ntp: Fix STA_INS/DEL clearing bug
[firefly-linux-kernel-4.4.55.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72
73 #include <asm/pgtable.h>
74 #include <asm/pgalloc.h>
75 #include <asm/uaccess.h>
76 #include <asm/mmu_context.h>
77 #include <asm/cacheflush.h>
78 #include <asm/tlbflush.h>
79
80 #include <trace/events/sched.h>
81
82 /*
83  * Protected counters by write_lock_irq(&tasklist_lock)
84  */
85 unsigned long total_forks;      /* Handle normal Linux uptimes. */
86 int nr_threads;                 /* The idle threads do not count.. */
87
88 int max_threads;                /* tunable limit on nr_threads */
89
90 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
91
92 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
93
94 #ifdef CONFIG_PROVE_RCU
95 int lockdep_tasklist_lock_is_held(void)
96 {
97         return lockdep_is_held(&tasklist_lock);
98 }
99 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
100 #endif /* #ifdef CONFIG_PROVE_RCU */
101
102 int nr_processes(void)
103 {
104         int cpu;
105         int total = 0;
106
107         for_each_possible_cpu(cpu)
108                 total += per_cpu(process_counts, cpu);
109
110         return total;
111 }
112
113 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
114 # define alloc_task_struct_node(node)           \
115                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
116 # define free_task_struct(tsk)                  \
117                 kmem_cache_free(task_struct_cachep, (tsk))
118 static struct kmem_cache *task_struct_cachep;
119 #endif
120
121 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
122 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
123                                                   int node)
124 {
125 #ifdef CONFIG_DEBUG_STACK_USAGE
126         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
127 #else
128         gfp_t mask = GFP_KERNEL;
129 #endif
130         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
131
132         return page ? page_address(page) : NULL;
133 }
134
135 static inline void free_thread_info(struct thread_info *ti)
136 {
137         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
138 }
139 #endif
140
141 /* SLAB cache for signal_struct structures (tsk->signal) */
142 static struct kmem_cache *signal_cachep;
143
144 /* SLAB cache for sighand_struct structures (tsk->sighand) */
145 struct kmem_cache *sighand_cachep;
146
147 /* SLAB cache for files_struct structures (tsk->files) */
148 struct kmem_cache *files_cachep;
149
150 /* SLAB cache for fs_struct structures (tsk->fs) */
151 struct kmem_cache *fs_cachep;
152
153 /* SLAB cache for vm_area_struct structures */
154 struct kmem_cache *vm_area_cachep;
155
156 /* SLAB cache for mm_struct structures (tsk->mm) */
157 static struct kmem_cache *mm_cachep;
158
159 static void account_kernel_stack(struct thread_info *ti, int account)
160 {
161         struct zone *zone = page_zone(virt_to_page(ti));
162
163         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
164 }
165
166 void free_task(struct task_struct *tsk)
167 {
168         prop_local_destroy_single(&tsk->dirties);
169         account_kernel_stack(tsk->stack, -1);
170         free_thread_info(tsk->stack);
171         rt_mutex_debug_task_free(tsk);
172         ftrace_graph_exit_task(tsk);
173         free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179         taskstats_tgid_free(sig);
180         sched_autogroup_exit(sig);
181         kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186         if (atomic_dec_and_test(&sig->sigcnt))
187                 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192         WARN_ON(!tsk->exit_state);
193         WARN_ON(atomic_read(&tsk->usage));
194         WARN_ON(tsk == current);
195
196         exit_creds(tsk);
197         delayacct_tsk_free(tsk);
198         put_signal_struct(tsk->signal);
199
200         if (!profile_handoff_task(tsk))
201                 free_task(tsk);
202 }
203 EXPORT_SYMBOL_GPL(__put_task_struct);
204
205 /*
206  * macro override instead of weak attribute alias, to workaround
207  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208  */
209 #ifndef arch_task_cache_init
210 #define arch_task_cache_init()
211 #endif
212
213 void __init fork_init(unsigned long mempages)
214 {
215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
216 #ifndef ARCH_MIN_TASKALIGN
217 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
218 #endif
219         /* create a slab on which task_structs can be allocated */
220         task_struct_cachep =
221                 kmem_cache_create("task_struct", sizeof(struct task_struct),
222                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
223 #endif
224
225         /* do the arch specific task caches init */
226         arch_task_cache_init();
227
228         /*
229          * The default maximum number of threads is set to a safe
230          * value: the thread structures can take up at most half
231          * of memory.
232          */
233         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234
235         /*
236          * we need to allow at least 20 threads to boot a system
237          */
238         if(max_threads < 20)
239                 max_threads = 20;
240
241         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
242         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
243         init_task.signal->rlim[RLIMIT_SIGPENDING] =
244                 init_task.signal->rlim[RLIMIT_NPROC];
245 }
246
247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
248                                                struct task_struct *src)
249 {
250         *dst = *src;
251         return 0;
252 }
253
254 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 {
256         struct task_struct *tsk;
257         struct thread_info *ti;
258         unsigned long *stackend;
259         int node = tsk_fork_get_node(orig);
260         int err;
261
262         prepare_to_copy(orig);
263
264         tsk = alloc_task_struct_node(node);
265         if (!tsk)
266                 return NULL;
267
268         ti = alloc_thread_info_node(tsk, node);
269         if (!ti) {
270                 free_task_struct(tsk);
271                 return NULL;
272         }
273
274         err = arch_dup_task_struct(tsk, orig);
275         if (err)
276                 goto out;
277
278         tsk->stack = ti;
279
280         err = prop_local_init_single(&tsk->dirties);
281         if (err)
282                 goto out;
283
284         setup_thread_stack(tsk, orig);
285         clear_user_return_notifier(tsk);
286         clear_tsk_need_resched(tsk);
287         stackend = end_of_stack(tsk);
288         *stackend = STACK_END_MAGIC;    /* for overflow detection */
289
290 #ifdef CONFIG_CC_STACKPROTECTOR
291         tsk->stack_canary = get_random_int();
292 #endif
293
294         /* One for us, one for whoever does the "release_task()" (usually parent) */
295         atomic_set(&tsk->usage,2);
296         atomic_set(&tsk->fs_excl, 0);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298         tsk->btrace_seq = 0;
299 #endif
300         tsk->splice_pipe = NULL;
301
302         account_kernel_stack(ti, 1);
303
304         return tsk;
305
306 out:
307         free_thread_info(ti);
308         free_task_struct(tsk);
309         return NULL;
310 }
311
312 #ifdef CONFIG_MMU
313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 {
