uprobes: Copy_insn() should not return -ENOMEM if __copy_insn() fails
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66
67 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79
80 struct uprobe {
81         struct rb_node          rb_node;        /* node in the rb tree */
82         atomic_t                ref;
83         struct rw_semaphore     consumer_rwsem;
84         struct list_head        pending_list;
85         struct uprobe_consumer  *consumers;
86         struct inode            *inode;         /* Also hold a ref to inode */
87         loff_t                  offset;
88         int                     flags;
89         struct arch_uprobe      arch;
90 };
91
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *      - is_register: indicates if we are in register context.
97  *      - Return 1 if the specified virtual address is in an
98  *        executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102         if (!vma->vm_file)
103                 return false;
104
105         if (!is_register)
106                 return true;
107
108         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109                                 == (VM_READ|VM_EXEC))
110                 return true;
111
112         return false;
113 }
114
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117         loff_t vaddr;
118
119         vaddr = vma->vm_start + offset;
120         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121
122         return vaddr;
123 }
124
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @page:     the cowed page we are replacing by kpage
131  * @kpage:    the modified page we replace page by
132  *
133  * Returns 0 on success, -EFAULT on failure.
134  */
135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
136 {
137         struct mm_struct *mm = vma->vm_mm;
138         unsigned long addr;
139         spinlock_t *ptl;
140         pte_t *ptep;
141
142         addr = page_address_in_vma(page, vma);
143         if (addr == -EFAULT)
144                 return -EFAULT;
145
146         ptep = page_check_address(page, mm, addr, &ptl, 0);
147         if (!ptep)
148                 return -EAGAIN;
149
150         get_page(kpage);
151         page_add_new_anon_rmap(kpage, vma, addr);
152
153         if (!PageAnon(page)) {
154                 dec_mm_counter(mm, MM_FILEPAGES);
155                 inc_mm_counter(mm, MM_ANONPAGES);
156         }
157
158         flush_cache_page(vma, addr, pte_pfn(*ptep));
159         ptep_clear_flush(vma, addr, ptep);
160         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
161
162         page_remove_rmap(page);
163         if (!page_mapped(page))
164                 try_to_free_swap(page);
165         put_page(page);
166         pte_unmap_unlock(ptep, ptl);
167
168         return 0;
169 }
170
171 /**
172  * is_swbp_insn - check if instruction is breakpoint instruction.
173  * @insn: instruction to be checked.
174  * Default implementation of is_swbp_insn
175  * Returns true if @insn is a breakpoint instruction.
176  */
177 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
178 {
179         return *insn == UPROBE_SWBP_INSN;
180 }
181
182 /*
183  * NOTE:
184  * Expect the breakpoint instruction to be the smallest size instruction for
185  * the architecture. If an arch has variable length instruction and the
186  * breakpoint instruction is not of the smallest length instruction
187  * supported by that architecture then we need to modify read_opcode /
188  * write_opcode accordingly. This would never be a problem for archs that
189  * have fixed length instructions.
190  */
191
192 /*
193  * write_opcode - write the opcode at a given virtual address.
194  * @auprobe: arch breakpointing information.
195  * @mm: the probed process address space.
196  * @vaddr: the virtual address to store the opcode.
197  * @opcode: opcode to be written at @vaddr.
198  *
199  * Called with mm->mmap_sem held (for read and with a reference to
200  * mm).
201  *
202  * For mm @mm, write the opcode at @vaddr.
203  * Return 0 (success) or a negative errno.
204  */
205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206                         unsigned long vaddr, uprobe_opcode_t opcode)
207 {
208         struct page *old_page, *new_page;
209         struct address_space *mapping;
210         void *vaddr_old, *vaddr_new;
211         struct vm_area_struct *vma;
212         struct uprobe *uprobe;
213         unsigned long pgoff;
214         loff_t addr;
215         int ret;
216 retry:
217         /* Read the page with vaddr into memory */
218         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
219         if (ret <= 0)
220                 return ret;
221
222         ret = -EINVAL;
223
224         /*
225          * We are interested in text pages only. Our pages of interest
226          * should be mapped for read and execute only. We desist from
227          * adding probes in write mapped pages since the breakpoints
228          * might end up in the file copy.
229          */
230         if (!valid_vma(vma, is_swbp_insn(&opcode)))
231                 goto put_out;
232
233         uprobe = container_of(auprobe, struct uprobe, arch);
234         mapping = uprobe->inode->i_mapping;
235         if (mapping != vma->vm_file->f_mapping)
236                 goto put_out;
237
238         addr = vma_address(vma, uprobe->offset);
239         if (vaddr != (unsigned long)addr)
240                 goto put_out;
241
242         ret = -ENOMEM;
243         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
244         if (!new_page)
245                 goto put_out;
246
247         __SetPageUptodate(new_page);
248
249         /*
250          * lock page will serialize against do_wp_page()'s
251          * PageAnon() handling
252          */
253         lock_page(old_page);
254         /* copy the page now that we've got it stable */
255         vaddr_old = kmap_atomic(old_page);
256         vaddr_new = kmap_atomic(new_page);
257
258         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
259
260         /* poke the new insn in, ASSUMES we don't cross page boundary */
261         pgoff = (vaddr & ~PAGE_MASK);
262         BUG_ON(pgoff + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
263         memcpy(vaddr_new + pgoff, &opcode, UPROBE_SWBP_INSN_SIZE);
264
265         kunmap_atomic(vaddr_new);
266         kunmap_atomic(vaddr_old);
267
268         ret = anon_vma_prepare(vma);
269         if (ret)
270                 goto unlock_out;
271
272         lock_page(new_page);
273         ret = __replace_page(vma, old_page, new_page);
274         unlock_page(new_page);
275
276 unlock_out:
277         unlock_page(old_page);
278         page_cache_release(new_page);
279
280 put_out:
281         put_page(old_page);
282
283         if (unlikely(ret == -EAGAIN))
284                 goto retry;
285         return ret;
286 }
287
288 /**
289  * read_opcode - read the opcode at a given virtual address.
