fork: move the real prepare_to_copy() users to arch_dup_task_struct()
[firefly-linux-kernel-4.4.55.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 #include <linux/signalfd.h>
71
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/sched.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/task.h>
83
84 /*
85  * Protected counters by write_lock_irq(&tasklist_lock)
86  */
87 unsigned long total_forks;      /* Handle normal Linux uptimes. */
88 int nr_threads;                 /* The idle threads do not count.. */
89
90 int max_threads;                /* tunable limit on nr_threads */
91
92 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
93
94 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
95
96 #ifdef CONFIG_PROVE_RCU
97 int lockdep_tasklist_lock_is_held(void)
98 {
99         return lockdep_is_held(&tasklist_lock);
100 }
101 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
102 #endif /* #ifdef CONFIG_PROVE_RCU */
103
104 int nr_processes(void)
105 {
106         int cpu;
107         int total = 0;
108
109         for_each_possible_cpu(cpu)
110                 total += per_cpu(process_counts, cpu);
111
112         return total;
113 }
114
115 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
116 # define alloc_task_struct_node(node)           \
117                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
118 # define free_task_struct(tsk)                  \
119                 kmem_cache_free(task_struct_cachep, (tsk))
120 static struct kmem_cache *task_struct_cachep;
121 #endif
122
123 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
124 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
125                                                   int node)
126 {
127 #ifdef CONFIG_DEBUG_STACK_USAGE
128         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
129 #else
130         gfp_t mask = GFP_KERNEL;
131 #endif
132         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
133
134         return page ? page_address(page) : NULL;
135 }
136
137 static inline void free_thread_info(struct thread_info *ti)
138 {
139         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
140 }
141 #endif
142
143 /* SLAB cache for signal_struct structures (tsk->signal) */
144 static struct kmem_cache *signal_cachep;
145
146 /* SLAB cache for sighand_struct structures (tsk->sighand) */
147 struct kmem_cache *sighand_cachep;
148
149 /* SLAB cache for files_struct structures (tsk->files) */
150 struct kmem_cache *files_cachep;
151
152 /* SLAB cache for fs_struct structures (tsk->fs) */
153 struct kmem_cache *fs_cachep;
154
155 /* SLAB cache for vm_area_struct structures */
156 struct kmem_cache *vm_area_cachep;
157
158 /* SLAB cache for mm_struct structures (tsk->mm) */
159 static struct kmem_cache *mm_cachep;
160
161 static void account_kernel_stack(struct thread_info *ti, int account)
162 {
163         struct zone *zone = page_zone(virt_to_page(ti));
164
165         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
166 }
167
168 void free_task(struct task_struct *tsk)
169 {
170         account_kernel_stack(tsk->stack, -1);
171         free_thread_info(tsk->stack);
172         rt_mutex_debug_task_free(tsk);
173         ftrace_graph_exit_task(tsk);
174         free_task_struct(tsk);
175 }
176 EXPORT_SYMBOL(free_task);
177
178 static inline void free_signal_struct(struct signal_struct *sig)
179 {
180         taskstats_tgid_free(sig);
181         sched_autogroup_exit(sig);
182         kmem_cache_free(signal_cachep, sig);
183 }
184
185 static inline void put_signal_struct(struct signal_struct *sig)
186 {
187         if (atomic_dec_and_test(&sig->sigcnt))
188                 free_signal_struct(sig);
189 }
190
191 void __put_task_struct(struct task_struct *tsk)
192 {
193         WARN_ON(!tsk->exit_state);
194         WARN_ON(atomic_read(&tsk->usage));
195         WARN_ON(tsk == current);
196
197         security_task_free(tsk);
198         exit_creds(tsk);
199         delayacct_tsk_free(tsk);
200         put_signal_struct(tsk->signal);
201
202         if (!profile_handoff_task(tsk))
203                 free_task(tsk);
204 }
205 EXPORT_SYMBOL_GPL(__put_task_struct);
206
207 /*
208  * macro override instead of weak attribute alias, to workaround
209  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
210  */
211 #ifndef arch_task_cache_init
212 #define arch_task_cache_init()
213 #endif
214
215 void __init fork_init(unsigned long mempages)
216 {
217 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
218 #ifndef ARCH_MIN_TASKALIGN
219 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
220 #endif
221         /* create a slab on which task_structs can be allocated */
222         task_struct_cachep =
223                 kmem_cache_create("task_struct", sizeof(struct task_struct),
224                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
225 #endif
226
227         /* do the arch specific task caches init */
228         arch_task_cache_init();
229
230         /*
231          * The default maximum number of threads is set to a safe
232          * value: the thread structures can take up at most half
233          * of memory.
