xol_area - Allocate process's xol_area if necessary.
1205  * This area will be used for storing instructions for execution out of line.
1206  *
1207  * Returns the allocated area or NULL.
1208  */
1209 static struct xol_area *get_xol_area(void)
1210 {
1211         struct mm_struct *mm = current->mm;
1212         struct xol_area *area;
1213
1214         if (!mm->uprobes_state.xol_area)
1215                 __create_xol_area(0);
1216
1217         area = mm->uprobes_state.xol_area;
1218         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1219         return area;
1220 }
1221
1222 /*
1223  * uprobe_clear_state - Free the area allocated for slots.
1224  */
1225 void uprobe_clear_state(struct mm_struct *mm)
1226 {
1227         struct xol_area *area = mm->uprobes_state.xol_area;
1228
1229         if (!area)
1230                 return;
1231
1232         put_page(area->page);
1233         kfree(area->bitmap);
1234         kfree(area);
1235 }
1236
1237 void uprobe_start_dup_mmap(void)
1238 {
1239         percpu_down_read(&dup_mmap_sem);
1240 }
1241
1242 void uprobe_end_dup_mmap(void)
1243 {
1244         percpu_up_read(&dup_mmap_sem);
1245 }
1246
1247 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1248 {
1249         newmm->uprobes_state.xol_area = NULL;
1250
1251         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1252                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1253                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1254                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1255         }
1256 }
1257
1258 /*
1259  *  - search for a free slot.
1260  */
1261 static unsigned long xol_take_insn_slot(struct xol_area *area)
1262 {
1263         unsigned long slot_addr;
1264         int slot_nr;
1265
1266         do {
1267                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1268                 if (slot_nr < UINSNS_PER_PAGE) {
1269                         if (!test_and_set_bit(slot_nr, area->bitmap))
1270                                 break;
1271
1272                         slot_nr = UINSNS_PER_PAGE;
1273                         continue;
1274                 }
1275                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1276         } while (slot_nr >= UINSNS_PER_PAGE);
1277
1278         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1279         atomic_inc(&area->slot_count);
1280
1281         return slot_addr;
1282 }
1283
1284 /*
1285  * xol_get_insn_slot - allocate a slot for xol.
1286  * Returns the allocated slot address or 0.
1287  */
1288 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1289 {
1290         struct xol_area *area;
1291         unsigned long xol_vaddr;
1292
1293         area = get_xol_area();
1294         if (!area)
1295                 return 0;
1296
1297         xol_vaddr = xol_take_insn_slot(area);
1298         if (unlikely(!xol_vaddr))
1299                 return 0;
1300
1301         arch_uprobe_copy_ixol(area->page, xol_vaddr,
1302                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1303
1304         return xol_vaddr;
1305 }
1306
1307 /*
1308  * xol_free_insn_slot - If slot was earlier allocated by
1309  * @xol_get_insn_slot(), make the slot available for
1310  * subsequent requests.
1311  */
1312 static void xol_free_insn_slot(struct task_struct *tsk)
1313 {
1314         struct xol_area *area;
1315         unsigned long vma_end;
1316         unsigned long slot_addr;
1317
1318         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1319                 return;
1320
1321         slot_addr = tsk->utask->xol_vaddr;
1322         if (unlikely(!slot_addr))
1323                 return;
1324
1325         area = tsk->mm->uprobes_state.xol_area;
1326         vma_end = area->vaddr + PAGE_SIZE;
1327         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1328                 unsigned long offset;
1329                 int slot_nr;
1330
1331                 offset = slot_addr - area->vaddr;
1332                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1333                 if (slot_nr >= UINSNS_PER_PAGE)
1334                         return;
1335
1336                 clear_bit(slot_nr, area->bitmap);
1337                 atomic_dec(&area->slot_count);
1338                 if (waitqueue_active(&area->wq))
1339                         wake_up(&area->wq);
1340
1341                 tsk->utask->xol_vaddr = 0;
1342         }
1343 }
1344
1345 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1346                                   void *src, unsigned long len)
1347 {
1348         /* Initialize the slot */
1349         copy_to_page(page, vaddr, src, len);
1350
1351         /*
1352          * We probably need flush_icache_user_range() but it needs vma.
1353          * This should work on most of architectures by default. If
1354          * architecture needs to do something different it can define
1355          * its own version of the function.
1356          */
1357         flush_dcache_page(page);
1358 }
1359
1360 /**
1361  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1362  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1363  * instruction.
1364  * Return the address of the breakpoint instruction.