290  * @mm: the probed process address space.
291  * @vaddr: the virtual address to read the opcode.
292  * @opcode: location to store the read opcode.
293  *
294  * Called with mm->mmap_sem held (for read and with a reference to
295  * mm.
296  *
297  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
298  * Return 0 (success) or a negative errno.
299  */
300 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
301 {
302         struct page *page;
303         void *vaddr_new;
304         int ret;
305
306         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
307         if (ret <= 0)
308                 return ret;
309
310         lock_page(page);
311         vaddr_new = kmap_atomic(page);
312         vaddr &= ~PAGE_MASK;
313         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
314         kunmap_atomic(vaddr_new);
315         unlock_page(page);
316
317         put_page(page);
318
319         return 0;
320 }
321
322 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
323 {
324         uprobe_opcode_t opcode;
325         int result;
326
327         if (current->mm == mm) {
328                 pagefault_disable();
329                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
330                                                                 sizeof(opcode));
331                 pagefault_enable();
332
333                 if (likely(result == 0))
334                         goto out;
335         }
336
337         result = read_opcode(mm, vaddr, &opcode);
338         if (result)
339                 return result;
340 out:
341         if (is_swbp_insn(&opcode))
342                 return 1;
343
344         return 0;
345 }
346
347 /**
348  * set_swbp - store breakpoint at a given address.
349  * @auprobe: arch specific probepoint information.
350  * @mm: the probed process address space.
351  * @vaddr: the virtual address to insert the opcode.
352  *
353  * For mm @mm, store the breakpoint instruction at @vaddr.
354  * Return 0 (success) or a negative errno.
355  */
356 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
357 {
358         int result;
359         /*
360          * See the comment near uprobes_hash().
361          */
362         result = is_swbp_at_addr(mm, vaddr);
363         if (result == 1)
364                 return -EEXIST;
365
366         if (result)
367                 return result;
368
369         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
370 }
371
372 /**
373  * set_orig_insn - Restore the original instruction.
374  * @mm: the probed process address space.
375  * @auprobe: arch specific probepoint information.
376  * @vaddr: the virtual address to insert the opcode.
377  * @verify: if true, verify existance of breakpoint instruction.
378  *
379  * For mm @mm, restore the original opcode (opcode) at @vaddr.
380  * Return 0 (success) or a negative errno.
381  */
382 int __weak
383 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
384 {
385         if (verify) {
386                 int result;
387
388                 result = is_swbp_at_addr(mm, vaddr);
389                 if (!result)
390                         return -EINVAL;
391
392                 if (result != 1)
393                         return result;
394         }
395         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
396 }
397
398 static int match_uprobe(struct uprobe *l, struct uprobe *r)
399 {
400         if (l->inode < r->inode)
401                 return -1;
402
403         if (l->inode > r->inode)
404                 return 1;
405
406         if (l->offset < r->offset)
407                 return -1;
408
409         if (l->offset > r->offset)
410                 return 1;
411
412         return 0;
413 }
414
415 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
416 {
417         struct uprobe u = { .inode = inode, .offset = offset };
418         struct rb_node *n = uprobes_tree.rb_node;
419         struct uprobe *uprobe;
420         int match;
421
422         while (n) {
423                 uprobe = rb_entry(n, struct uprobe, rb_node);
424                 match = match_uprobe(&u, uprobe);
425                 if (!match) {
426                         atomic_inc(&uprobe->ref);
427                         return uprobe;
428                 }
429
430                 if (match < 0)
431                         n = n->rb_left;
432                 else
433                         n = n->rb_right;
434         }
435         return NULL;
436 }
437
438 /*
439  * Find a uprobe corresponding to a given inode:offset
440  * Acquires uprobes_treelock
441  */
442 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
443 {
444         struct uprobe *uprobe;
445         unsigned long flags;
446
447         spin_lock_irqsave(&uprobes_treelock, flags);
448         uprobe = __find_uprobe(inode, offset);
449         spin_unlock_irqrestore(&uprobes_treelock, flags);
450
451         return uprobe;
452 }
453
454 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
455 {
456         struct rb_node **p = &uprobes_tree.rb_node;
457         struct rb_node *parent = NULL;
458         struct uprobe *u;
459         int match;
460
461         while (*p) {
462                 parent = *p;
463                 u = rb_entry(parent, struct uprobe, rb_node);
464                 match = match_uprobe(uprobe, u);
465                 if (!match) {
466                         atomic_inc(&u->ref);
467                         return u;
468                 }
469
470                 if (match < 0)
471                         p = &parent->rb_left;
472                 else
473                         p = &parent->rb_right;
474
475         }
476
477         u = NULL;
478         rb_link_node(&uprobe->rb_node, parent, p);
479         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
480         /* get access + creation ref */
481         atomic_set(&uprobe->ref, 2);
482
483         return u;
484 }
485
486 /*
487  * Acquire uprobes_treelock.
488  * Matching uprobe already exists in rbtree;
489  *      increment (access refcount) and return the matching uprobe.
490  *
491  * No matching uprobe; insert the uprobe in rb_tree;
492  *      get a double refcount (access + creation) and return NULL.
