4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include "sched/tune.h"
59 #include <asm/uaccess.h>
60 #include <asm/unistd.h>
61 #include <asm/pgtable.h>
62 #include <asm/mmu_context.h>
64 static void exit_mm(struct task_struct *tsk);
66 static void __unhash_process(struct task_struct *p, bool group_dead)
69 detach_pid(p, PIDTYPE_PID);
71 detach_pid(p, PIDTYPE_PGID);
72 detach_pid(p, PIDTYPE_SID);
74 list_del_rcu(&p->tasks);
75 list_del_init(&p->sibling);
76 __this_cpu_dec(process_counts);
78 list_del_rcu(&p->thread_group);
79 list_del_rcu(&p->thread_node);
83 * This function expects the tasklist_lock write-locked.
85 static void __exit_signal(struct task_struct *tsk)
87 struct signal_struct *sig = tsk->signal;
88 bool group_dead = thread_group_leader(tsk);
89 struct sighand_struct *sighand;
90 struct tty_struct *uninitialized_var(tty);
91 cputime_t utime, stime;
93 sighand = rcu_dereference_check(tsk->sighand,
94 lockdep_tasklist_lock_is_held());
95 spin_lock(&sighand->siglock);
97 posix_cpu_timers_exit(tsk);
99 posix_cpu_timers_exit_group(tsk);
104 * This can only happen if the caller is de_thread().
105 * FIXME: this is the temporary hack, we should teach
106 * posix-cpu-timers to handle this case correctly.
108 if (unlikely(has_group_leader_pid(tsk)))
109 posix_cpu_timers_exit_group(tsk);
112 * If there is any task waiting for the group exit
115 if (sig->notify_count > 0 && !--sig->notify_count)
116 wake_up_process(sig->group_exit_task);
118 if (tsk == sig->curr_target)
119 sig->curr_target = next_thread(tsk);
123 * Accumulate here the counters for all threads as they die. We could
124 * skip the group leader because it is the last user of signal_struct,
125 * but we want to avoid the race with thread_group_cputime() which can
126 * see the empty ->thread_head list.
128 task_cputime(tsk, &utime, &stime);
129 write_seqlock(&sig->stats_lock);
132 sig->gtime += task_gtime(tsk);
133 sig->min_flt += tsk->min_flt;
134 sig->maj_flt += tsk->maj_flt;
135 sig->nvcsw += tsk->nvcsw;
136 sig->nivcsw += tsk->nivcsw;
137 sig->inblock += task_io_get_inblock(tsk);
138 sig->oublock += task_io_get_oublock(tsk);
139 task_io_accounting_add(&sig->ioac, &tsk->ioac);
140 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 __unhash_process(tsk, group_dead);
143 write_sequnlock(&sig->stats_lock);
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 flush_sigqueue(&tsk->pending);
151 spin_unlock(&sighand->siglock);
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 flush_sigqueue(&sig->shared_pending);
161 static void delayed_put_task_struct(struct rcu_head *rhp)
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
171 void release_task(struct task_struct *p)
173 struct task_struct *leader;
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 atomic_dec(&__task_cred(p)->user->processes);
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader)
196 && leader->exit_state == EXIT_ZOMBIE) {
198 * If we were the last child thread and the leader has
199 * exited already, and the leader's parent ignores SIGCHLD,
200 * then we are the one who should release the leader.
202 zap_leader = do_notify_parent(leader, leader->exit_signal);
204 leader->exit_state = EXIT_DEAD;
207 write_unlock_irq(&tasklist_lock);
209 call_rcu(&p->rcu, delayed_put_task_struct);
212 if (unlikely(zap_leader))
217 * Determine if a process group is "orphaned", according to the POSIX
218 * definition in 2.2.2.52. Orphaned process groups are not to be affected
219 * by terminal-generated stop signals. Newly orphaned process groups are
220 * to receive a SIGHUP and a SIGCONT.
222 * "I ask you, have you ever known what it is to be an orphan?"
224 static int will_become_orphaned_pgrp(struct pid *pgrp,
225 struct task_struct *ignored_task)
227 struct task_struct *p;
229 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
230 if ((p == ignored_task) ||
231 (p->exit_state && thread_group_empty(p)) ||
232 is_global_init(p->real_parent))
235 if (task_pgrp(p->real_parent) != pgrp &&
236 task_session(p->real_parent) == task_session(p))
238 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
243 int is_current_pgrp_orphaned(void)
247 read_lock(&tasklist_lock);
248 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
249 read_unlock(&tasklist_lock);
254 static bool has_stopped_jobs(struct pid *pgrp)
256 struct task_struct *p;
258 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
259 if (p->signal->flags & SIGNAL_STOP_STOPPED)
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 * Check to see if any process groups have become orphaned as
268 * a result of our exiting, and if they have any stopped jobs,
269 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
272 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
274 struct pid *pgrp = task_pgrp(tsk);
275 struct task_struct *ignored_task = tsk;
278 /* exit: our father is in a different pgrp than
279 * we are and we were the only connection outside.