234          */
235         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
236
237         /*
238          * we need to allow at least 20 threads to boot a system
239          */
240         if (max_threads < 20)
241                 max_threads = 20;
242
243         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
244         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
245         init_task.signal->rlim[RLIMIT_SIGPENDING] =
246                 init_task.signal->rlim[RLIMIT_NPROC];
247 }
248
249 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
250                                                struct task_struct *src)
251 {
252         *dst = *src;
253         return 0;
254 }
255
256 static struct task_struct *dup_task_struct(struct task_struct *orig)
257 {
258         struct task_struct *tsk;
259         struct thread_info *ti;
260         unsigned long *stackend;
261         int node = tsk_fork_get_node(orig);
262         int err;
263
264         tsk = alloc_task_struct_node(node);
265         if (!tsk)
266                 return NULL;
267
268         ti = alloc_thread_info_node(tsk, node);
269         if (!ti) {
270                 free_task_struct(tsk);
271                 return NULL;
272         }
273
274         err = arch_dup_task_struct(tsk, orig);
275         if (err)
276                 goto out;
277
278         tsk->stack = ti;
279
280         setup_thread_stack(tsk, orig);
281         clear_user_return_notifier(tsk);
282         clear_tsk_need_resched(tsk);
283         stackend = end_of_stack(tsk);
284         *stackend = STACK_END_MAGIC;    /* for overflow detection */
285
286 #ifdef CONFIG_CC_STACKPROTECTOR
287         tsk->stack_canary = get_random_int();
288 #endif
289
290         /*
291          * One for us, one for whoever does the "release_task()" (usually
292          * parent)
293          */
294         atomic_set(&tsk->usage, 2);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296         tsk->btrace_seq = 0;
297 #endif
298         tsk->splice_pipe = NULL;
299
300         account_kernel_stack(ti, 1);
301
302         return tsk;
303
304 out:
305         free_thread_info(ti);
306         free_task_struct(tsk);
307         return NULL;
308 }
309
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314         struct rb_node **rb_link, *rb_parent;
315         int retval;
316         unsigned long charge;
317         struct mempolicy *pol;
318
319         down_write(&oldmm->mmap_sem);
320         flush_cache_dup_mm(oldmm);
321         /*
322          * Not linked in yet - no deadlock potential:
323          */
324         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325
326         mm->locked_vm = 0;
327         mm->mmap = NULL;
328         mm->mmap_cache = NULL;
329         mm->free_area_cache = oldmm->mmap_base;
330         mm->cached_hole_size = ~0UL;
331         mm->map_count = 0;
332         cpumask_clear(mm_cpumask(mm));
333         mm->mm_rb = RB_ROOT;
334         rb_link = &mm->mm_rb.rb_node;
335         rb_parent = NULL;
336         pprev = &mm->mmap;
337         retval = ksm_fork(mm, oldmm);
338         if (retval)
339                 goto out;
340         retval = khugepaged_fork(mm, oldmm);
341         if (retval)
342                 goto out;
343
344         prev = NULL;
345         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346                 struct file *file;
347
348                 if (mpnt->vm_flags & VM_DONTCOPY) {
349                         long pages = vma_pages(mpnt);
350                         mm->total_vm -= pages;
351                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352                                                                 -pages);
353                         continue;
354                 }
355                 charge = 0;
356                 if (mpnt->vm_flags & VM_ACCOUNT) {
357                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
359                                 goto fail_nomem;
360                         charge = len;
361                 }
362                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363                 if (!tmp)
364                         goto fail_nomem;
365                 *tmp = *mpnt;
366                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
367                 pol = mpol_dup(vma_policy(mpnt));