1365  */
1366 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1367 {
1368         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1369 }
1370
1371 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1372 {
1373         struct uprobe_task *utask = current->utask;
1374
1375         if (unlikely(utask && utask->active_uprobe))
1376                 return utask->vaddr;
1377
1378         return instruction_pointer(regs);
1379 }
1380
1381 /*
1382  * Called with no locks held.
1383  * Called in context of a exiting or a exec-ing thread.
1384  */
1385 void uprobe_free_utask(struct task_struct *t)
1386 {
1387         struct uprobe_task *utask = t->utask;
1388         struct return_instance *ri, *tmp;
1389
1390         if (!utask)
1391                 return;
1392
1393         if (utask->active_uprobe)
1394                 put_uprobe(utask->active_uprobe);
1395
1396         ri = utask->return_instances;
1397         while (ri) {
1398                 tmp = ri;
1399                 ri = ri->next;
1400
1401                 put_uprobe(tmp->uprobe);
1402                 kfree(tmp);
1403         }
1404
1405         xol_free_insn_slot(t);
1406         kfree(utask);
1407         t->utask = NULL;
1408 }
1409
1410 /*
1411  * Allocate a uprobe_task object for the task if if necessary.
1412  * Called when the thread hits a breakpoint.
1413  *
1414  * Returns:
1415  * - pointer to new uprobe_task on success
1416  * - NULL otherwise
1417  */
1418 static struct uprobe_task *get_utask(void)
1419 {
1420         if (!current->utask)
1421                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1422         return current->utask;
1423 }
1424
1425 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1426 {
1427         struct uprobe_task *n_utask;
1428         struct return_instance **p, *o, *n;
1429
1430         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1431         if (!n_utask)
1432                 return -ENOMEM;
1433         t->utask = n_utask;
1434
1435         p = &n_utask->return_instances;
1436         for (o = o_utask->return_instances; o; o = o->next) {
1437                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1438                 if (!n)
1439                         return -ENOMEM;
1440
1441                 *n = *o;
1442                 get_uprobe(n->uprobe);
1443                 n->next = NULL;
1444
1445                 *p = n;
1446                 p = &n->next;
1447                 n_utask->depth++;
1448         }
1449
1450         return 0;
1451 }
1452
1453 static void uprobe_warn(struct task_struct *t, const char *msg)
1454 {
1455         pr_warn("uprobe: %s:%d failed to %s\n",
1456                         current->comm, current->pid, msg);
1457 }
1458
1459 static void dup_xol_work(struct callback_head *work)
1460 {
1461         if (current->flags & PF_EXITING)
1462                 return;
1463
1464         if (!__create_xol_area(current->utask->dup_xol_addr))
1465                 uprobe_warn(current, "dup xol area");
1466 }
1467
1468 /*
1469  * Called in context of a new clone/fork from copy_process.
1470  */
1471 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1472 {
1473         struct uprobe_task *utask = current->utask;
1474         struct mm_struct *mm = current->mm;
1475         struct xol_area *area;
1476
1477         t->utask = NULL;
1478
1479         if (!utask || !utask->return_instances)
1480                 return;
1481
1482         if (mm == t->mm && !(flags & CLONE_VFORK))
1483                 return;
1484
1485         if (dup_utask(t, utask))
1486                 return uprobe_warn(t, "dup ret instances");
1487
1488         /* The task can fork() after dup_xol_work() fails */
1489         area = mm->uprobes_state.xol_area;
1490         if (!area)
1491                 return uprobe_warn(t, "dup xol area");
1492
1493         if (mm == t->mm)
1494                 return;
1495
1496         t->utask->dup_xol_addr = area->vaddr;
1497         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1498         task_work_add(t, &t->utask->dup_xol_work, true);
1499 }
1500
1501 /*
1502  * Current area->vaddr notion assume the trampoline address is always
1503  * equal area->vaddr.
1504  *
1505  * Returns -1 in case the xol_area is not allocated.