281 parent = tsk->real_parent;
283 /* reparent: our child is in a different pgrp than
284 * we are, and it was the only connection outside.
288 if (task_pgrp(parent) != pgrp &&
289 task_session(parent) == task_session(tsk) &&
290 will_become_orphaned_pgrp(pgrp, ignored_task) &&
291 has_stopped_jobs(pgrp)) {
292 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
293 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
299 * A task is exiting. If it owned this mm, find a new owner for the mm.
301 void mm_update_next_owner(struct mm_struct *mm)
303 struct task_struct *c, *g, *p = current;
307 * If the exiting or execing task is not the owner, it's
308 * someone else's problem.
313 * The current owner is exiting/execing and there are no other
314 * candidates. Do not leave the mm pointing to a possibly
315 * freed task structure.
317 if (atomic_read(&mm->mm_users) <= 1) {
322 read_lock(&tasklist_lock);
324 * Search in the children
326 list_for_each_entry(c, &p->children, sibling) {
328 goto assign_new_owner;
332 * Search in the siblings
334 list_for_each_entry(c, &p->real_parent->children, sibling) {
336 goto assign_new_owner;
340 * Search through everything else, we should not get here often.
342 for_each_process(g) {
343 if (g->flags & PF_KTHREAD)
345 for_each_thread(g, c) {
347 goto assign_new_owner;
352 read_unlock(&tasklist_lock);
354 * We found no owner yet mm_users > 1: this implies that we are
355 * most likely racing with swapoff (try_to_unuse()) or /proc or
356 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
365 * The task_lock protects c->mm from changing.
366 * We always want mm->owner->mm == mm
370 * Delay read_unlock() till we have the task_lock()
371 * to ensure that c does not slip away underneath us
373 read_unlock(&tasklist_lock);
383 #endif /* CONFIG_MEMCG */
386 * Turn us into a lazy TLB process if we
389 static void exit_mm(struct task_struct *tsk)
391 struct mm_struct *mm = tsk->mm;
392 struct core_state *core_state;
399 * Serialize with any possible pending coredump.
400 * We must hold mmap_sem around checking core_state
401 * and clearing tsk->mm. The core-inducing thread
402 * will increment ->nr_threads for each thread in the
403 * group with ->mm != NULL.
405 down_read(&mm->mmap_sem);
406 core_state = mm->core_state;
408 struct core_thread self;
410 up_read(&mm->mmap_sem);
413 self.next = xchg(&core_state->dumper.next, &self);
415 * Implies mb(), the result of xchg() must be visible
416 * to core_state->dumper.
418 if (atomic_dec_and_test(&core_state->nr_threads))
419 complete(&core_state->startup);
422 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
423 if (!self.task) /* see coredump_finish() */
425 freezable_schedule();
427 __set_task_state(tsk, TASK_RUNNING);
428 down_read(&mm->mmap_sem);
430 atomic_inc(&mm->mm_count);
431 BUG_ON(mm != tsk->active_mm);
432 /* more a memory barrier than a real lock */
435 up_read(&mm->mmap_sem);
436 enter_lazy_tlb(mm, current);
438 mm_update_next_owner(mm);
440 if (test_thread_flag(TIF_MEMDIE))
444 static struct task_struct *find_alive_thread(struct task_struct *p)
446 struct task_struct *t;
448 for_each_thread(p, t) {
449 if (!(t->flags & PF_EXITING))
455 static struct task_struct *find_child_reaper(struct task_struct *father)
456 __releases(&tasklist_lock)
457 __acquires(&tasklist_lock)
459 struct pid_namespace *pid_ns = task_active_pid_ns(father);
460 struct task_struct *reaper = pid_ns->child_reaper;
462 if (likely(reaper != father))
465 reaper = find_alive_thread(father);
467 pid_ns->child_reaper = reaper;
471 write_unlock_irq(&tasklist_lock);
472 if (unlikely(pid_ns == &init_pid_ns)) {
473 panic("Attempted to kill init! exitcode=0x%08x\n",
474 father->signal->group_exit_code ?: father->exit_code);
476 zap_pid_ns_processes(pid_ns);
477 write_lock_irq(&tasklist_lock);
483 * When we die, we re-parent all our children, and try to:
484 * 1. give them to another thread in our thread group, if such a member exists
485 * 2. give it to the first ancestor process which prctl'd itself as a
486 * child_subreaper for its children (like a service manager)
487 * 3. give it to the init process (PID 1) in our pid namespace
489 static struct task_struct *find_new_reaper(struct task_struct *father,
490 struct task_struct *child_reaper)
492 struct task_struct *thread, *reaper;
494 thread = find_alive_thread(father);
498 if (father->signal->has_child_subreaper) {
500 * Find the first ->is_child_subreaper ancestor in our pid_ns.