315         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316         struct rb_node **rb_link, *rb_parent;
317         int retval;
318         unsigned long charge;
319         struct mempolicy *pol;
320
321         down_write(&oldmm->mmap_sem);
322         flush_cache_dup_mm(oldmm);
323         /*
324          * Not linked in yet - no deadlock potential:
325          */
326         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327
328         mm->locked_vm = 0;
329         mm->mmap = NULL;
330         mm->mmap_cache = NULL;
331         mm->free_area_cache = oldmm->mmap_base;
332         mm->cached_hole_size = ~0UL;
333         mm->map_count = 0;
334         cpumask_clear(mm_cpumask(mm));
335         mm->mm_rb = RB_ROOT;
336         rb_link = &mm->mm_rb.rb_node;
337         rb_parent = NULL;
338         pprev = &mm->mmap;
339         retval = ksm_fork(mm, oldmm);
340         if (retval)
341                 goto out;
342         retval = khugepaged_fork(mm, oldmm);
343         if (retval)
344                 goto out;
345
346         prev = NULL;
347         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348                 struct file *file;
349
350                 if (mpnt->vm_flags & VM_DONTCOPY) {
351                         long pages = vma_pages(mpnt);
352                         mm->total_vm -= pages;
353                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354                                                                 -pages);
355                         continue;
356                 }
357                 charge = 0;
358                 if (mpnt->vm_flags & VM_ACCOUNT) {
359                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
360                         if (security_vm_enough_memory(len))
361                                 goto fail_nomem;
362                         charge = len;
363                 }
364                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
365                 if (!tmp)
366                         goto fail_nomem;
367                 *tmp = *mpnt;
368                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
369                 pol = mpol_dup(vma_policy(mpnt));
370                 retval = PTR_ERR(pol);
371                 if (IS_ERR(pol))
372                         goto fail_nomem_policy;
373                 vma_set_policy(tmp, pol);
374                 tmp->vm_mm = mm;
375                 if (anon_vma_fork(tmp, mpnt))
376                         goto fail_nomem_anon_vma_fork;
377                 tmp->vm_flags &= ~VM_LOCKED;
378                 tmp->vm_next = tmp->vm_prev = NULL;
379                 file = tmp->vm_file;
380                 if (file) {
381                         struct inode *inode = file->f_path.dentry->d_inode;
382                         struct address_space *mapping = file->f_mapping;
383
384                         get_file(file);
385                         if (tmp->vm_flags & VM_DENYWRITE)
386                                 atomic_dec(&inode->i_writecount);
387                         mutex_lock(&mapping->i_mmap_mutex);
388                         if (tmp->vm_flags & VM_SHARED)
389                                 mapping->i_mmap_writable++;
390                         flush_dcache_mmap_lock(mapping);
391                         /* insert tmp into the share list, just after mpnt */
392                         vma_prio_tree_add(tmp, mpnt);
393                         flush_dcache_mmap_unlock(mapping);
394                         mutex_unlock(&mapping->i_mmap_mutex);
395                 }
396
397                 /*
398                  * Clear hugetlb-related page reserves for children. This only
399                  * affects MAP_PRIVATE mappings. Faults generated by the child
400                  * are not guaranteed to succeed, even if read-only
401                  */
402                 if (is_vm_hugetlb_page(tmp))
403                         reset_vma_resv_huge_pages(tmp);
404
405                 /*
406                  * Link in the new vma and copy the page table entries.
407                  */
408                 *pprev = tmp;
409                 pprev = &tmp->vm_next;
410                 tmp->vm_prev = prev;
411                 prev = tmp;
412
413                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414                 rb_link = &tmp->vm_rb.rb_right;
415                 rb_parent = &tmp->vm_rb;
416
417                 mm->map_count++;
418                 retval = copy_page_range(mm, oldmm, mpnt);
419
420                 if (tmp->vm_ops && tmp->vm_ops->open)
421                         tmp->vm_ops->open(tmp);
422
423                 if (retval)
424                         goto out;
425         }
426         /* a new mm has just been created */
427         arch_dup_mmap(oldmm, mm);
428         retval = 0;
429 out:
430         up_write(&mm->mmap_sem);
431         flush_tlb_mm(oldmm);
432         up_write(&oldmm->mmap_sem);
433         return retval;
434 fail_nomem_anon_vma_fork:
435         mpol_put(pol);
436 fail_nomem_policy:
437         kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439         retval = -ENOMEM;
440         vm_unacct_memory(charge);
441         goto out;
442 }
443
444 static inline int mm_alloc_pgd(struct mm_struct * mm)
445 {
446         mm->pgd = pgd_alloc(mm);
447         if (unlikely(!mm->pgd))
448                 return -ENOMEM;
449         return 0;
450 }
451
452 static inline void mm_free_pgd(struct mm_struct * mm)
453 {
454         pgd_free(mm, mm->pgd);
455 }
456 #else
457 #define dup_mmap(mm, oldmm)     (0)
458 #define mm_alloc_pgd(mm)        (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
461
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463
464 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
466
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468
469 static int __init coredump_filter_setup(char *s)
470 {
471         default_dump_filter =
472                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473                 MMF_DUMP_FILTER_MASK;
474         return 1;
475 }
476
477 __setup("coredump_filter=", coredump_filter_setup);
478
479 #include <linux/init_task.h>
480
481 static void mm_init_aio(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_AIO
484         spin_lock_init(&mm->ioctx_lock);
485         INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
487 }
488
489 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
490 {
491         atomic_set(&mm->mm_users, 1);
492         atomic_set(&mm->mm_count, 1);
493         init_rwsem(&mm->mmap_sem);
494         INIT_LIST_HEAD(&mm->mmlist);
495         mm->flags = (current->mm) ?
496                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497         mm->core_state = NULL;
498         mm->nr_ptes = 0;
499         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500         spin_lock_init(&mm->page_table_lock);
501         mm->free_area_cache = TASK_UNMAPPED_BASE;
502         mm->cached_hole_size = ~0UL;
503         mm_init_aio(mm);
504         mm_init_owner(mm, p);
505         atomic_set(&mm->oom_disable_count, 0);
506
507         if (likely(!mm_alloc_pgd(mm))) {
508                 mm->def_flags = 0;
509                 mmu_notifier_mm_init(mm);
510                 return mm;
511         }
512
513         free_mm(mm);
514         return NULL;
515 }
516
517 /*
518  * Allocate and initialize an mm_struct.