493  */
494 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
495 {
496         unsigned long flags;
497         struct uprobe *u;
498
499         spin_lock_irqsave(&uprobes_treelock, flags);
500         u = __insert_uprobe(uprobe);
501         spin_unlock_irqrestore(&uprobes_treelock, flags);
502
503         /* For now assume that the instruction need not be single-stepped */
504         uprobe->flags |= UPROBE_SKIP_SSTEP;
505
506         return u;
507 }
508
509 static void put_uprobe(struct uprobe *uprobe)
510 {
511         if (atomic_dec_and_test(&uprobe->ref))
512                 kfree(uprobe);
513 }
514
515 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
516 {
517         struct uprobe *uprobe, *cur_uprobe;
518
519         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
520         if (!uprobe)
521                 return NULL;
522
523         uprobe->inode = igrab(inode);
524         uprobe->offset = offset;
525         init_rwsem(&uprobe->consumer_rwsem);
526         INIT_LIST_HEAD(&uprobe->pending_list);
527
528         /* add to uprobes_tree, sorted on inode:offset */
529         cur_uprobe = insert_uprobe(uprobe);
530
531         /* a uprobe exists for this inode:offset combination */
532         if (cur_uprobe) {
533                 kfree(uprobe);
534                 uprobe = cur_uprobe;
535                 iput(inode);
536         } else {
537                 atomic_inc(&uprobe_events);
538         }
539
540         return uprobe;
541 }
542
543 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
544 {
545         struct uprobe_consumer *uc;
546
547         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
548                 return;
549
550         down_read(&uprobe->consumer_rwsem);
551         for (uc = uprobe->consumers; uc; uc = uc->next) {
552                 if (!uc->filter || uc->filter(uc, current))
553                         uc->handler(uc, regs);
554         }
555         up_read(&uprobe->consumer_rwsem);
556 }
557
558 /* Returns the previous consumer */
559 static struct uprobe_consumer *
560 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
561 {
562         down_write(&uprobe->consumer_rwsem);
563         uc->next = uprobe->consumers;
564         uprobe->consumers = uc;
565         up_write(&uprobe->consumer_rwsem);
566
567         return uc->next;
568 }
569
570 /*
571  * For uprobe @uprobe, delete the consumer @uc.
572  * Return true if the @uc is deleted successfully
573  * or return false.
574  */
575 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
576 {
577         struct uprobe_consumer **con;
578         bool ret = false;
579
580         down_write(&uprobe->consumer_rwsem);
581         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
582                 if (*con == uc) {
583                         *con = uc->next;
584                         ret = true;
585                         break;
586                 }
587         }
588         up_write(&uprobe->consumer_rwsem);
589
590         return ret;
591 }
592
593 static int
594 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
595                         unsigned long nbytes, unsigned long offset)
596 {
597         struct page *page;
598         void *vaddr;
599         unsigned long off1;
600         unsigned long idx;
601
602         if (!filp)
603                 return -EINVAL;
604
605         if (!mapping->a_ops->readpage)
606                 return -EIO;
607
608         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
609         off1 = offset &= ~PAGE_MASK;
610
611         /*
612          * Ensure that the page that has the original instruction is
613          * populated and in page-cache.
614          */
615         page = read_mapping_page(mapping, idx, filp);
616         if (IS_ERR(page))
617                 return PTR_ERR(page);
618
619         vaddr = kmap_atomic(page);
620         memcpy(insn, vaddr + off1, nbytes);
621         kunmap_atomic(vaddr);
622         page_cache_release(page);
623
624         return 0;
625 }
626
627 static int copy_insn(struct uprobe *uprobe, struct file *filp)
628 {
629         struct address_space *mapping;
630         unsigned long nbytes;
631         int bytes;
632
633         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
634         mapping = uprobe->inode->i_mapping;
635
636         /* Instruction at end of binary; copy only available bytes */
637         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
638                 bytes = uprobe->inode->i_size - uprobe->offset;
639         else
640                 bytes = MAX_UINSN_BYTES;
641
642         /* Instruction at the page-boundary; copy bytes in second page */
643         if (nbytes < bytes) {
644                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
645                                 bytes - nbytes, uprobe->offset + nbytes);
646                 if (err)
647                         return err;
648                 bytes = nbytes;
649         }
650         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
651 }
652
653 /*
654  * How mm->uprobes_state.count gets updated
655  * uprobe_mmap() increments the count if
656  *      - it successfully adds a breakpoint.
657  *      - it cannot add a breakpoint, but sees that there is a underlying
658  *        breakpoint (via a is_swbp_at_addr()).
659  *
660  * uprobe_munmap() decrements the count if
661  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
662  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
663  *        unless a uprobe_mmap kicks in, since the old vma would be
664  *        dropped just after uprobe_munmap.)
665  *
666  * uprobe_register increments the count if:
667  *      - it successfully adds a breakpoint.
668  *
669  * uprobe_unregister decrements the count if:
670  *      - it sees a underlying breakpoint and removes successfully.
671  *        (via is_swbp_at_addr)
672  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
673  *        since there is no underlying breakpoint after the
674  *        breakpoint removal.)
675  */
676 static int
677 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
678                         struct vm_area_struct *vma, loff_t vaddr)
679 {
680         unsigned long addr;
681         int ret;
682
683         /*
684          * If probe is being deleted, unregister thread could be done with
685          * the vma-rmap-walk through. Adding a probe now can be fatal since
686          * nobody will be able to cleanup. Also we could be from fork or
687          * mremap path, where the probe might have already been inserted.