501 * We start from father to ensure we can not look into another
502 * namespace, this is safe because all its threads are dead.
504 for (reaper = father;
505 !same_thread_group(reaper, child_reaper);
506 reaper = reaper->real_parent) {
507 /* call_usermodehelper() descendants need this check */
508 if (reaper == &init_task)
510 if (!reaper->signal->is_child_subreaper)
512 thread = find_alive_thread(reaper);
522 * Any that need to be release_task'd are put on the @dead list.
524 static void reparent_leader(struct task_struct *father, struct task_struct *p,
525 struct list_head *dead)
527 if (unlikely(p->exit_state == EXIT_DEAD))
530 /* We don't want people slaying init. */
531 p->exit_signal = SIGCHLD;
533 /* If it has exited notify the new parent about this child's death. */
535 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
536 if (do_notify_parent(p, p->exit_signal)) {
537 p->exit_state = EXIT_DEAD;
538 list_add(&p->ptrace_entry, dead);
542 kill_orphaned_pgrp(p, father);
546 * This does two things:
548 * A. Make init inherit all the child processes
549 * B. Check to see if any process groups have become orphaned
550 * as a result of our exiting, and if they have any stopped
551 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
553 static void forget_original_parent(struct task_struct *father,
554 struct list_head *dead)
556 struct task_struct *p, *t, *reaper;
558 if (unlikely(!list_empty(&father->ptraced)))
559 exit_ptrace(father, dead);
561 /* Can drop and reacquire tasklist_lock */
562 reaper = find_child_reaper(father);
563 if (list_empty(&father->children))
566 reaper = find_new_reaper(father, reaper);
567 list_for_each_entry(p, &father->children, sibling) {
568 for_each_thread(p, t) {
569 t->real_parent = reaper;
570 BUG_ON((!t->ptrace) != (t->parent == father));
571 if (likely(!t->ptrace))
572 t->parent = t->real_parent;
573 if (t->pdeath_signal)
574 group_send_sig_info(t->pdeath_signal,
578 * If this is a threaded reparent there is no need to
579 * notify anyone anything has happened.
581 if (!same_thread_group(reaper, father))
582 reparent_leader(father, p, dead);
584 list_splice_tail_init(&father->children, &reaper->children);
588 * Send signals to all our closest relatives so that they know
589 * to properly mourn us..
591 static void exit_notify(struct task_struct *tsk, int group_dead)
594 struct task_struct *p, *n;
597 write_lock_irq(&tasklist_lock);
598 forget_original_parent(tsk, &dead);
601 kill_orphaned_pgrp(tsk->group_leader, NULL);
603 if (unlikely(tsk->ptrace)) {
604 int sig = thread_group_leader(tsk) &&
605 thread_group_empty(tsk) &&
606 !ptrace_reparented(tsk) ?
607 tsk->exit_signal : SIGCHLD;
608 autoreap = do_notify_parent(tsk, sig);
609 } else if (thread_group_leader(tsk)) {
610 autoreap = thread_group_empty(tsk) &&
611 do_notify_parent(tsk, tsk->exit_signal);
616 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
617 if (tsk->exit_state == EXIT_DEAD)
618 list_add(&tsk->ptrace_entry, &dead);
620 /* mt-exec, de_thread() is waiting for group leader */
621 if (unlikely(tsk->signal->notify_count < 0))
622 wake_up_process(tsk->signal->group_exit_task);
623 write_unlock_irq(&tasklist_lock);
625 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
626 list_del_init(&p->ptrace_entry);
631 #ifdef CONFIG_DEBUG_STACK_USAGE
632 static void check_stack_usage(void)
634 static DEFINE_SPINLOCK(low_water_lock);
635 static int lowest_to_date = THREAD_SIZE;
638 free = stack_not_used(current);
640 if (free >= lowest_to_date)
643 spin_lock(&low_water_lock);
644 if (free < lowest_to_date) {
645 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
646 current->comm, task_pid_nr(current), free);
647 lowest_to_date = free;
649 spin_unlock(&low_water_lock);
652 static inline void check_stack_usage(void) {}
655 void do_exit(long code)
657 struct task_struct *tsk = current;
659 TASKS_RCU(int tasks_rcu_i);
661 profile_task_exit(tsk);
663 WARN_ON(blk_needs_flush_plug(tsk));
665 if (unlikely(in_interrupt()))
666 panic("Aiee, killing interrupt handler!");
667 if (unlikely(!tsk->pid))
668 panic("Attempted to kill the idle task!");
671 * If do_exit is called because this processes oopsed, it's possible
672 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
673 * continuing. Amongst other possible reasons, this is to prevent
674 * mm_release()->clear_child_tid() from writing to a user-controlled
679 ptrace_event(PTRACE_EVENT_EXIT, code);
681 validate_creds_for_do_exit(tsk);
684 * We're taking recursive faults here in do_exit. Safest is to just
685 * leave this task alone and wait for reboot.