368                 retval = PTR_ERR(pol);
369                 if (IS_ERR(pol))
370                         goto fail_nomem_policy;
371                 vma_set_policy(tmp, pol);
372                 tmp->vm_mm = mm;
373                 if (anon_vma_fork(tmp, mpnt))
374                         goto fail_nomem_anon_vma_fork;
375                 tmp->vm_flags &= ~VM_LOCKED;
376                 tmp->vm_next = tmp->vm_prev = NULL;
377                 file = tmp->vm_file;
378                 if (file) {
379                         struct inode *inode = file->f_path.dentry->d_inode;
380                         struct address_space *mapping = file->f_mapping;
381
382                         get_file(file);
383                         if (tmp->vm_flags & VM_DENYWRITE)
384                                 atomic_dec(&inode->i_writecount);
385                         mutex_lock(&mapping->i_mmap_mutex);
386                         if (tmp->vm_flags & VM_SHARED)
387                                 mapping->i_mmap_writable++;
388                         flush_dcache_mmap_lock(mapping);
389                         /* insert tmp into the share list, just after mpnt */
390                         vma_prio_tree_add(tmp, mpnt);
391                         flush_dcache_mmap_unlock(mapping);
392                         mutex_unlock(&mapping->i_mmap_mutex);
393                 }
394
395                 /*
396                  * Clear hugetlb-related page reserves for children. This only
397                  * affects MAP_PRIVATE mappings. Faults generated by the child
398                  * are not guaranteed to succeed, even if read-only
399                  */
400                 if (is_vm_hugetlb_page(tmp))
401                         reset_vma_resv_huge_pages(tmp);
402
403                 /*
404                  * Link in the new vma and copy the page table entries.
405                  */
406                 *pprev = tmp;
407                 pprev = &tmp->vm_next;
408                 tmp->vm_prev = prev;
409                 prev = tmp;
410
411                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
412                 rb_link = &tmp->vm_rb.rb_right;
413                 rb_parent = &tmp->vm_rb;
414
415                 mm->map_count++;
416                 retval = copy_page_range(mm, oldmm, mpnt);
417
418                 if (tmp->vm_ops && tmp->vm_ops->open)
419                         tmp->vm_ops->open(tmp);
420
421                 if (retval)
422                         goto out;
423         }
424         /* a new mm has just been created */
425         arch_dup_mmap(oldmm, mm);
426         retval = 0;
427 out:
428         up_write(&mm->mmap_sem);
429         flush_tlb_mm(oldmm);
430         up_write(&oldmm->mmap_sem);
431         return retval;
432 fail_nomem_anon_vma_fork:
433         mpol_put(pol);
434 fail_nomem_policy:
435         kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437         retval = -ENOMEM;
438         vm_unacct_memory(charge);
439         goto out;
440 }
441
442 static inline int mm_alloc_pgd(struct mm_struct *mm)
443 {
444         mm->pgd = pgd_alloc(mm);
445         if (unlikely(!mm->pgd))
446                 return -ENOMEM;
447         return 0;
448 }
449
450 static inline void mm_free_pgd(struct mm_struct *mm)
451 {
452         pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)     (0)
456 #define mm_alloc_pgd(mm)        (0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461
462 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
464
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466
467 static int __init coredump_filter_setup(char *s)
468 {
469         default_dump_filter =
470                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471                 MMF_DUMP_FILTER_MASK;
472         return 1;
473 }
474
475 __setup("coredump_filter=", coredump_filter_setup);
476
477 #include <linux/init_task.h>
478
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482         spin_lock_init(&mm->ioctx_lock);
483         INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486
487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
488 {
489         atomic_set(&mm->mm_users, 1);
490         atomic_set(&mm->mm_count, 1);
491         init_rwsem(&mm->mmap_sem);
492         INIT_LIST_HEAD(&mm->mmlist);
493         mm->flags = (current->mm) ?