519  */
520 struct mm_struct * mm_alloc(void)
521 {
522         struct mm_struct * mm;
523
524         mm = allocate_mm();
525         if (!mm)
526                 return NULL;
527
528         memset(mm, 0, sizeof(*mm));
529         mm_init_cpumask(mm);
530         return mm_init(mm, current);
531 }
532
533 /*
534  * Called when the last reference to the mm
535  * is dropped: either by a lazy thread or by
536  * mmput. Free the page directory and the mm.
537  */
538 void __mmdrop(struct mm_struct *mm)
539 {
540         BUG_ON(mm == &init_mm);
541         mm_free_pgd(mm);
542         destroy_context(mm);
543         mmu_notifier_mm_destroy(mm);
544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
545         VM_BUG_ON(mm->pmd_huge_pte);
546 #endif
547         free_mm(mm);
548 }
549 EXPORT_SYMBOL_GPL(__mmdrop);
550
551 /*
552  * Decrement the use count and release all resources for an mm.
553  */
554 void mmput(struct mm_struct *mm)
555 {
556         might_sleep();
557
558         if (atomic_dec_and_test(&mm->mm_users)) {
559                 exit_aio(mm);
560                 ksm_exit(mm);
561                 khugepaged_exit(mm); /* must run before exit_mmap */
562                 exit_mmap(mm);
563                 set_mm_exe_file(mm, NULL);
564                 if (!list_empty(&mm->mmlist)) {
565                         spin_lock(&mmlist_lock);
566                         list_del(&mm->mmlist);
567                         spin_unlock(&mmlist_lock);
568                 }
569                 put_swap_token(mm);
570                 if (mm->binfmt)
571                         module_put(mm->binfmt->module);
572                 mmdrop(mm);
573         }
574 }
575 EXPORT_SYMBOL_GPL(mmput);
576
577 /*
578  * We added or removed a vma mapping the executable. The vmas are only mapped
579  * during exec and are not mapped with the mmap system call.
580  * Callers must hold down_write() on the mm's mmap_sem for these
581  */
582 void added_exe_file_vma(struct mm_struct *mm)
583 {
584         mm->num_exe_file_vmas++;
585 }
586
587 void removed_exe_file_vma(struct mm_struct *mm)
588 {
589         mm->num_exe_file_vmas--;
590         if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
591                 fput(mm->exe_file);
592                 mm->exe_file = NULL;
593         }
594
595 }
596
597 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
598 {
599         if (new_exe_file)
600                 get_file(new_exe_file);
601         if (mm->exe_file)
602                 fput(mm->exe_file);
603         mm->exe_file = new_exe_file;
604         mm->num_exe_file_vmas = 0;
605 }
606
607 struct file *get_mm_exe_file(struct mm_struct *mm)
608 {
609         struct file *exe_file;
610
611         /* We need mmap_sem to protect against races with removal of
612          * VM_EXECUTABLE vmas */
613         down_read(&mm->mmap_sem);
614         exe_file = mm->exe_file;
615         if (exe_file)
616                 get_file(exe_file);
617         up_read(&mm->mmap_sem);
618         return exe_file;
619 }
620
621 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
622 {
623         /* It's safe to write the exe_file pointer without exe_file_lock because
624          * this is called during fork when the task is not yet in /proc */
625         newmm->exe_file = get_mm_exe_file(oldmm);
626 }
627
628 /**
629  * get_task_mm - acquire a reference to the task's mm
630  *
631  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
632  * this kernel workthread has transiently adopted a user mm with use_mm,
633  * to do its AIO) is not set and if so returns a reference to it, after
634  * bumping up the use count.  User must release the mm via mmput()
635  * after use.  Typically used by /proc and ptrace.
636  */
637 struct mm_struct *get_task_mm(struct task_struct *task)
638 {
639         struct mm_struct *mm;
640
641         task_lock(task);
642         mm = task->mm;
643         if (mm) {
644                 if (task->flags & PF_KTHREAD)
645                         mm = NULL;
646                 else
647                         atomic_inc(&mm->mm_users);
648         }
649         task_unlock(task);
650         return mm;
651 }
652 EXPORT_SYMBOL_GPL(get_task_mm);
653
654 /* Please note the differences between mmput and mm_release.
655  * mmput is called whenever we stop holding onto a mm_struct,
656  * error success whatever.
657  *
658  * mm_release is called after a mm_struct has been removed
659  * from the current process.
660  *
661  * This difference is important for error handling, when we
662  * only half set up a mm_struct for a new process and need to restore
663  * the old one.  Because we mmput the new mm_struct before
664  * restoring the old one. . .
665  * Eric Biederman 10 January 1998
666  */
667 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
668 {
669         struct completion *vfork_done = tsk->vfork_done;
670
671         /* Get rid of any futexes when releasing the mm */
672 #ifdef CONFIG_FUTEX
673         if (unlikely(tsk->robust_list)) {
674                 exit_robust_list(tsk);
675                 tsk->robust_list = NULL;
676         }
677 #ifdef CONFIG_COMPAT
678         if (unlikely(tsk->compat_robust_list)) {
679                 compat_exit_robust_list(tsk);
680                 tsk->compat_robust_list = NULL;
681         }
682 #endif
683         if (unlikely(!list_empty(&tsk->pi_state_list)))
684                 exit_pi_state_list(tsk);
685 #endif
686
687         /* Get rid of any cached register state */
688         deactivate_mm(tsk, mm);
689
690         /* notify parent sleeping on vfork() */
691         if (vfork_done) {
692                 tsk->vfork_done = NULL;
693                 complete(vfork_done);
694         }
695
696         /*
697          * If we're exiting normally, clear a user-space tid field if
698          * requested.  We leave this alone when dying by signal, to leave
699          * the value intact in a core dump, and to save the unnecessary
700          * trouble otherwise.  Userland only wants this done for a sys_exit.
701          */
702         if (tsk->clear_child_tid) {
703                 if (!(tsk->flags & PF_SIGNALED) &&
704                     atomic_read(&mm->mm_users) > 1) {
705                         /*
706                          * We don't check the error code - if userspace has
707                          * not set up a proper pointer then tough luck.
708                          */
709                         put_user(0, tsk->clear_child_tid);
710                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
711                                         1, NULL, NULL, 0);
712                 }
713                 tsk->clear_child_tid = NULL;
714         }
715 }
716
717 /*
718  * Allocate a new mm structure and copy contents from the
719  * mm structure of the passed in task structure.