687 if (unlikely(tsk->flags & PF_EXITING)) {
688 pr_alert("Fixing recursive fault but reboot is needed!\n");
690 * We can do this unlocked here. The futex code uses
691 * this flag just to verify whether the pi state
692 * cleanup has been done or not. In the worst case it
693 * loops once more. We pretend that the cleanup was
694 * done as there is no way to return. Either the
695 * OWNER_DIED bit is set by now or we push the blocked
696 * task into the wait for ever nirwana as well.
698 tsk->flags |= PF_EXITPIDONE;
699 set_current_state(TASK_UNINTERRUPTIBLE);
703 exit_signals(tsk); /* sets PF_EXITING */
705 schedtune_exit_task(tsk);
708 * tsk->flags are checked in the futex code to protect against
709 * an exiting task cleaning up the robust pi futexes.
712 raw_spin_unlock_wait(&tsk->pi_lock);
714 if (unlikely(in_atomic())) {
715 pr_info("note: %s[%d] exited with preempt_count %d\n",
716 current->comm, task_pid_nr(current),
718 preempt_count_set(PREEMPT_ENABLED);
721 /* sync mm's RSS info before statistics gathering */
723 sync_mm_rss(tsk->mm);
724 acct_update_integrals(tsk);
725 group_dead = atomic_dec_and_test(&tsk->signal->live);
727 hrtimer_cancel(&tsk->signal->real_timer);
728 exit_itimers(tsk->signal);
730 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
732 acct_collect(code, group_dead);
737 tsk->exit_code = code;
738 taskstats_exit(tsk, group_dead);
744 trace_sched_process_exit(tsk);
751 disassociate_ctty(1);
752 exit_task_namespaces(tsk);
757 * Flush inherited counters to the parent - before the parent
758 * gets woken up by child-exit notifications.
760 * because of cgroup mode, must be called before cgroup_exit()
762 perf_event_exit_task(tsk);
767 * FIXME: do that only when needed, using sched_exit tracepoint
769 flush_ptrace_hw_breakpoint(tsk);
771 TASKS_RCU(preempt_disable());
772 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
773 TASKS_RCU(preempt_enable());
774 exit_notify(tsk, group_dead);
775 proc_exit_connector(tsk);
778 mpol_put(tsk->mempolicy);
779 tsk->mempolicy = NULL;
783 if (unlikely(current->pi_state_cache))
784 kfree(current->pi_state_cache);
787 * Make sure we are holding no locks:
789 debug_check_no_locks_held();
791 * We can do this unlocked here. The futex code uses this flag
792 * just to verify whether the pi state cleanup has been done
793 * or not. In the worst case it loops once more.
795 tsk->flags |= PF_EXITPIDONE;
798 exit_io_context(tsk);
800 if (tsk->splice_pipe)
801 free_pipe_info(tsk->splice_pipe);
803 if (tsk->task_frag.page)
804 put_page(tsk->task_frag.page);
806 validate_creds_for_do_exit(tsk);
811 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
813 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
816 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
817 * when the following two conditions become true.
818 * - There is race condition of mmap_sem (It is acquired by
820 * - SMI occurs before setting TASK_RUNINNG.