1506  */
1507 static unsigned long get_trampoline_vaddr(void)
1508 {
1509         struct xol_area *area;
1510         unsigned long trampoline_vaddr = -1;
1511
1512         area = current->mm->uprobes_state.xol_area;
1513         smp_read_barrier_depends();
1514         if (area)
1515                 trampoline_vaddr = area->vaddr;
1516
1517         return trampoline_vaddr;
1518 }
1519
1520 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1521 {
1522         struct return_instance *ri;
1523         struct uprobe_task *utask;
1524         unsigned long orig_ret_vaddr, trampoline_vaddr;
1525         bool chained = false;
1526
1527         if (!get_xol_area())
1528                 return;
1529
1530         utask = get_utask();
1531         if (!utask)
1532                 return;
1533
1534         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1535                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1536                                 " nestedness limit pid/tgid=%d/%d\n",
1537                                 current->pid, current->tgid);
1538                 return;
1539         }
1540
1541         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1542         if (!ri)
1543                 goto fail;
1544
1545         trampoline_vaddr = get_trampoline_vaddr();
1546         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1547         if (orig_ret_vaddr == -1)
1548                 goto fail;
1549
1550         /*
1551          * We don't want to keep trampoline address in stack, rather keep the
1552          * original return address of first caller thru all the consequent
1553          * instances. This also makes breakpoint unwrapping easier.
1554          */
1555         if (orig_ret_vaddr == trampoline_vaddr) {
1556                 if (!utask->return_instances) {
1557                         /*
1558                          * This situation is not possible. Likely we have an
1559                          * attack from user-space.
1560                          */
1561                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1562                                                 current->pid, current->tgid);
1563                         goto fail;
1564                 }
1565
1566                 chained = true;
1567                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1568         }
1569
1570         ri->uprobe = get_uprobe(uprobe);
1571         ri->func = instruction_pointer(regs);
1572         ri->orig_ret_vaddr = orig_ret_vaddr;
1573         ri->chained = chained;
1574
1575         utask->depth++;
1576
1577         /* add instance to the stack */
1578         ri->next = utask->return_instances;
1579         utask->return_instances = ri;
1580
1581         return;
1582
1583  fail:
1584         kfree(ri);
1585 }
1586
1587 /* Prepare to single-step probed instruction out of line. */
1588 static int
1589 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1590 {
1591         struct uprobe_task *utask;
1592         unsigned long xol_vaddr;
1593         int err;
1594
1595         utask = get_utask();
1596         if (!utask)
1597                 return -ENOMEM;
1598
1599         xol_vaddr = xol_get_insn_slot(uprobe);
1600         if (!xol_vaddr)
1601                 return -ENOMEM;
1602
1603         utask->xol_vaddr = xol_vaddr;
1604         utask->vaddr = bp_vaddr;
1605
1606         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1607         if (unlikely(err)) {
1608                 xol_free_insn_slot(current);
1609                 return err;
1610         }
1611
1612         utask->active_uprobe = uprobe;
1613         utask->state = UTASK_SSTEP;
1614         return 0;
1615 }
1616
1617 /*
1618  * If we are singlestepping, then ensure this thread is not connected to
1619  * non-fatal signals until completion of singlestep.  When xol insn itself
1620  * triggers the signal,  restart the original insn even if the task is
1621  * already SIGKILL'ed (since coredump should report the correct ip).  This
1622  * is even more important if the task has a handler for SIGSEGV/etc, The
1623  * _same_ instruction should be repeated again after return from the signal
1624  * handler, and SSTEP can never finish in this case.
1625  */
1626 bool uprobe_deny_signal(void)
1627 {
1628         struct task_struct *t = current;
1629         struct uprobe_task *utask = t->utask;
1630
1631         if (likely(!utask || !utask->active_uprobe))
1632                 return false;
1633
1634         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1635
1636         if (signal_pending(t)) {
1637                 spin_lock_irq(&t->sighand->siglock);
1638                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1639                 spin_unlock_irq(&t->sighand->siglock);
1640
1641                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1642                         utask->state = UTASK_SSTEP_TRAPPED;
1643                         set_tsk_thread_flag(t, TIF_UPROBE);
1644                 }
1645         }
1646
1647         return true;
1648 }
1649
1650 static void mmf_recalc_uprobes(struct mm_struct *mm)
1651 {
1652         struct vm_area_struct *vma;
1653
1654         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1655                 if (!valid_vma(vma, false))
1656                         continue;
1657                 /*
1658                  * This is not strictly accurate, we can race with
1659                  * uprobe_unregister() and see the already removed
1660                  * uprobe if delete_uprobe() was not yet called.
1661                  * Or this uprobe can be filtered out.