720  */
721 struct mm_struct *dup_mm(struct task_struct *tsk)
722 {
723         struct mm_struct *mm, *oldmm = current->mm;
724         int err;
725
726         if (!oldmm)
727                 return NULL;
728
729         mm = allocate_mm();
730         if (!mm)
731                 goto fail_nomem;
732
733         memcpy(mm, oldmm, sizeof(*mm));
734         mm_init_cpumask(mm);
735
736         /* Initializing for Swap token stuff */
737         mm->token_priority = 0;
738         mm->last_interval = 0;
739
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741         mm->pmd_huge_pte = NULL;
742 #endif
743
744         if (!mm_init(mm, tsk))
745                 goto fail_nomem;
746
747         if (init_new_context(tsk, mm))
748                 goto fail_nocontext;
749
750         dup_mm_exe_file(oldmm, mm);
751
752         err = dup_mmap(mm, oldmm);
753         if (err)
754                 goto free_pt;
755
756         mm->hiwater_rss = get_mm_rss(mm);
757         mm->hiwater_vm = mm->total_vm;
758
759         if (mm->binfmt && !try_module_get(mm->binfmt->module))
760                 goto free_pt;
761
762         return mm;
763
764 free_pt:
765         /* don't put binfmt in mmput, we haven't got module yet */
766         mm->binfmt = NULL;
767         mmput(mm);
768
769 fail_nomem:
770         return NULL;
771
772 fail_nocontext:
773         /*
774          * If init_new_context() failed, we cannot use mmput() to free the mm
775          * because it calls destroy_context()
776          */
777         mm_free_pgd(mm);
778         free_mm(mm);
779         return NULL;
780 }
781
782 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
783 {
784         struct mm_struct * mm, *oldmm;
785         int retval;
786
787         tsk->min_flt = tsk->maj_flt = 0;
788         tsk->nvcsw = tsk->nivcsw = 0;
789 #ifdef CONFIG_DETECT_HUNG_TASK
790         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
791 #endif
792
793         tsk->mm = NULL;
794         tsk->active_mm = NULL;
795
796         /*
797          * Are we cloning a kernel thread?
798          *
799          * We need to steal a active VM for that..
800          */
801         oldmm = current->mm;
802         if (!oldmm)
803                 return 0;
804
805         if (clone_flags & CLONE_VM) {
806                 atomic_inc(&oldmm->mm_users);
807                 mm = oldmm;
808                 goto good_mm;
809         }
810
811         retval = -ENOMEM;
812         mm = dup_mm(tsk);
813         if (!mm)
814                 goto fail_nomem;
815
816 good_mm:
817         /* Initializing for Swap token stuff */
818         mm->token_priority = 0;
819         mm->last_interval = 0;
820         if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
821                 atomic_inc(&mm->oom_disable_count);
822
823         tsk->mm = mm;
824         tsk->active_mm = mm;
825         return 0;
826
827 fail_nomem:
828         return retval;
829 }
830
831 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
832 {
833         struct fs_struct *fs = current->fs;
834         if (clone_flags & CLONE_FS) {
835                 /* tsk->fs is already what we want */
836                 spin_lock(&fs->lock);
837                 if (fs->in_exec) {
838                         spin_unlock(&fs->lock);
839                         return -EAGAIN;
840                 }
841                 fs->users++;
842                 spin_unlock(&fs->lock);
843                 return 0;
844         }
845         tsk->fs = copy_fs_struct(fs);
846         if (!tsk->fs)
847                 return -ENOMEM;
848         return 0;
849 }
850
851 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
852 {
853         struct files_struct *oldf, *newf;
854         int error = 0;
855
856         /*
857          * A background process may not have any files ...
858          */
859         oldf = current->files;
860         if (!oldf)
861                 goto out;
862
863         if (clone_flags & CLONE_FILES) {
864                 atomic_inc(&oldf->count);
865                 goto out;
866         }
867
868         newf = dup_fd(oldf, &error);
869         if (!newf)
870                 goto out;
871
872         tsk->files = newf;
873         error = 0;
874 out:
875         return error;
876 }
877
878 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
879 {
880 #ifdef CONFIG_BLOCK
881         struct io_context *ioc = current->io_context;
882
883         if (!ioc)
884                 return 0;
885         /*
886          * Share io context with parent, if CLONE_IO is set
887          */
888         if (clone_flags & CLONE_IO) {
889                 tsk->io_context = ioc_task_link(ioc);
890                 if (unlikely(!tsk->io_context))
891                         return -ENOMEM;
892         } else if (ioprio_valid(ioc->ioprio)) {
893                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
894                 if (unlikely(!tsk->io_context))
895                         return -ENOMEM;
896
897                 tsk->io_context->ioprio = ioc->ioprio;
898         }
899 #endif
900         return 0;
901 }
902
903 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
904 {
905         struct sighand_struct *sig;
906
907         if (clone_flags & CLONE_SIGHAND) {
908                 atomic_inc(&current->sighand->count);
909                 return 0;
910         }
911         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
912         rcu_assign_pointer(tsk->sighand, sig);
913         if (!sig)
914                 return -ENOMEM;
915         atomic_set(&sig->count, 1);
916         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
917         return 0;
918 }
919
920 void __cleanup_sighand(struct sighand_struct *sighand)
921 {
922         if (atomic_dec_and_test(&sighand->count)) {
923                 signalfd_cleanup(sighand);
924                 kmem_cache_free(sighand_cachep, sighand);
925         }
926 }
927
928
929 /*
930  * Initialize POSIX timer handling for a thread group.