821 * (or hypervisor of virtual machine switches to other guest)
822 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
824 * To avoid it, we have to wait for releasing tsk->pi_lock which
825 * is held by try_to_wake_up()
828 raw_spin_unlock_wait(&tsk->pi_lock);
830 /* causes final put_task_struct in finish_task_switch(). */
831 tsk->state = TASK_DEAD;
832 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
835 /* Avoid "noreturn function does return". */
837 cpu_relax(); /* For when BUG is null */
839 EXPORT_SYMBOL_GPL(do_exit);
841 void complete_and_exit(struct completion *comp, long code)
848 EXPORT_SYMBOL(complete_and_exit);
850 SYSCALL_DEFINE1(exit, int, error_code)
852 do_exit((error_code&0xff)<<8);
856 * Take down every thread in the group. This is called by fatal signals
857 * as well as by sys_exit_group (below).
860 do_group_exit(int exit_code)
862 struct signal_struct *sig = current->signal;
864 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
866 if (signal_group_exit(sig))
867 exit_code = sig->group_exit_code;
868 else if (!thread_group_empty(current)) {
869 struct sighand_struct *const sighand = current->sighand;
871 spin_lock_irq(&sighand->siglock);
872 if (signal_group_exit(sig))
873 /* Another thread got here before we took the lock. */
874 exit_code = sig->group_exit_code;
876 sig->group_exit_code = exit_code;
877 sig->flags = SIGNAL_GROUP_EXIT;
878 zap_other_threads(current);
880 spin_unlock_irq(&sighand->siglock);
888 * this kills every thread in the thread group. Note that any externally
889 * wait4()-ing process will get the correct exit code - even if this
890 * thread is not the thread group leader.
892 SYSCALL_DEFINE1(exit_group, int, error_code)
894 do_group_exit((error_code & 0xff) << 8);
900 enum pid_type wo_type;
904 struct siginfo __user *wo_info;
906 struct rusage __user *wo_rusage;
908 wait_queue_t child_wait;
913 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
915 if (type != PIDTYPE_PID)
916 task = task->group_leader;
917 return task->pids[type].pid;
920 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
922 return wo->wo_type == PIDTYPE_MAX ||
923 task_pid_type(p, wo->wo_type) == wo->wo_pid;
927 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
929 if (!eligible_pid(wo, p))
933 * Wait for all children (clone and not) if __WALL is set or
934 * if it is traced by us.
936 if (ptrace || (wo->wo_flags & __WALL))
940 * Otherwise, wait for clone children *only* if __WCLONE is set;
941 * otherwise, wait for non-clone children *only*.
943 * Note: a "clone" child here is one that reports to its parent
944 * using a signal other than SIGCHLD, or a non-leader thread which
945 * we can only see if it is traced by us.
947 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
953 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
954 pid_t pid, uid_t uid, int why, int status)
956 struct siginfo __user *infop;
957 int retval = wo->wo_rusage
958 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
964 retval = put_user(SIGCHLD, &infop->si_signo);
966 retval = put_user(0, &infop->si_errno);
968 retval = put_user((short)why, &infop->si_code);
970 retval = put_user(pid, &infop->si_pid);
972 retval = put_user(uid, &infop->si_uid);
974 retval = put_user(status, &infop->si_status);
982 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
983 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
984 * the lock and this task is uninteresting. If we return nonzero, we have
985 * released the lock and the system call should return.
987 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
989 int state, retval, status;
990 pid_t pid = task_pid_vnr(p);
991 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
992 struct siginfo __user *infop;
994 if (!likely(wo->wo_flags & WEXITED))
997 if (unlikely(wo->wo_flags & WNOWAIT)) {
998 int exit_code = p->exit_code;
1002 read_unlock(&tasklist_lock);
1003 sched_annotate_sleep();
1005 if ((exit_code & 0x7f) == 0) {
1007 status = exit_code >> 8;
1009 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1010 status = exit_code & 0x7f;
1012 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1015 * Move the task's state to DEAD/TRACE, only one thread can do this.
1017 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1018 EXIT_TRACE : EXIT_DEAD;
1019 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1022 * We own this thread, nobody else can reap it.
1024 read_unlock(&tasklist_lock);
1025 sched_annotate_sleep();
1028 * Check thread_group_leader() to exclude the traced sub-threads.
1030 if (state == EXIT_DEAD && thread_group_leader(p)) {
1031 struct signal_struct *sig = p->signal;
1032 struct signal_struct *psig = current->signal;
1033 unsigned long maxrss;
1034 cputime_t tgutime, tgstime;
1037 * The resource counters for the group leader are in its
1038 * own task_struct. Those for dead threads in the group
1039 * are in its signal_struct, as are those for the child
1040 * processes it has previously reaped. All these
1041 * accumulate in the parent's signal_struct c* fields.
1043 * We don't bother to take a lock here to protect these
1044 * p->signal fields because the whole thread group is dead
1045 * and nobody can change them.