1662                  */
1663                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1664                         return;
1665         }
1666
1667         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1668 }
1669
1670 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1671 {
1672         struct page *page;
1673         uprobe_opcode_t opcode;
1674         int result;
1675
1676         pagefault_disable();
1677         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1678                                                         sizeof(opcode));
1679         pagefault_enable();
1680
1681         if (likely(result == 0))
1682                 goto out;
1683
1684         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1685         if (result < 0)
1686                 return result;
1687
1688         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1689         put_page(page);
1690  out:
1691         /* This needs to return true for any variant of the trap insn */
1692         return is_trap_insn(&opcode);
1693 }
1694
1695 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1696 {
1697         struct mm_struct *mm = current->mm;
1698         struct uprobe *uprobe = NULL;
1699         struct vm_area_struct *vma;
1700
1701         down_read(&mm->mmap_sem);
1702         vma = find_vma(mm, bp_vaddr);
1703         if (vma && vma->vm_start <= bp_vaddr) {
1704                 if (valid_vma(vma, false)) {
1705                         struct inode *inode = file_inode(vma->vm_file);
1706                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1707
1708                         uprobe = find_uprobe(inode, offset);
1709                 }
1710
1711                 if (!uprobe)
1712                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1713         } else {
1714                 *is_swbp = -EFAULT;
1715         }
1716
1717         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1718                 mmf_recalc_uprobes(mm);
1719         up_read(&mm->mmap_sem);
1720
1721         return uprobe;
1722 }
1723
1724 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1725 {
1726         struct uprobe_consumer *uc;
1727         int remove = UPROBE_HANDLER_REMOVE;
1728         bool need_prep = false; /* prepare return uprobe, when needed */
1729
1730         down_read(&uprobe->register_rwsem);
1731         for (uc = uprobe->consumers; uc; uc = uc->next) {
1732                 int rc = 0;
1733
1734                 if (uc->handler) {
1735                         rc = uc->handler(uc, regs);
1736                         WARN(rc & ~UPROBE_HANDLER_MASK,
1737                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1738                 }
1739
1740                 if (uc->ret_handler)
1741                         need_prep = true;
1742
1743                 remove &= rc;
1744         }
1745
1746         if (need_prep && !remove)
1747                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1748
1749         if (remove && uprobe->consumers) {
1750                 WARN_ON(!uprobe_is_active(uprobe));
1751                 unapply_uprobe(uprobe, current->mm);
1752         }
1753         up_read(&uprobe->register_rwsem);
1754 }
1755
1756 static void
1757 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1758 {
1759         struct uprobe *uprobe = ri->uprobe;
1760         struct uprobe_consumer *uc;
1761
1762         down_read(&uprobe->register_rwsem);
1763         for (uc = uprobe->consumers; uc; uc = uc->next) {
1764                 if (uc->ret_handler)
1765                         uc->ret_handler(uc, ri->func, regs);
1766         }
1767         up_read(&uprobe->register_rwsem);
1768 }
1769
1770 static bool handle_trampoline(struct pt_regs *regs)
1771 {
1772         struct uprobe_task *utask;
1773         struct return_instance *ri, *tmp;
1774         bool chained;
1775
1776         utask = current->utask;
1777         if (!utask)
1778                 return false;
1779
1780         ri = utask->return_instances;
1781         if (!ri)
1782                 return false;
1783
1784         /*
1785          * TODO: we should throw out return_instance's invalidated by
1786          * longjmp(), currently we assume that the probed function always
1787          * returns.
1788          */
1789         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1790
1791         for (;;) {
1792                 handle_uretprobe_chain(ri, regs);
1793
1794                 chained = ri->chained;
1795                 put_uprobe(ri->uprobe);
1796
1797                 tmp = ri;
1798                 ri = ri->next;
1799                 kfree(tmp);
1800                 utask->depth--;
1801
1802                 if (!chained)
1803                         break;
1804                 BUG_ON(!ri);
1805         }
1806
1807         utask->return_instances = ri;
1808
1809         return true;
1810 }
1811
1812 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1813 {
1814         return false;
1815 }
1816
1817 /*
1818  * Run handler and ask thread to singlestep.
1819  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1820  */
1821 static void handle_swbp(struct pt_regs *regs)
1822 {
1823         struct uprobe *uprobe;
1824         unsigned long bp_vaddr;
1825         int uninitialized_var(is_swbp);
1826
1827         bp_vaddr = uprobe_get_swbp_addr(regs);
1828         if (bp_vaddr == get_trampoline_vaddr()) {
1829                 if (handle_trampoline(regs))
1830                         return;
1831
1832                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1833                                                 current->pid, current->tgid);
1834         }
1835
1836         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1837         if (!uprobe) {
1838                 if (is_swbp > 0) {
1839                         /* No matching uprobe; signal SIGTRAP. */
1840                         send_sig(SIGTRAP, current, 0);
1841                 } else {
1842                         /*
1843                          * Either we raced with uprobe_unregister() or we can't
1844                          * access this memory. The latter is only possible if
1845                          * another thread plays with our ->mm. In both cases
1846                          * we can simply restart. If this vma was unmapped we
1847                          * can pretend this insn was not executed yet and get
1848                          * the (correct) SIGSEGV after restart.