931  */
932 static void posix_cpu_timers_init_group(struct signal_struct *sig)
933 {
934         unsigned long cpu_limit;
935
936         /* Thread group counters. */
937         thread_group_cputime_init(sig);
938
939         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
940         if (cpu_limit != RLIM_INFINITY) {
941                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
942                 sig->cputimer.running = 1;
943         }
944
945         /* The timer lists. */
946         INIT_LIST_HEAD(&sig->cpu_timers[0]);
947         INIT_LIST_HEAD(&sig->cpu_timers[1]);
948         INIT_LIST_HEAD(&sig->cpu_timers[2]);
949 }
950
951 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
952 {
953         struct signal_struct *sig;
954
955         if (clone_flags & CLONE_THREAD)
956                 return 0;
957
958         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
959         tsk->signal = sig;
960         if (!sig)
961                 return -ENOMEM;
962
963         sig->nr_threads = 1;
964         atomic_set(&sig->live, 1);
965         atomic_set(&sig->sigcnt, 1);
966         init_waitqueue_head(&sig->wait_chldexit);
967         if (clone_flags & CLONE_NEWPID)
968                 sig->flags |= SIGNAL_UNKILLABLE;
969         sig->curr_target = tsk;
970         init_sigpending(&sig->shared_pending);
971         INIT_LIST_HEAD(&sig->posix_timers);
972
973         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
974         sig->real_timer.function = it_real_fn;
975
976         task_lock(current->group_leader);
977         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
978         task_unlock(current->group_leader);
979
980         posix_cpu_timers_init_group(sig);
981
982         tty_audit_fork(sig);
983         sched_autogroup_fork(sig);
984
985 #ifdef CONFIG_CGROUPS
986         init_rwsem(&sig->threadgroup_fork_lock);
987 #endif
988
989         sig->oom_adj = current->signal->oom_adj;
990         sig->oom_score_adj = current->signal->oom_score_adj;
991         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
992
993         mutex_init(&sig->cred_guard_mutex);
994
995         return 0;
996 }
997
998 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
999 {
1000         unsigned long new_flags = p->flags;
1001
1002         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1003         new_flags |= PF_FORKNOEXEC;
1004         new_flags |= PF_STARTING;
1005         p->flags = new_flags;
1006         clear_freeze_flag(p);
1007 }
1008
1009 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1010 {
1011         current->clear_child_tid = tidptr;
1012
1013         return task_pid_vnr(current);
1014 }
1015
1016 static void rt_mutex_init_task(struct task_struct *p)
1017 {
1018         raw_spin_lock_init(&p->pi_lock);
1019 #ifdef CONFIG_RT_MUTEXES
1020         plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
1021         p->pi_blocked_on = NULL;
1022 #endif
1023 }
1024
1025 #ifdef CONFIG_MM_OWNER
1026 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1027 {
1028         mm->owner = p;
1029 }
1030 #endif /* CONFIG_MM_OWNER */
1031
1032 /*
1033  * Initialize POSIX timer handling for a single task.
1034  */
1035 static void posix_cpu_timers_init(struct task_struct *tsk)
1036 {
1037         tsk->cputime_expires.prof_exp = cputime_zero;
1038         tsk->cputime_expires.virt_exp = cputime_zero;
1039         tsk->cputime_expires.sched_exp = 0;
1040         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1041         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1042         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1043 }
1044
1045 /*
1046  * This creates a new process as a copy of the old one,
1047  * but does not actually start it yet.
1048  *
1049  * It copies the registers, and all the appropriate
1050  * parts of the process environment (as per the clone
1051  * flags). The actual kick-off is left to the caller.
1052  */
1053 static struct task_struct *copy_process(unsigned long clone_flags,
1054                                         unsigned long stack_start,
1055                                         struct pt_regs *regs,
1056                                         unsigned long stack_size,
1057                                         int __user *child_tidptr,
1058                                         struct pid *pid,
1059                                         int trace)
1060 {
1061         int retval;
1062         struct task_struct *p;
1063         int cgroup_callbacks_done = 0;
1064
1065         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1066                 return ERR_PTR(-EINVAL);
1067
1068         /*
1069          * Thread groups must share signals as well, and detached threads
1070          * can only be started up within the thread group.
1071          */
1072         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1073                 return ERR_PTR(-EINVAL);
1074
1075         /*
1076          * Shared signal handlers imply shared VM. By way of the above,
1077          * thread groups also imply shared VM. Blocking this case allows
1078          * for various simplifications in other code.
1079          */
1080         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1081                 return ERR_PTR(-EINVAL);
1082
1083         /*
1084          * Siblings of global init remain as zombies on exit since they are
1085          * not reaped by their parent (swapper). To solve this and to avoid
1086          * multi-rooted process trees, prevent global and container-inits
1087          * from creating siblings.
1088          */
1089         if ((clone_flags & CLONE_PARENT) &&
1090                                 current->signal->flags & SIGNAL_UNKILLABLE)
1091                 return ERR_PTR(-EINVAL);
1092
1093         retval = security_task_create(clone_flags);
1094         if (retval)
1095                 goto fork_out;
1096
1097         retval = -ENOMEM;
1098         p = dup_task_struct(current);
1099         if (!p)
1100                 goto fork_out;
1101
1102         ftrace_graph_init_task(p);
1103
1104         rt_mutex_init_task(p);
1105
1106 #ifdef CONFIG_PROVE_LOCKING
1107         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1108         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1109 #endif
1110         retval = -EAGAIN;
1111         if (atomic_read(&p->real_cred->user->processes) >=
1112                         task_rlimit(p, RLIMIT_NPROC)) {
1113                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1114                     p->real_cred->user != INIT_USER)
1115                         goto bad_fork_free;
1116         }
1117
1118         retval = copy_creds(p, clone_flags);
1119         if (retval < 0)
1120                 goto bad_fork_free;
1121
1122         /*
1123          * If multiple threads are within copy_process(), then this check
1124          * triggers too late. This doesn't hurt, the check is only there
1125          * to stop root fork bombs.