1047 * psig->stats_lock also protects us from our sub-theads
1048 * which can reap other children at the same time. Until
1049 * we change k_getrusage()-like users to rely on this lock
1050 * we have to take ->siglock as well.
1052 * We use thread_group_cputime_adjusted() to get times for
1053 * the thread group, which consolidates times for all threads
1054 * in the group including the group leader.
1056 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1057 spin_lock_irq(¤t->sighand->siglock);
1058 write_seqlock(&psig->stats_lock);
1059 psig->cutime += tgutime + sig->cutime;
1060 psig->cstime += tgstime + sig->cstime;
1061 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1063 p->min_flt + sig->min_flt + sig->cmin_flt;
1065 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1067 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1069 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1071 task_io_get_inblock(p) +
1072 sig->inblock + sig->cinblock;
1074 task_io_get_oublock(p) +
1075 sig->oublock + sig->coublock;
1076 maxrss = max(sig->maxrss, sig->cmaxrss);
1077 if (psig->cmaxrss < maxrss)
1078 psig->cmaxrss = maxrss;
1079 task_io_accounting_add(&psig->ioac, &p->ioac);
1080 task_io_accounting_add(&psig->ioac, &sig->ioac);
1081 write_sequnlock(&psig->stats_lock);
1082 spin_unlock_irq(¤t->sighand->siglock);
1085 retval = wo->wo_rusage
1086 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1087 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1088 ? p->signal->group_exit_code : p->exit_code;
1089 if (!retval && wo->wo_stat)
1090 retval = put_user(status, wo->wo_stat);
1092 infop = wo->wo_info;
1093 if (!retval && infop)
1094 retval = put_user(SIGCHLD, &infop->si_signo);
1095 if (!retval && infop)
1096 retval = put_user(0, &infop->si_errno);
1097 if (!retval && infop) {
1100 if ((status & 0x7f) == 0) {
1104 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1107 retval = put_user((short)why, &infop->si_code);
1109 retval = put_user(status, &infop->si_status);
1111 if (!retval && infop)
1112 retval = put_user(pid, &infop->si_pid);
1113 if (!retval && infop)
1114 retval = put_user(uid, &infop->si_uid);
1118 if (state == EXIT_TRACE) {
1119 write_lock_irq(&tasklist_lock);
1120 /* We dropped tasklist, ptracer could die and untrace */
1123 /* If parent wants a zombie, don't release it now */
1124 state = EXIT_ZOMBIE;
1125 if (do_notify_parent(p, p->exit_signal))
1127 p->exit_state = state;
1128 write_unlock_irq(&tasklist_lock);
1130 if (state == EXIT_DEAD)
1136 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1139 if (task_is_stopped_or_traced(p) &&
1140 !(p->jobctl & JOBCTL_LISTENING))
1141 return &p->exit_code;
1143 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1144 return &p->signal->group_exit_code;
1150 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1152 * @ptrace: is the wait for ptrace
1153 * @p: task to wait for
1155 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1158 * read_lock(&tasklist_lock), which is released if return value is
1159 * non-zero. Also, grabs and releases @p->sighand->siglock.
1162 * 0 if wait condition didn't exist and search for other wait conditions
1163 * should continue. Non-zero return, -errno on failure and @p's pid on
1164 * success, implies that tasklist_lock is released and wait condition
1165 * search should terminate.
1167 static int wait_task_stopped(struct wait_opts *wo,
1168 int ptrace, struct task_struct *p)
1170 struct siginfo __user *infop;
1171 int retval, exit_code, *p_code, why;
1172 uid_t uid = 0; /* unneeded, required by compiler */
1176 * Traditionally we see ptrace'd stopped tasks regardless of options.
1178 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1181 if (!task_stopped_code(p, ptrace))
1185 spin_lock_irq(&p->sighand->siglock);
1187 p_code = task_stopped_code(p, ptrace);
1188 if (unlikely(!p_code))
1191 exit_code = *p_code;
1195 if (!unlikely(wo->wo_flags & WNOWAIT))
1198 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1200 spin_unlock_irq(&p->sighand->siglock);
1205 * Now we are pretty sure this task is interesting.
1206 * Make sure it doesn't get reaped out from under us while we
1207 * give up the lock and then examine it below. We don't want to
1208 * keep holding onto the tasklist_lock while we call getrusage and
1209 * possibly take page faults for user memory.