494                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495         mm->core_state = NULL;
496         mm->nr_ptes = 0;
497         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498         spin_lock_init(&mm->page_table_lock);
499         mm->free_area_cache = TASK_UNMAPPED_BASE;
500         mm->cached_hole_size = ~0UL;
501         mm_init_aio(mm);
502         mm_init_owner(mm, p);
503
504         if (likely(!mm_alloc_pgd(mm))) {
505                 mm->def_flags = 0;
506                 mmu_notifier_mm_init(mm);
507                 return mm;
508         }
509
510         free_mm(mm);
511         return NULL;
512 }
513
514 static void check_mm(struct mm_struct *mm)
515 {
516         int i;
517
518         for (i = 0; i < NR_MM_COUNTERS; i++) {
519                 long x = atomic_long_read(&mm->rss_stat.count[i]);
520
521                 if (unlikely(x))
522                         printk(KERN_ALERT "BUG: Bad rss-counter state "
523                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
524         }
525
526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
527         VM_BUG_ON(mm->pmd_huge_pte);
528 #endif
529 }
530
531 /*
532  * Allocate and initialize an mm_struct.
533  */
534 struct mm_struct *mm_alloc(void)
535 {
536         struct mm_struct *mm;
537
538         mm = allocate_mm();
539         if (!mm)
540                 return NULL;
541
542         memset(mm, 0, sizeof(*mm));
543         mm_init_cpumask(mm);
544         return mm_init(mm, current);
545 }
546
547 /*
548  * Called when the last reference to the mm
549  * is dropped: either by a lazy thread or by
550  * mmput. Free the page directory and the mm.
551  */
552 void __mmdrop(struct mm_struct *mm)
553 {
554         BUG_ON(mm == &init_mm);
555         mm_free_pgd(mm);
556         destroy_context(mm);
557         mmu_notifier_mm_destroy(mm);
558         check_mm(mm);
559         free_mm(mm);
560 }
561 EXPORT_SYMBOL_GPL(__mmdrop);
562
563 /*
564  * Decrement the use count and release all resources for an mm.
565  */
566 void mmput(struct mm_struct *mm)
567 {
568         might_sleep();
569
570         if (atomic_dec_and_test(&mm->mm_users)) {
571                 exit_aio(mm);
572                 ksm_exit(mm);
573                 khugepaged_exit(mm); /* must run before exit_mmap */
574                 exit_mmap(mm);
575                 set_mm_exe_file(mm, NULL);
576                 if (!list_empty(&mm->mmlist)) {
577                         spin_lock(&mmlist_lock);
578                         list_del(&mm->mmlist);
579                         spin_unlock(&mmlist_lock);
580                 }
581                 put_swap_token(mm);
582                 if (mm->binfmt)
583                         module_put(mm->binfmt->module);
584                 mmdrop(mm);
585         }
586 }
587 EXPORT_SYMBOL_GPL(mmput);
588
589 /*
590  * We added or removed a vma mapping the executable. The vmas are only mapped
591  * during exec and are not mapped with the mmap system call.
592  * Callers must hold down_write() on the mm's mmap_sem for these
593  */
594 void added_exe_file_vma(struct mm_struct *mm)
595 {
596         mm->num_exe_file_vmas++;
597 }
598
599 void removed_exe_file_vma(struct mm_struct *mm)
600 {
601         mm->num_exe_file_vmas--;
602         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
603                 fput(mm->exe_file);
604                 mm->exe_file = NULL;
605         }
606
607 }
608
609 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
610 {
611         if (new_exe_file)
612                 get_file(new_exe_file);
613         if (mm->exe_file)
614                 fput(mm->exe_file);
615         mm->exe_file = new_exe_file;
616         mm->num_exe_file_vmas = 0;
617 }
618
619 struct file *get_mm_exe_file(struct mm_struct *mm)
620 {
621         struct file *exe_file;
622
623         /* We need mmap_sem to protect against races with removal of
624          * VM_EXECUTABLE vmas */
625         down_read(&mm->mmap_sem);
626         exe_file = mm->exe_file;
627         if (exe_file)
628                 get_file(exe_file);
629         up_read(&mm->mmap_sem);
630         return exe_file;
631 }
632
633 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
634 {
635         /* It's safe to write the exe_file pointer without exe_file_lock because
636          * this is called during fork when the task is not yet in /proc */
637         newmm->exe_file = get_mm_exe_file(oldmm);
638 }
639
640 /**
641  * get_task_mm - acquire a reference to the task's mm
642  *
643  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
644  * this kernel workthread has transiently adopted a user mm with use_mm,
645  * to do its AIO) is not set and if so returns a reference to it, after
646  * bumping up the use count.  User must release the mm via mmput()
647  * after use.  Typically used by /proc and ptrace.