1126          */
1127         retval = -EAGAIN;
1128         if (nr_threads >= max_threads)
1129                 goto bad_fork_cleanup_count;
1130
1131         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1132                 goto bad_fork_cleanup_count;
1133
1134         p->did_exec = 0;
1135         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1136         copy_flags(clone_flags, p);
1137         INIT_LIST_HEAD(&p->children);
1138         INIT_LIST_HEAD(&p->sibling);
1139         rcu_copy_process(p);
1140         p->vfork_done = NULL;
1141         spin_lock_init(&p->alloc_lock);
1142
1143         init_sigpending(&p->pending);
1144
1145         p->utime = cputime_zero;
1146         p->stime = cputime_zero;
1147         p->gtime = cputime_zero;
1148         p->utimescaled = cputime_zero;
1149         p->stimescaled = cputime_zero;
1150 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1151         p->prev_utime = cputime_zero;
1152         p->prev_stime = cputime_zero;
1153 #endif
1154 #if defined(SPLIT_RSS_COUNTING)
1155         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1156 #endif
1157
1158         p->default_timer_slack_ns = current->timer_slack_ns;
1159
1160         task_io_accounting_init(&p->ioac);
1161         acct_clear_integrals(p);
1162
1163         posix_cpu_timers_init(p);
1164
1165         do_posix_clock_monotonic_gettime(&p->start_time);
1166         p->real_start_time = p->start_time;
1167         monotonic_to_bootbased(&p->real_start_time);
1168         p->io_context = NULL;
1169         p->audit_context = NULL;
1170         if (clone_flags & CLONE_THREAD)
1171                 threadgroup_fork_read_lock(current);
1172         cgroup_fork(p);
1173 #ifdef CONFIG_NUMA
1174         p->mempolicy = mpol_dup(p->mempolicy);
1175         if (IS_ERR(p->mempolicy)) {
1176                 retval = PTR_ERR(p->mempolicy);
1177                 p->mempolicy = NULL;
1178                 goto bad_fork_cleanup_cgroup;
1179         }
1180         mpol_fix_fork_child_flag(p);
1181 #endif
1182 #ifdef CONFIG_TRACE_IRQFLAGS
1183         p->irq_events = 0;
1184 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1185         p->hardirqs_enabled = 1;
1186 #else
1187         p->hardirqs_enabled = 0;
1188 #endif
1189         p->hardirq_enable_ip = 0;
1190         p->hardirq_enable_event = 0;
1191         p->hardirq_disable_ip = _THIS_IP_;
1192         p->hardirq_disable_event = 0;
1193         p->softirqs_enabled = 1;
1194         p->softirq_enable_ip = _THIS_IP_;
1195         p->softirq_enable_event = 0;
1196         p->softirq_disable_ip = 0;
1197         p->softirq_disable_event = 0;
1198         p->hardirq_context = 0;
1199         p->softirq_context = 0;
1200 #endif
1201 #ifdef CONFIG_LOCKDEP
1202         p->lockdep_depth = 0; /* no locks held yet */
1203         p->curr_chain_key = 0;
1204         p->lockdep_recursion = 0;
1205 #endif
1206
1207 #ifdef CONFIG_DEBUG_MUTEXES
1208         p->blocked_on = NULL; /* not blocked yet */
1209 #endif
1210 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1211         p->memcg_batch.do_batch = 0;
1212         p->memcg_batch.memcg = NULL;
1213 #endif
1214
1215         /* Perform scheduler related setup. Assign this task to a CPU. */
1216         sched_fork(p);
1217
1218         retval = perf_event_init_task(p);
1219         if (retval)
1220                 goto bad_fork_cleanup_policy;
1221
1222         if ((retval = audit_alloc(p)))
1223                 goto bad_fork_cleanup_policy;
1224         /* copy all the process information */
1225         if ((retval = copy_semundo(clone_flags, p)))
1226                 goto bad_fork_cleanup_audit;
1227         if ((retval = copy_files(clone_flags, p)))
1228                 goto bad_fork_cleanup_semundo;
1229         if ((retval = copy_fs(clone_flags, p)))
1230                 goto bad_fork_cleanup_files;
1231         if ((retval = copy_sighand(clone_flags, p)))
1232                 goto bad_fork_cleanup_fs;
1233         if ((retval = copy_signal(clone_flags, p)))
1234                 goto bad_fork_cleanup_sighand;
1235         if ((retval = copy_mm(clone_flags, p)))
1236                 goto bad_fork_cleanup_signal;
1237         if ((retval = copy_namespaces(clone_flags, p)))
1238                 goto bad_fork_cleanup_mm;
1239         if ((retval = copy_io(clone_flags, p)))
1240                 goto bad_fork_cleanup_namespaces;
1241         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1242         if (retval)
1243                 goto bad_fork_cleanup_io;
1244
1245         if (pid != &init_struct_pid) {
1246                 retval = -ENOMEM;
1247                 pid = alloc_pid(p->nsproxy->pid_ns);
1248                 if (!pid)
1249                         goto bad_fork_cleanup_io;
1250         }
1251
1252         p->pid = pid_nr(pid);
1253         p->tgid = p->pid;
1254         if (clone_flags & CLONE_THREAD)
1255                 p->tgid = current->tgid;
1256
1257         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1258         /*
1259          * Clear TID on mm_release()?
1260          */
1261         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1262 #ifdef CONFIG_BLOCK
1263         p->plug = NULL;
1264 #endif
1265 #ifdef CONFIG_FUTEX
1266         p->robust_list = NULL;
1267 #ifdef CONFIG_COMPAT
1268         p->compat_robust_list = NULL;
1269 #endif
1270         INIT_LIST_HEAD(&p->pi_state_list);
1271         p->pi_state_cache = NULL;
1272 #endif
1273         /*
1274          * sigaltstack should be cleared when sharing the same VM
1275          */
1276         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1277                 p->sas_ss_sp = p->sas_ss_size = 0;
1278
1279         /*
1280          * Syscall tracing and stepping should be turned off in the
1281          * child regardless of CLONE_PTRACE.
1282          */
1283         user_disable_single_step(p);
1284         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1285 #ifdef TIF_SYSCALL_EMU
1286         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1287 #endif
1288         clear_all_latency_tracing(p);
1289
1290         /* ok, now we should be set up.. */
1291         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1292         p->pdeath_signal = 0;
1293         p->exit_state = 0;
1294
1295         /*
1296          * Ok, make it visible to the rest of the system.
1297          * We dont wake it up yet.
1298          */
1299         p->group_leader = p;
1300         INIT_LIST_HEAD(&p->thread_group);
1301
1302         /* Now that the task is set up, run cgroup callbacks if
1303          * necessary. We need to run them before the task is visible
1304          * on the tasklist. */
1305         cgroup_fork_callbacks(p);
1306         cgroup_callbacks_done = 1;
1307
1308         /* Need tasklist lock for parent etc handling! */
1309         write_lock_irq(&tasklist_lock);
1310
1311         /* CLONE_PARENT re-uses the old parent */
1312         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1313                 p->real_parent = current->real_parent;
1314                 p->parent_exec_id = current->parent_exec_id;
1315         } else {
1316                 p->real_parent = current;
1317                 p->parent_exec_id = current->self_exec_id;
1318         }
1319
1320         spin_lock(&current->sighand->siglock);
1321
1322         /*
1323          * Process group and session signals need to be delivered to just the
1324          * parent before the fork or both the parent and the child after the
1325          * fork. Restart if a signal comes in before we add the new process to
1326          * it's process group.
1327          * A fatal signal pending means that current will exit, so the new
1328          * thread can't slip out of an OOM kill (or normal SIGKILL).