1212 pid = task_pid_vnr(p);
1213 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1214 read_unlock(&tasklist_lock);
1215 sched_annotate_sleep();
1217 if (unlikely(wo->wo_flags & WNOWAIT))
1218 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1220 retval = wo->wo_rusage
1221 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1222 if (!retval && wo->wo_stat)
1223 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1225 infop = wo->wo_info;
1226 if (!retval && infop)
1227 retval = put_user(SIGCHLD, &infop->si_signo);
1228 if (!retval && infop)
1229 retval = put_user(0, &infop->si_errno);
1230 if (!retval && infop)
1231 retval = put_user((short)why, &infop->si_code);
1232 if (!retval && infop)
1233 retval = put_user(exit_code, &infop->si_status);
1234 if (!retval && infop)
1235 retval = put_user(pid, &infop->si_pid);
1236 if (!retval && infop)
1237 retval = put_user(uid, &infop->si_uid);
1247 * Handle do_wait work for one task in a live, non-stopped state.
1248 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1249 * the lock and this task is uninteresting. If we return nonzero, we have
1250 * released the lock and the system call should return.
1252 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1258 if (!unlikely(wo->wo_flags & WCONTINUED))
1261 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1264 spin_lock_irq(&p->sighand->siglock);
1265 /* Re-check with the lock held. */
1266 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1267 spin_unlock_irq(&p->sighand->siglock);
1270 if (!unlikely(wo->wo_flags & WNOWAIT))
1271 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1272 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1273 spin_unlock_irq(&p->sighand->siglock);
1275 pid = task_pid_vnr(p);
1277 read_unlock(&tasklist_lock);
1278 sched_annotate_sleep();
1281 retval = wo->wo_rusage
1282 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1284 if (!retval && wo->wo_stat)
1285 retval = put_user(0xffff, wo->wo_stat);
1289 retval = wait_noreap_copyout(wo, p, pid, uid,
1290 CLD_CONTINUED, SIGCONT);
1291 BUG_ON(retval == 0);
1298 * Consider @p for a wait by @parent.
1300 * -ECHILD should be in ->notask_error before the first call.
1301 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1302 * Returns zero if the search for a child should continue;
1303 * then ->notask_error is 0 if @p is an eligible child,
1304 * or another error from security_task_wait(), or still -ECHILD.
1306 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1307 struct task_struct *p)
1310 * We can race with wait_task_zombie() from another thread.
1311 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1312 * can't confuse the checks below.
1314 int exit_state = ACCESS_ONCE(p->exit_state);
1317 if (unlikely(exit_state == EXIT_DEAD))
1320 ret = eligible_child(wo, ptrace, p);
1324 ret = security_task_wait(p);
1325 if (unlikely(ret < 0)) {
1327 * If we have not yet seen any eligible child,
1328 * then let this error code replace -ECHILD.
1329 * A permission error will give the user a clue
1330 * to look for security policy problems, rather
1331 * than for mysterious wait bugs.
1333 if (wo->notask_error)
1334 wo->notask_error = ret;
1338 if (unlikely(exit_state == EXIT_TRACE)) {
1340 * ptrace == 0 means we are the natural parent. In this case
1341 * we should clear notask_error, debugger will notify us.
1343 if (likely(!ptrace))
1344 wo->notask_error = 0;
1348 if (likely(!ptrace) && unlikely(p->ptrace)) {
1350 * If it is traced by its real parent's group, just pretend
1351 * the caller is ptrace_do_wait() and reap this child if it
1354 * This also hides group stop state from real parent; otherwise
1355 * a single stop can be reported twice as group and ptrace stop.
1356 * If a ptracer wants to distinguish these two events for its
1357 * own children it should create a separate process which takes
1358 * the role of real parent.
1360 if (!ptrace_reparented(p))
1365 if (exit_state == EXIT_ZOMBIE) {
1366 /* we don't reap group leaders with subthreads */
1367 if (!delay_group_leader(p)) {
1369 * A zombie ptracee is only visible to its ptracer.
1370 * Notification and reaping will be cascaded to the
1371 * real parent when the ptracer detaches.
1373 if (unlikely(ptrace) || likely(!p->ptrace))
1374 return wait_task_zombie(wo, p);
1378 * Allow access to stopped/continued state via zombie by
1379 * falling through. Clearing of notask_error is complex.
1383 * If WEXITED is set, notask_error should naturally be
1384 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1385 * so, if there are live subthreads, there are events to
1386 * wait for. If all subthreads are dead, it's still safe
1387 * to clear - this function will be called again in finite
1388 * amount time once all the subthreads are released and
1389 * will then return without clearing.
1393 * Stopped state is per-task and thus can't change once the
1394 * target task dies. Only continued and exited can happen.