688          * Hence behave as if probe already existed.
689          */
690         if (!uprobe->consumers)
691                 return -EEXIST;
692
693         addr = (unsigned long)vaddr;
694
695         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
696                 ret = copy_insn(uprobe, vma->vm_file);
697                 if (ret)
698                         return ret;
699
700                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
701                         return -ENOTSUPP;
702
703                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
704                 if (ret)
705                         return ret;
706
707                 uprobe->flags |= UPROBE_COPY_INSN;
708         }
709
710         /*
711          * Ideally, should be updating the probe count after the breakpoint
712          * has been successfully inserted. However a thread could hit the
713          * breakpoint we just inserted even before the probe count is
714          * incremented. If this is the first breakpoint placed, breakpoint
715          * notifier might ignore uprobes and pass the trap to the thread.
716          * Hence increment before and decrement on failure.
717          */
718         atomic_inc(&mm->uprobes_state.count);
719         ret = set_swbp(&uprobe->arch, mm, addr);
720         if (ret)
721                 atomic_dec(&mm->uprobes_state.count);
722
723         return ret;
724 }
725
726 static void
727 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
728 {
729         if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
730                 atomic_dec(&mm->uprobes_state.count);
731 }
732
733 /*
734  * There could be threads that have already hit the breakpoint. They
735  * will recheck the current insn and restart if find_uprobe() fails.
736  * See find_active_uprobe().
737  */
738 static void delete_uprobe(struct uprobe *uprobe)
739 {
740         unsigned long flags;
741
742         spin_lock_irqsave(&uprobes_treelock, flags);
743         rb_erase(&uprobe->rb_node, &uprobes_tree);
744         spin_unlock_irqrestore(&uprobes_treelock, flags);
745         iput(uprobe->inode);
746         put_uprobe(uprobe);
747         atomic_dec(&uprobe_events);
748 }
749
750 struct map_info {
751         struct map_info *next;
752         struct mm_struct *mm;
753         loff_t vaddr;
754 };
755
756 static inline struct map_info *free_map_info(struct map_info *info)
757 {
758         struct map_info *next = info->next;
759         kfree(info);
760         return next;
761 }
762
763 static struct map_info *
764 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
765 {
766         unsigned long pgoff = offset >> PAGE_SHIFT;
767         struct prio_tree_iter iter;
768         struct vm_area_struct *vma;
769         struct map_info *curr = NULL;
770         struct map_info *prev = NULL;
771         struct map_info *info;
772         int more = 0;
773
774  again:
775         mutex_lock(&mapping->i_mmap_mutex);
776         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
777                 if (!valid_vma(vma, is_register))
778                         continue;
779
780                 if (!prev && !more) {
781                         /*
782                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
783                          * reclaim. This is optimistic, no harm done if it fails.
784                          */
785                         prev = kmalloc(sizeof(struct map_info),
786                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
787                         if (prev)
788                                 prev->next = NULL;
789                 }
790                 if (!prev) {
791                         more++;
792                         continue;
793                 }
794
795                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
796                         continue;
797
798                 info = prev;
799                 prev = prev->next;
800                 info->next = curr;
801                 curr = info;
802
803                 info->mm = vma->vm_mm;
804                 info->vaddr = vma_address(vma, offset);
805         }
806         mutex_unlock(&mapping->i_mmap_mutex);
807
808         if (!more)
809                 goto out;
810
811         prev = curr;
812         while (curr) {
813                 mmput(curr->mm);
814                 curr = curr->next;
815         }
816
817         do {
818                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
819                 if (!info) {
820                         curr = ERR_PTR(-ENOMEM);
821                         goto out;
822                 }
823                 info->next = prev;
824                 prev = info;
825         } while (--more);
826
827         goto again;
828  out:
829         while (prev)
830                 prev = free_map_info(prev);
831         return curr;
832 }
833
834 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
835 {
836         struct map_info *info;
837         int err = 0;
838
839         info = build_map_info(uprobe->inode->i_mapping,
840                                         uprobe->offset, is_register);
841         if (IS_ERR(info))
842                 return PTR_ERR(info);
843
844         while (info) {
845                 struct mm_struct *mm = info->mm;
846                 struct vm_area_struct *vma;
847                 loff_t vaddr;
848
849                 if (err)
850                         goto free;
851
852                 down_write(&mm->mmap_sem);
853                 vma = find_vma(mm, (unsigned long)info->vaddr);
854                 if (!vma || !valid_vma(vma, is_register))
855                         goto unlock;
856
857                 vaddr = vma_address(vma, uprobe->offset);
858                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
859                                                 vaddr != info->vaddr)
860                         goto unlock;
861
862                 if (is_register) {
863                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
864                         /*
865                          * We can race against uprobe_mmap(), see the
866                          * comment near uprobe_hash().
867                          */
868                         if (err == -EEXIST)
869                                 err = 0;
870                 } else {
871                         remove_breakpoint(uprobe, mm, info->vaddr);
872                 }
873  unlock:
874                 up_write(&mm->mmap_sem);
875  free:
876                 mmput(mm);
877                 info = free_map_info(info);
878         }
879
880         return err;
881 }
882
883 static int __uprobe_register(struct uprobe *uprobe)
884 {
885         return register_for_each_vma(uprobe, true);
886 }
887
888 static void __uprobe_unregister(struct uprobe *uprobe)
889 {
890         if (!register_for_each_vma(uprobe, false))
891                 delete_uprobe(uprobe);
892
893         /* TODO : cant unregister? schedule a worker thread */
894 }
895
896 /*
897  * uprobe_register - register a probe
898  * @inode: the file in which the probe has to be placed.