1329          */
1330         recalc_sigpending();
1331         if (signal_pending(current)) {
1332                 spin_unlock(&current->sighand->siglock);
1333                 write_unlock_irq(&tasklist_lock);
1334                 retval = -ERESTARTNOINTR;
1335                 goto bad_fork_free_pid;
1336         }
1337
1338         if (clone_flags & CLONE_THREAD) {
1339                 current->signal->nr_threads++;
1340                 atomic_inc(&current->signal->live);
1341                 atomic_inc(&current->signal->sigcnt);
1342                 p->group_leader = current->group_leader;
1343                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1344         }
1345
1346         if (likely(p->pid)) {
1347                 tracehook_finish_clone(p, clone_flags, trace);
1348
1349                 if (thread_group_leader(p)) {
1350                         if (is_child_reaper(pid))
1351                                 p->nsproxy->pid_ns->child_reaper = p;
1352
1353                         p->signal->leader_pid = pid;
1354                         p->signal->tty = tty_kref_get(current->signal->tty);
1355                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1356                         attach_pid(p, PIDTYPE_SID, task_session(current));
1357                         list_add_tail(&p->sibling, &p->real_parent->children);
1358                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1359                         __this_cpu_inc(process_counts);
1360                 }
1361                 attach_pid(p, PIDTYPE_PID, pid);
1362                 nr_threads++;
1363         }
1364
1365         total_forks++;
1366         spin_unlock(&current->sighand->siglock);
1367         write_unlock_irq(&tasklist_lock);
1368         proc_fork_connector(p);
1369         cgroup_post_fork(p);
1370         if (clone_flags & CLONE_THREAD)
1371                 threadgroup_fork_read_unlock(current);
1372         perf_event_fork(p);
1373         return p;
1374
1375 bad_fork_free_pid:
1376         if (pid != &init_struct_pid)
1377                 free_pid(pid);
1378 bad_fork_cleanup_io:
1379         if (p->io_context)
1380                 exit_io_context(p);
1381 bad_fork_cleanup_namespaces:
1382         if (unlikely(clone_flags & CLONE_NEWPID))
1383                 pid_ns_release_proc(p->nsproxy->pid_ns);
1384         exit_task_namespaces(p);
1385 bad_fork_cleanup_mm:
1386         if (p->mm) {
1387                 task_lock(p);
1388                 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1389                         atomic_dec(&p->mm->oom_disable_count);
1390                 task_unlock(p);
1391                 mmput(p->mm);
1392         }
1393 bad_fork_cleanup_signal:
1394         if (!(clone_flags & CLONE_THREAD))
1395                 free_signal_struct(p->signal);
1396 bad_fork_cleanup_sighand:
1397         __cleanup_sighand(p->sighand);
1398 bad_fork_cleanup_fs:
1399         exit_fs(p); /* blocking */
1400 bad_fork_cleanup_files:
1401         exit_files(p); /* blocking */
1402 bad_fork_cleanup_semundo:
1403         exit_sem(p);
1404 bad_fork_cleanup_audit:
1405         audit_free(p);
1406 bad_fork_cleanup_policy:
1407         perf_event_free_task(p);
1408 #ifdef CONFIG_NUMA
1409         mpol_put(p->mempolicy);
1410 bad_fork_cleanup_cgroup:
1411 #endif
1412         if (clone_flags & CLONE_THREAD)
1413                 threadgroup_fork_read_unlock(current);
1414         cgroup_exit(p, cgroup_callbacks_done);
1415         delayacct_tsk_free(p);
1416         module_put(task_thread_info(p)->exec_domain->module);
1417 bad_fork_cleanup_count:
1418         atomic_dec(&p->cred->user->processes);
1419         exit_creds(p);
1420 bad_fork_free:
1421         free_task(p);
1422 fork_out:
1423         return ERR_PTR(retval);
1424 }
1425
1426 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1427 {
1428         memset(regs, 0, sizeof(struct pt_regs));
1429         return regs;
1430 }
1431
1432 static inline void init_idle_pids(struct pid_link *links)
1433 {
1434         enum pid_type type;
1435
1436         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1437                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1438                 links[type].pid = &init_struct_pid;
1439         }
1440 }
1441
1442 struct task_struct * __cpuinit fork_idle(int cpu)
1443 {
1444         struct task_struct *task;
1445         struct pt_regs regs;
1446
1447         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1448                             &init_struct_pid, 0);
1449         if (!IS_ERR(task)) {
1450                 init_idle_pids(task->pids);
1451                 init_idle(task, cpu);
1452         }
1453
1454         return task;
1455 }
1456
1457 /*
1458  *  Ok, this is the main fork-routine.
1459  *
1460  * It copies the process, and if successful kick-starts
1461  * it and waits for it to finish using the VM if required.
1462  */
1463 long do_fork(unsigned long clone_flags,
1464               unsigned long stack_start,
1465               struct pt_regs *regs,
1466               unsigned long stack_size,
1467               int __user *parent_tidptr,
1468               int __user *child_tidptr)
1469 {
1470         struct task_struct *p;
1471         int trace = 0;
1472         long nr;
1473
1474         /*
1475          * Do some preliminary argument and permissions checking before we
1476          * actually start allocating stuff
1477          */
1478         if (clone_flags & CLONE_NEWUSER) {
1479                 if (clone_flags & CLONE_THREAD)
1480                         return -EINVAL;
1481                 /* hopefully this check will go away when userns support is
1482                  * complete
1483                  */
1484                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1485                                 !capable(CAP_SETGID))
1486                         return -EPERM;
1487         }
1488
1489         /*
1490          * When called from kernel_thread, don't do user tracing stuff.
1491          */
1492         if (likely(user_mode(regs)))
1493                 trace = tracehook_prepare_clone(clone_flags);
1494
1495         p = copy_process(clone_flags, stack_start, regs, stack_size,
1496                          child_tidptr, NULL, trace);
1497         /*
1498          * Do this prior waking up the new thread - the thread pointer
1499          * might get invalid after that point, if the thread exits quickly.
1500          */
1501         if (!IS_ERR(p)) {
1502                 struct completion vfork;
1503
1504                 trace_sched_process_fork(current, p);
1505
1506                 nr = task_pid_vnr(p);
1507
1508                 if (clone_flags & CLONE_PARENT_SETTID)
1509                         put_user(nr, parent_tidptr);
1510
1511                 if (clone_flags & CLONE_VFORK) {
1512                         p->vfork_done = &vfork;
1513                         init_completion(&vfork);
1514                 }
1515
1516                 audit_finish_fork(p);
1517                 tracehook_report_clone(regs, clone_flags, nr, p);
1518
1519                 /*
1520                  * We set PF_STARTING at creation in case tracing wants to
1521                  * use this to distinguish a fully live task from one that
1522                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1523                  * clear it and set the child going.