1395 * Clear notask_error if WCONTINUED | WEXITED.
1397 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1398 wo->notask_error = 0;
1401 * @p is alive and it's gonna stop, continue or exit, so
1402 * there always is something to wait for.
1404 wo->notask_error = 0;
1408 * Wait for stopped. Depending on @ptrace, different stopped state
1409 * is used and the two don't interact with each other.
1411 ret = wait_task_stopped(wo, ptrace, p);
1416 * Wait for continued. There's only one continued state and the
1417 * ptracer can consume it which can confuse the real parent. Don't
1418 * use WCONTINUED from ptracer. You don't need or want it.
1420 return wait_task_continued(wo, p);
1424 * Do the work of do_wait() for one thread in the group, @tsk.
1426 * -ECHILD should be in ->notask_error before the first call.
1427 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1428 * Returns zero if the search for a child should continue; then
1429 * ->notask_error is 0 if there were any eligible children,
1430 * or another error from security_task_wait(), or still -ECHILD.
1432 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1434 struct task_struct *p;
1436 list_for_each_entry(p, &tsk->children, sibling) {
1437 int ret = wait_consider_task(wo, 0, p);
1446 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1448 struct task_struct *p;
1450 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1451 int ret = wait_consider_task(wo, 1, p);
1460 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1461 int sync, void *key)
1463 struct wait_opts *wo = container_of(wait, struct wait_opts,
1465 struct task_struct *p = key;
1467 if (!eligible_pid(wo, p))
1470 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1473 return default_wake_function(wait, mode, sync, key);
1476 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1478 __wake_up_sync_key(&parent->signal->wait_chldexit,
1479 TASK_INTERRUPTIBLE, 1, p);
1482 static long do_wait(struct wait_opts *wo)
1484 struct task_struct *tsk;
1487 trace_sched_process_wait(wo->wo_pid);
1489 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1490 wo->child_wait.private = current;
1491 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1494 * If there is nothing that can match our criteria, just get out.
1495 * We will clear ->notask_error to zero if we see any child that
1496 * might later match our criteria, even if we are not able to reap
1499 wo->notask_error = -ECHILD;
1500 if ((wo->wo_type < PIDTYPE_MAX) &&
1501 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1504 set_current_state(TASK_INTERRUPTIBLE);
1505 read_lock(&tasklist_lock);
1508 retval = do_wait_thread(wo, tsk);
1512 retval = ptrace_do_wait(wo, tsk);
1516 if (wo->wo_flags & __WNOTHREAD)
1518 } while_each_thread(current, tsk);
1519 read_unlock(&tasklist_lock);
1522 retval = wo->notask_error;
1523 if (!retval && !(wo->wo_flags & WNOHANG)) {
1524 retval = -ERESTARTSYS;
1525 if (!signal_pending(current)) {
1531 __set_current_state(TASK_RUNNING);
1532 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1536 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1537 infop, int, options, struct rusage __user *, ru)
1539 struct wait_opts wo;
1540 struct pid *pid = NULL;
1544 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1546 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1559 type = PIDTYPE_PGID;
1567 if (type < PIDTYPE_MAX)
1568 pid = find_get_pid(upid);
1572 wo.wo_flags = options;
1582 * For a WNOHANG return, clear out all the fields
1583 * we would set so the user can easily tell the
1587 ret = put_user(0, &infop->si_signo);
1589 ret = put_user(0, &infop->si_errno);
1591 ret = put_user(0, &infop->si_code);
1593 ret = put_user(0, &infop->si_pid);
1595 ret = put_user(0, &infop->si_uid);
1597 ret = put_user(0, &infop->si_status);
1604 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1605 int, options, struct rusage __user *, ru)
1607 struct wait_opts wo;
1608 struct pid *pid = NULL;
1612 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1613 __WNOTHREAD|__WCLONE|__WALL))
1618 else if (upid < 0) {
1619 type = PIDTYPE_PGID;
1620 pid = find_get_pid(-upid);
1621 } else if (upid == 0) {
1622 type = PIDTYPE_PGID;
1623 pid = get_task_pid(current, PIDTYPE_PGID);
1624 } else /* upid > 0 */ {
1626 pid = find_get_pid(upid);
1631 wo.wo_flags = options | WEXITED;
1633 wo.wo_stat = stat_addr;
1641 #ifdef __ARCH_WANT_SYS_WAITPID
1644 * sys_waitpid() remains for compatibility. waitpid() should be
1645 * implemented by calling sys_wait4() from libc.a.
1647 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1649 return sys_wait4(pid, stat_addr, options, NULL);