899  * @offset: offset from the start of the file.
900  * @uc: information on howto handle the probe..
901  *
902  * Apart from the access refcount, uprobe_register() takes a creation
903  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
904  * inserted into the rbtree (i.e first consumer for a @inode:@offset
905  * tuple).  Creation refcount stops uprobe_unregister from freeing the
906  * @uprobe even before the register operation is complete. Creation
907  * refcount is released when the last @uc for the @uprobe
908  * unregisters.
909  *
910  * Return errno if it cannot successully install probes
911  * else return 0 (success)
912  */
913 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
914 {
915         struct uprobe *uprobe;
916         int ret;
917
918         if (!inode || !uc || uc->next)
919                 return -EINVAL;
920
921         if (offset > i_size_read(inode))
922                 return -EINVAL;
923
924         ret = 0;
925         mutex_lock(uprobes_hash(inode));
926         uprobe = alloc_uprobe(inode, offset);
927
928         if (uprobe && !consumer_add(uprobe, uc)) {
929                 ret = __uprobe_register(uprobe);
930                 if (ret) {
931                         uprobe->consumers = NULL;
932                         __uprobe_unregister(uprobe);
933                 } else {
934                         uprobe->flags |= UPROBE_RUN_HANDLER;
935                 }
936         }
937
938         mutex_unlock(uprobes_hash(inode));
939         put_uprobe(uprobe);
940
941         return ret;
942 }
943
944 /*
945  * uprobe_unregister - unregister a already registered probe.
946  * @inode: the file in which the probe has to be removed.
947  * @offset: offset from the start of the file.
948  * @uc: identify which probe if multiple probes are colocated.
949  */
950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
951 {
952         struct uprobe *uprobe;
953
954         if (!inode || !uc)
955                 return;
956
957         uprobe = find_uprobe(inode, offset);
958         if (!uprobe)
959                 return;
960
961         mutex_lock(uprobes_hash(inode));
962
963         if (consumer_del(uprobe, uc)) {
964                 if (!uprobe->consumers) {
965                         __uprobe_unregister(uprobe);
966                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
967                 }
968         }
969
970         mutex_unlock(uprobes_hash(inode));
971         if (uprobe)
972                 put_uprobe(uprobe);
973 }
974
975 /*
976  * Of all the nodes that correspond to the given inode, return the node
977  * with the least offset.
978  */
979 static struct rb_node *find_least_offset_node(struct inode *inode)
980 {
981         struct uprobe u = { .inode = inode, .offset = 0};
982         struct rb_node *n = uprobes_tree.rb_node;
983         struct rb_node *close_node = NULL;
984         struct uprobe *uprobe;
985         int match;
986
987         while (n) {
988                 uprobe = rb_entry(n, struct uprobe, rb_node);
989                 match = match_uprobe(&u, uprobe);
990
991                 if (uprobe->inode == inode)
992                         close_node = n;
993
994                 if (!match)
995                         return close_node;
996
997                 if (match < 0)
998                         n = n->rb_left;
999                 else
1000                         n = n->rb_right;
1001         }
1002
1003         return close_node;
1004 }
1005
1006 /*
1007  * For a given inode, build a list of probes that need to be inserted.
1008  */
1009 static void build_probe_list(struct inode *inode, struct list_head *head)
1010 {
1011         struct uprobe *uprobe;
1012         unsigned long flags;
1013         struct rb_node *n;
1014
1015         spin_lock_irqsave(&uprobes_treelock, flags);
1016
1017         n = find_least_offset_node(inode);
1018
1019         for (; n; n = rb_next(n)) {
1020                 uprobe = rb_entry(n, struct uprobe, rb_node);
1021                 if (uprobe->inode != inode)
1022                         break;
1023
1024                 list_add(&uprobe->pending_list, head);
1025                 atomic_inc(&uprobe->ref);
1026         }
1027
1028         spin_unlock_irqrestore(&uprobes_treelock, flags);
1029 }
1030
1031 /*
1032  * Called from mmap_region.
1033  * called with mm->mmap_sem acquired.
1034  *
1035  * Return -ve no if we fail to insert probes and we cannot
1036  * bail-out.
1037  * Return 0 otherwise. i.e:
1038  *
1039  *      - successful insertion of probes
1040  *      - (or) no possible probes to be inserted.
1041  *      - (or) insertion of probes failed but we can bail-out.
1042  */
1043 int uprobe_mmap(struct vm_area_struct *vma)
1044 {
1045         struct list_head tmp_list;
1046         struct uprobe *uprobe, *u;
1047         struct inode *inode;
1048         int ret, count;
1049
1050         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1051                 return 0;
1052
1053         inode = vma->vm_file->f_mapping->host;
1054         if (!inode)
1055                 return 0;
1056
1057         INIT_LIST_HEAD(&tmp_list);
1058         mutex_lock(uprobes_mmap_hash(inode));
1059         build_probe_list(inode, &tmp_list);
1060
1061         ret = 0;
1062         count = 0;
1063
1064         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1065                 loff_t vaddr;
1066
1067                 list_del(&uprobe->pending_list);
1068                 if (!ret) {
1069                         vaddr = vma_address(vma, uprobe->offset);
1070
1071                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1072                                 put_uprobe(uprobe);
1073                                 continue;
1074                         }
1075
1076                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1077                         /*
1078                          * We can race against uprobe_register(), see the
1079                          * comment near uprobe_hash().