1849                          */
1850                         instruction_pointer_set(regs, bp_vaddr);
1851                 }
1852                 return;
1853         }
1854
1855         /* change it in advance for ->handler() and restart */
1856         instruction_pointer_set(regs, bp_vaddr);
1857
1858         /*
1859          * TODO: move copy_insn/etc into _register and remove this hack.
1860          * After we hit the bp, _unregister + _register can install the
1861          * new and not-yet-analyzed uprobe at the same address, restart.
1862          */
1863         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1864         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1865                 goto out;
1866
1867         /* Tracing handlers use ->utask to communicate with fetch methods */
1868         if (!get_utask())
1869                 goto out;
1870
1871         if (arch_uprobe_ignore(&uprobe->arch, regs))
1872                 goto out;
1873
1874         handler_chain(uprobe, regs);
1875
1876         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1877                 goto out;
1878
1879         if (!pre_ssout(uprobe, regs, bp_vaddr))
1880                 return;
1881
1882         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1883 out:
1884         put_uprobe(uprobe);
1885 }
1886
1887 /*
1888  * Perform required fix-ups and disable singlestep.
1889  * Allow pending signals to take effect.
1890  */
1891 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1892 {
1893         struct uprobe *uprobe;
1894         int err = 0;
1895
1896         uprobe = utask->active_uprobe;
1897         if (utask->state == UTASK_SSTEP_ACK)
1898                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1899         else if (utask->state == UTASK_SSTEP_TRAPPED)
1900                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1901         else
1902                 WARN_ON_ONCE(1);
1903
1904         put_uprobe(uprobe);
1905         utask->active_uprobe = NULL;
1906         utask->state = UTASK_RUNNING;
1907         xol_free_insn_slot(current);
1908
1909         spin_lock_irq(&current->sighand->siglock);
1910         recalc_sigpending(); /* see uprobe_deny_signal() */
1911         spin_unlock_irq(&current->sighand->siglock);
1912
1913         if (unlikely(err)) {
1914                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1915                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1916         }
1917 }
1918
1919 /*
1920  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1921  * allows the thread to return from interrupt. After that handle_swbp()
1922  * sets utask->active_uprobe.
1923  *
1924  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1925  * and allows the thread to return from interrupt.
1926  *
1927  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1928  * uprobe_notify_resume().
1929  */
1930 void uprobe_notify_resume(struct pt_regs *regs)
1931 {
1932         struct uprobe_task *utask;
1933
1934         clear_thread_flag(TIF_UPROBE);
1935
1936         utask = current->utask;
1937         if (utask && utask->active_uprobe)
1938                 handle_singlestep(utask, regs);
1939         else
1940                 handle_swbp(regs);
1941 }
1942
1943 /*
1944  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1945  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1946  */
1947 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1948 {
1949         if (!current->mm)
1950                 return 0;
1951
1952         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1953             (!current->utask || !current->utask->return_instances))
1954                 return 0;
1955
1956         set_thread_flag(TIF_UPROBE);
1957         return 1;
1958 }
1959
1960 /*
1961  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1962  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1963  */
1964 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1965 {
1966         struct uprobe_task *utask = current->utask;
1967
1968         if (!current->mm || !utask || !utask->active_uprobe)
1969                 /* task is currently not uprobed */
1970                 return 0;
1971
1972         utask->state = UTASK_SSTEP_ACK;
1973         set_thread_flag(TIF_UPROBE);
1974         return 1;
1975 }
1976
1977 static struct notifier_block uprobe_exception_nb = {
1978         .notifier_call          = arch_uprobe_exception_notify,
1979         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1980 };
1981
1982 static int __init init_uprobes(void)
1983 {
1984         int i;
1985
1986         for (i = 0; i < UPROBES_HASH_SZ; i++)
1987                 mutex_init(&uprobes_mmap_mutex[i]);
1988
1989         if (percpu_init_rwsem(&dup_mmap_sem))
1990                 return -ENOMEM;
1991
1992         return register_die_notifier(&uprobe_exception_nb);
1993 }
1994 __initcall(init_uprobes);