1524                  */
1525                 p->flags &= ~PF_STARTING;
1526
1527                 wake_up_new_task(p);
1528
1529                 tracehook_report_clone_complete(trace, regs,
1530                                                 clone_flags, nr, p);
1531
1532                 if (clone_flags & CLONE_VFORK) {
1533                         freezer_do_not_count();
1534                         wait_for_completion(&vfork);
1535                         freezer_count();
1536                         tracehook_report_vfork_done(p, nr);
1537                 }
1538         } else {
1539                 nr = PTR_ERR(p);
1540         }
1541         return nr;
1542 }
1543
1544 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1545 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1546 #endif
1547
1548 static void sighand_ctor(void *data)
1549 {
1550         struct sighand_struct *sighand = data;
1551
1552         spin_lock_init(&sighand->siglock);
1553         init_waitqueue_head(&sighand->signalfd_wqh);
1554 }
1555
1556 void __init proc_caches_init(void)
1557 {
1558         sighand_cachep = kmem_cache_create("sighand_cache",
1559                         sizeof(struct sighand_struct), 0,
1560                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1561                         SLAB_NOTRACK, sighand_ctor);
1562         signal_cachep = kmem_cache_create("signal_cache",
1563                         sizeof(struct signal_struct), 0,
1564                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1565         files_cachep = kmem_cache_create("files_cache",
1566                         sizeof(struct files_struct), 0,
1567                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1568         fs_cachep = kmem_cache_create("fs_cache",
1569                         sizeof(struct fs_struct), 0,
1570                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1571         /*
1572          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1573          * whole struct cpumask for the OFFSTACK case. We could change
1574          * this to *only* allocate as much of it as required by the
1575          * maximum number of CPU's we can ever have.  The cpumask_allocation
1576          * is at the end of the structure, exactly for that reason.
1577          */
1578         mm_cachep = kmem_cache_create("mm_struct",
1579                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1580                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1581         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1582         mmap_init();
1583 }
1584
1585 /*
1586  * Check constraints on flags passed to the unshare system call.
1587  */
1588 static int check_unshare_flags(unsigned long unshare_flags)
1589 {
1590         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1591                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1592                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1593                 return -EINVAL;
1594         /*
1595          * Not implemented, but pretend it works if there is nothing to
1596          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1597          * needs to unshare vm.
1598          */
1599         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1600                 /* FIXME: get_task_mm() increments ->mm_users */
1601                 if (atomic_read(&current->mm->mm_users) > 1)
1602                         return -EINVAL;
1603         }
1604
1605         return 0;
1606 }
1607
1608 /*
1609  * Unshare the filesystem structure if it is being shared
1610  */
1611 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1612 {
1613         struct fs_struct *fs = current->fs;
1614
1615         if (!(unshare_flags & CLONE_FS) || !fs)
1616                 return 0;
1617
1618         /* don't need lock here; in the worst case we'll do useless copy */
1619         if (fs->users == 1)
1620                 return 0;
1621
1622         *new_fsp = copy_fs_struct(fs);
1623         if (!*new_fsp)
1624                 return -ENOMEM;
1625
1626         return 0;
1627 }
1628
1629 /*
1630  * Unshare file descriptor table if it is being shared
1631  */
1632 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1633 {
1634         struct files_struct *fd = current->files;
1635         int error = 0;
1636
1637         if ((unshare_flags & CLONE_FILES) &&
1638             (fd && atomic_read(&fd->count) > 1)) {
1639                 *new_fdp = dup_fd(fd, &error);
1640                 if (!*new_fdp)
1641                         return error;
1642         }
1643
1644         return 0;
1645 }
1646
1647 /*
1648  * unshare allows a process to 'unshare' part of the process
1649  * context which was originally shared using clone.  copy_*
1650  * functions used by do_fork() cannot be used here directly
1651  * because they modify an inactive task_struct that is being
1652  * constructed. Here we are modifying the current, active,
1653  * task_struct.
1654  */
1655 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1656 {
1657         struct fs_struct *fs, *new_fs = NULL;
1658         struct files_struct *fd, *new_fd = NULL;
1659         struct nsproxy *new_nsproxy = NULL;
1660         int do_sysvsem = 0;
1661         int err;
1662
1663         err = check_unshare_flags(unshare_flags);
1664         if (err)
1665                 goto bad_unshare_out;
1666
1667         /*
1668          * If unsharing namespace, must also unshare filesystem information.
1669          */
1670         if (unshare_flags & CLONE_NEWNS)
1671                 unshare_flags |= CLONE_FS;
1672         /*
1673          * CLONE_NEWIPC must also detach from the undolist: after switching
1674          * to a new ipc namespace, the semaphore arrays from the old
1675          * namespace are unreachable.
1676          */
1677         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1678                 do_sysvsem = 1;
1679         if ((err = unshare_fs(unshare_flags, &new_fs)))
1680                 goto bad_unshare_out;
1681         if ((err = unshare_fd(unshare_flags, &new_fd)))
1682                 goto bad_unshare_cleanup_fs;
1683         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1684                         new_fs)))
1685                 goto bad_unshare_cleanup_fd;
1686
1687         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1688                 if (do_sysvsem) {
1689                         /*
1690                          * CLONE_SYSVSEM is equivalent to sys_exit().
1691                          */
1692                         exit_sem(current);
1693                 }
1694
1695                 if (new_nsproxy) {
1696                         switch_task_namespaces(current, new_nsproxy);
1697                         new_nsproxy = NULL;
1698                 }
1699
1700                 task_lock(current);
1701
1702                 if (new_fs) {
1703                         fs = current->fs;
1704                         spin_lock(&fs->lock);
1705                         current->fs = new_fs;
1706                         if (--fs->users)
1707                                 new_fs = NULL;
1708                         else
1709                                 new_fs = fs;
1710                         spin_unlock(&fs->lock);
1711                 }
1712
1713                 if (new_fd) {
1714                         fd = current->files;
1715                         current->files = new_fd;
1716                         new_fd = fd;
1717                 }
1718
1719                 task_unlock(current);
1720         }
1721
1722         if (new_nsproxy)
1723                 put_nsproxy(new_nsproxy);
1724
1725 bad_unshare_cleanup_fd:
1726         if (new_fd)
1727                 put_files_struct(new_fd);
1728
1729 bad_unshare_cleanup_fs:
1730         if (new_fs)
1731                 free_fs_struct(new_fs);
1732
1733 bad_unshare_out:
1734         return err;
1735 }
1736
1737 /*
1738  *      Helper to unshare the files of the current task.
1739  *      We don't want to expose copy_files internals to
1740  *      the exec layer of the kernel.
1741  */
1742
1743 int unshare_files(struct files_struct **displaced)
1744 {
1745         struct task_struct *task = current;
1746         struct files_struct *copy = NULL;
1747         int error;
1748
1749         error = unshare_fd(CLONE_FILES, &copy);
1750         if (error || !copy) {
1751                 *displaced = NULL;
1752                 return error;
1753         }
1754         *displaced = task->files;
1755         task_lock(task);
1756         task->files = copy;
1757         task_unlock(task);
1758         return 0;
1759 }