1080                          */
1081                         if (ret == -EEXIST) {
1082                                 ret = 0;
1083
1084                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1085                                         continue;
1086
1087                                 /*
1088                                  * Unable to insert a breakpoint, but
1089                                  * breakpoint lies underneath. Increment the
1090                                  * probe count.
1091                                  */
1092                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1093                         }
1094
1095                         if (!ret)
1096                                 count++;
1097                 }
1098                 put_uprobe(uprobe);
1099         }
1100
1101         mutex_unlock(uprobes_mmap_hash(inode));
1102
1103         if (ret)
1104                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1105
1106         return ret;
1107 }
1108
1109 /*
1110  * Called in context of a munmap of a vma.
1111  */
1112 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1113 {
1114         struct list_head tmp_list;
1115         struct uprobe *uprobe, *u;
1116         struct inode *inode;
1117
1118         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1119                 return;
1120
1121         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1122                 return;
1123
1124         inode = vma->vm_file->f_mapping->host;
1125         if (!inode)
1126                 return;
1127
1128         INIT_LIST_HEAD(&tmp_list);
1129         mutex_lock(uprobes_mmap_hash(inode));
1130         build_probe_list(inode, &tmp_list);
1131
1132         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1133                 loff_t vaddr;
1134
1135                 list_del(&uprobe->pending_list);
1136                 vaddr = vma_address(vma, uprobe->offset);
1137
1138                 if (vaddr >= start && vaddr < end) {
1139                         /*
1140                          * An unregister could have removed the probe before
1141                          * unmap. So check before we decrement the count.
1142                          */
1143                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1144                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1145                 }
1146                 put_uprobe(uprobe);
1147         }
1148         mutex_unlock(uprobes_mmap_hash(inode));
1149 }
1150
1151 /* Slot allocation for XOL */
1152 static int xol_add_vma(struct xol_area *area)
1153 {
1154         struct mm_struct *mm;
1155         int ret;
1156
1157         area->page = alloc_page(GFP_HIGHUSER);
1158         if (!area->page)
1159                 return -ENOMEM;
1160
1161         ret = -EALREADY;
1162         mm = current->mm;
1163
1164         down_write(&mm->mmap_sem);
1165         if (mm->uprobes_state.xol_area)
1166                 goto fail;
1167
1168         ret = -ENOMEM;
1169
1170         /* Try to map as high as possible, this is only a hint. */
1171         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1172         if (area->vaddr & ~PAGE_MASK) {
1173                 ret = area->vaddr;
1174                 goto fail;
1175         }
1176
1177         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1178                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1179         if (ret)
1180                 goto fail;
1181
1182         smp_wmb();      /* pairs with get_xol_area() */
1183         mm->uprobes_state.xol_area = area;
1184         ret = 0;
1185
1186 fail:
1187         up_write(&mm->mmap_sem);
1188         if (ret)
1189                 __free_page(area->page);
1190
1191         return ret;
1192 }
1193
1194 static struct xol_area *get_xol_area(struct mm_struct *mm)
1195 {
1196         struct xol_area *area;
1197
1198         area = mm->uprobes_state.xol_area;
1199         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1200
1201         return area;
1202 }
1203
1204 /*
1205  * xol_alloc_area - Allocate process's xol_area.
1206  * This area will be used for storing instructions for execution out of
1207  * line.
1208  *
1209  * Returns the allocated area or NULL.
1210  */
1211 static struct xol_area *xol_alloc_area(void)
1212 {
1213         struct xol_area *area;
1214
1215         area = kzalloc(sizeof(*area), GFP_KERNEL);
1216         if (unlikely(!area))
1217                 return NULL;
1218
1219         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1220
1221         if (!area->bitmap)
1222                 goto fail;
1223
1224         init_waitqueue_head(&area->wq);
1225         if (!xol_add_vma(area))
1226                 return area;
1227
1228 fail:
1229         kfree(area->bitmap);
1230         kfree(area);
1231
1232         return get_xol_area(current->mm);
1233 }
1234
1235 /*
1236  * uprobe_clear_state - Free the area allocated for slots.
1237  */
1238 void uprobe_clear_state(struct mm_struct *mm)
1239 {
1240         struct xol_area *area = mm->uprobes_state.xol_area;
1241
1242         if (!area)
1243                 return;
1244
1245         put_page(area->page);
1246         kfree(area->bitmap);
1247         kfree(area);
1248 }
1249
1250 /*
1251  * uprobe_reset_state - Free the area allocated for slots.
1252  */
1253 void uprobe_reset_state(struct mm_struct *mm)
1254 {
1255         mm->uprobes_state.xol_area = NULL;
1256         atomic_set(&mm->uprobes_state.count, 0);
1257 }
1258
1259 /*
1260  *  - search for a free slot.
1261  */
1262 static unsigned long xol_take_insn_slot(struct xol_area *area)
1263 {
1264         unsigned long slot_addr;
1265         int slot_nr;
1266
1267         do {
1268                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1269                 if (slot_nr < UINSNS_PER_PAGE) {
1270                         if (!test_and_set_bit(slot_nr, area->bitmap))
1271                                 break;
1272
1273                         slot_nr = UINSNS_PER_PAGE;
1274                         continue;
1275                 }
1276                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1277         } while (slot_nr >= UINSNS_PER_PAGE);
1278
1279         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1280         atomic_inc(&area->slot_count);
1281
1282         return slot_addr;
1283 }
1284
1285 /*
1286  * xol_get_insn_slot - If was not allocated a slot, then
1287  * allocate a slot.
1288  * Returns the allocated slot address or 0.
1289  */
1290 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1291 {
1292         struct xol_area *area;
1293         unsigned long offset;
1294         void *vaddr;
1295
1296         area = get_xol_area(current->mm);
1297         if (!area) {
1298                 area = xol_alloc_area();
1299                 if (!area)
1300                         return 0;
1301         }
1302         current->utask->xol_vaddr = xol_take_insn_slot(area);
1303
1304         /*
1305          * Initialize the slot if xol_vaddr points to valid
1306          * instruction slot.
1307          */
1308         if (unlikely(!current->utask->xol_vaddr))
1309                 return 0;
1310
1311         current->utask->vaddr = slot_addr;
1312         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1313         vaddr = kmap_atomic(area->page);
1314         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1315         kunmap_atomic(vaddr);
1316
1317         return current->utask->xol_vaddr;
1318 }
1319
1320 /*
1321  * xol_free_insn_slot - If slot was earlier allocated by
1322  * @xol_get_insn_slot(), make the slot available for
1323  * subsequent requests.
1324  */
1325 static void xol_free_insn_slot(struct task_struct *tsk)
1326 {
1327         struct xol_area *area;
1328         unsigned long vma_end;
1329         unsigned long slot_addr;
1330
1331         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1332                 return;
1333
1334         slot_addr = tsk->utask->xol_vaddr;
1335
1336         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1337                 return;
1338
1339         area = tsk->mm->uprobes_state.xol_area;
1340         vma_end = area->vaddr + PAGE_SIZE;
1341         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1342                 unsigned long offset;
1343                 int slot_nr;
1344
1345                 offset = slot_addr - area->vaddr;
1346                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1347                 if (slot_nr >= UINSNS_PER_PAGE)
1348                         return;
1349
1350                 clear_bit(slot_nr, area->bitmap);
1351                 atomic_dec(&area->slot_count);
1352                 if (waitqueue_active(&area->wq))
1353                         wake_up(&area->wq);
1354
1355                 tsk->utask->xol_vaddr = 0;
1356         }
1357 }
1358
1359 /**
1360  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1361  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1362  * instruction.
1363  * Return the address of the breakpoint instruction.
1364  */
1365 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1366 {
1367         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1368 }
1369
1370 /*
1371  * Called with no locks held.
1372  * Called in context of a exiting or a exec-ing thread.
1373  */
1374 void uprobe_free_utask(struct task_struct *t)
1375 {
1376         struct uprobe_task *utask = t->utask;
1377
1378         if (!utask)
1379                 return;
1380
1381         if (utask->active_uprobe)
1382                 put_uprobe(utask->active_uprobe);
1383
1384         xol_free_insn_slot(t);
1385         kfree(utask);
1386         t->utask = NULL;
1387 }
1388
1389 /*
1390  * Called in context of a new clone/fork from copy_process.
1391  */
1392 void uprobe_copy_process(struct task_struct *t)
1393 {
1394         t->utask = NULL;
1395 }
1396
1397 /*
1398  * Allocate a uprobe_task object for the task.
1399  * Called when the thread hits a breakpoint for the first time.
1400  *
1401  * Returns:
1402  * - pointer to new uprobe_task on success
1403  * - NULL otherwise
1404  */
1405 static struct uprobe_task *add_utask(void)
1406 {
1407         struct uprobe_task *utask;
1408
1409         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1410         if (unlikely(!utask))
1411                 return NULL;
1412
1413         utask->active_uprobe = NULL;
1414         current->utask = utask;
1415         return utask;
1416 }
1417
1418 /* Prepare to single-step probed instruction out of line. */
1419 static int
1420 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1421 {
1422         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1423                 return 0;
1424
1425         return -EFAULT;
1426 }
1427
1428 /*
1429  * If we are singlestepping, then ensure this thread is not connected to
1430  * non-fatal signals until completion of singlestep.  When xol insn itself
1431  * triggers the signal,  restart the original insn even if the task is
1432  * already SIGKILL'ed (since coredump should report the correct ip).  This
1433  * is even more important if the task has a handler for SIGSEGV/etc, The
1434  * _same_ instruction should be repeated again after return from the signal
1435  * handler, and SSTEP can never finish in this case.
1436  */
1437 bool uprobe_deny_signal(void)
1438 {
1439         struct task_struct *t = current;
1440         struct uprobe_task *utask = t->utask;
1441
1442         if (likely(!utask || !utask->active_uprobe))
1443                 return false;
1444
1445         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1446
1447         if (signal_pending(t)) {
1448                 spin_lock_irq(&t->sighand->siglock);
1449                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1450                 spin_unlock_irq(&t->sighand->siglock);
1451
1452                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1453                         utask->state = UTASK_SSTEP_TRAPPED;
1454                         set_tsk_thread_flag(t, TIF_UPROBE);
1455                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1456                 }
1457         }
1458
1459         return true;
1460 }
1461
1462 /*
1463  * Avoid singlestepping the original instruction if the original instruction
1464  * is a NOP or can be emulated.
1465  */
1466 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1467 {
1468         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1469                 return true;
1470
1471         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1472         return false;
1473 }
1474
1475 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1476 {
1477         struct mm_struct *mm = current->mm;
1478         struct uprobe *uprobe = NULL;
1479         struct vm_area_struct *vma;
1480
1481         down_read(&mm->mmap_sem);
1482         vma = find_vma(mm, bp_vaddr);
1483         if (vma && vma->vm_start <= bp_vaddr) {
1484                 if (valid_vma(vma, false)) {
1485                         struct inode *inode;
1486                         loff_t offset;
1487
1488                         inode = vma->vm_file->f_mapping->host;
1489                         offset = bp_vaddr - vma->vm_start;
1490                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1491                         uprobe = find_uprobe(inode, offset);
1492                 }
1493
1494                 if (!uprobe)
1495                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1496         } else {
1497                 *is_swbp = -EFAULT;
1498         }
1499         up_read(&mm->mmap_sem);
1500
1501         return uprobe;
1502 }
1503
1504 /*
1505  * Run handler and ask thread to singlestep.
1506  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1507  */
1508 static void handle_swbp(struct pt_regs *regs)
1509 {
1510         struct uprobe_task *utask;
1511         struct uprobe *uprobe;
1512         unsigned long bp_vaddr;
1513         int uninitialized_var(is_swbp);
1514
1515         bp_vaddr = uprobe_get_swbp_addr(regs);
1516         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1517
1518         if (!uprobe) {
1519                 if (is_swbp > 0) {
1520                         /* No matching uprobe; signal SIGTRAP. */
1521                         send_sig(SIGTRAP, current, 0);
1522                 } else {
1523                         /*
1524                          * Either we raced with uprobe_unregister() or we can't
1525                          * access this memory. The latter is only possible if
1526                          * another thread plays with our ->mm. In both cases
1527                          * we can simply restart. If this vma was unmapped we
1528                          * can pretend this insn was not executed yet and get
1529                          * the (correct) SIGSEGV after restart.
1530                          */
1531                         instruction_pointer_set(regs, bp_vaddr);
1532                 }
1533                 return;
1534         }
1535
1536         utask = current->utask;
1537         if (!utask) {
1538                 utask = add_utask();
1539                 /* Cannot allocate; re-execute the instruction. */
1540                 if (!utask)
1541                         goto cleanup_ret;
1542         }
1543         utask->active_uprobe = uprobe;
1544         handler_chain(uprobe, regs);
1545         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1546                 goto cleanup_ret;
1547
1548         utask->state = UTASK_SSTEP;
1549         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1550                 user_enable_single_step(current);
1551                 return;
1552         }
1553
1554 cleanup_ret:
1555         if (utask) {
1556                 utask->active_uprobe = NULL;
1557                 utask->state = UTASK_RUNNING;
1558         }
1559         if (uprobe) {
1560                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1561
1562                         /*
1563                          * cannot singlestep; cannot skip instruction;
1564                          * re-execute the instruction.
1565                          */
1566                         instruction_pointer_set(regs, bp_vaddr);
1567
1568                 put_uprobe(uprobe);
1569         }
1570 }
1571
1572 /*
1573  * Perform required fix-ups and disable singlestep.
1574  * Allow pending signals to take effect.
1575  */
1576 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1577 {
1578         struct uprobe *uprobe;
1579
1580         uprobe = utask->active_uprobe;
1581         if (utask->state == UTASK_SSTEP_ACK)
1582                 arch_uprobe_post_xol(&uprobe->arch, regs);
1583         else if (utask->state == UTASK_SSTEP_TRAPPED)
1584                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1585         else
1586                 WARN_ON_ONCE(1);
1587
1588         put_uprobe(uprobe);
1589         utask->active_uprobe = NULL;
1590         utask->state = UTASK_RUNNING;
1591         user_disable_single_step(current);
1592         xol_free_insn_slot(current);
1593
1594         spin_lock_irq(&current->sighand->siglock);
1595         recalc_sigpending(); /* see uprobe_deny_signal() */
1596         spin_unlock_irq(&current->sighand->siglock);
1597 }
1598
1599 /*
1600  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1601  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1602  * allows the thread to return from interrupt.
1603  *
1604  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1605  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1606  * interrupt.
1607  *
1608  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1609  * uprobe_notify_resume().
1610  */
1611 void uprobe_notify_resume(struct pt_regs *regs)
1612 {
1613         struct uprobe_task *utask;
1614
1615         utask = current->utask;
1616         if (!utask || utask->state == UTASK_BP_HIT)
1617                 handle_swbp(regs);
1618         else
1619                 handle_singlestep(utask, regs);
1620 }
1621
1622 /*
1623  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1624  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1625  */
1626 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1627 {
1628         struct uprobe_task *utask;
1629
1630         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1631                 /* task is currently not uprobed */
1632                 return 0;
1633
1634         utask = current->utask;
1635         if (utask)
1636                 utask->state = UTASK_BP_HIT;
1637
1638         set_thread_flag(TIF_UPROBE);
1639
1640         return 1;
1641 }
1642
1643 /*
1644  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1645  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1646  */
1647 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1648 {
1649         struct uprobe_task *utask = current->utask;
1650
1651         if (!current->mm || !utask || !utask->active_uprobe)
1652                 /* task is currently not uprobed */
1653                 return 0;
1654
1655         utask->state = UTASK_SSTEP_ACK;
1656         set_thread_flag(TIF_UPROBE);
1657         return 1;
1658 }
1659
1660 static struct notifier_block uprobe_exception_nb = {
1661         .notifier_call          = arch_uprobe_exception_notify,
1662         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1663 };
1664
1665 static int __init init_uprobes(void)
1666 {
1667         int i;
1668
1669         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1670                 mutex_init(&uprobes_mutex[i]);
1671                 mutex_init(&uprobes_mmap_mutex[i]);
1672         }
1673
1674         return register_die_notifier(&uprobe_exception_nb);
1675 }
1676 module_init(init_uprobes);
1677
1678 static void __exit exit_uprobes(void)
1679 {
1680 }
1681 module_exit(exit_uprobes);