648  */
649 struct mm_struct *get_task_mm(struct task_struct *task)
650 {
651         struct mm_struct *mm;
652
653         task_lock(task);
654         mm = task->mm;
655         if (mm) {
656                 if (task->flags & PF_KTHREAD)
657                         mm = NULL;
658                 else
659                         atomic_inc(&mm->mm_users);
660         }
661         task_unlock(task);
662         return mm;
663 }
664 EXPORT_SYMBOL_GPL(get_task_mm);
665
666 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
667 {
668         struct mm_struct *mm;
669         int err;
670
671         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
672         if (err)
673                 return ERR_PTR(err);
674
675         mm = get_task_mm(task);
676         if (mm && mm != current->mm &&
677                         !ptrace_may_access(task, mode)) {
678                 mmput(mm);
679                 mm = ERR_PTR(-EACCES);
680         }
681         mutex_unlock(&task->signal->cred_guard_mutex);
682
683         return mm;
684 }
685
686 static void complete_vfork_done(struct task_struct *tsk)
687 {
688         struct completion *vfork;
689
690         task_lock(tsk);
691         vfork = tsk->vfork_done;
692         if (likely(vfork)) {
693                 tsk->vfork_done = NULL;
694                 complete(vfork);
695         }
696         task_unlock(tsk);
697 }
698
699 static int wait_for_vfork_done(struct task_struct *child,
700                                 struct completion *vfork)
701 {
702         int killed;
703
704         freezer_do_not_count();
705         killed = wait_for_completion_killable(vfork);
706         freezer_count();
707
708         if (killed) {
709                 task_lock(child);
710                 child->vfork_done = NULL;
711                 task_unlock(child);
712         }
713
714         put_task_struct(child);
715         return killed;
716 }
717
718 /* Please note the differences between mmput and mm_release.
719  * mmput is called whenever we stop holding onto a mm_struct,
720  * error success whatever.
721  *
722  * mm_release is called after a mm_struct has been removed
723  * from the current process.
724  *
725  * This difference is important for error handling, when we
726  * only half set up a mm_struct for a new process and need to restore
727  * the old one.  Because we mmput the new mm_struct before
728  * restoring the old one. . .
729  * Eric Biederman 10 January 1998
730  */
731 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
732 {
733         /* Get rid of any futexes when releasing the mm */
734 #ifdef CONFIG_FUTEX
735         if (unlikely(tsk->robust_list)) {
736                 exit_robust_list(tsk);
737                 tsk->robust_list = NULL;
738         }
739 #ifdef CONFIG_COMPAT
740         if (unlikely(tsk->compat_robust_list)) {
741                 compat_exit_robust_list(tsk);
742                 tsk->compat_robust_list = NULL;
743         }
744 #endif
745         if (unlikely(!list_empty(&tsk->pi_state_list)))
746                 exit_pi_state_list(tsk);
747 #endif
748
749         /* Get rid of any cached register state */
750         deactivate_mm(tsk, mm);
751
752         if (tsk->vfork_done)
753                 complete_vfork_done(tsk);
754
755         /*
756          * If we're exiting normally, clear a user-space tid field if
757          * requested.  We leave this alone when dying by signal, to leave
758          * the value intact in a core dump, and to save the unnecessary
759          * trouble, say, a killed vfork parent shouldn't touch this mm.
760          * Userland only wants this done for a sys_exit.
761          */
762         if (tsk->clear_child_tid) {
763                 if (!(tsk->flags & PF_SIGNALED) &&
764                     atomic_read(&mm->mm_users) > 1) {
765                         /*
766                          * We don't check the error code - if userspace has
767                          * not set up a proper pointer then tough luck.
768                          */
769                         put_user(0, tsk->clear_child_tid);
770                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
771                                         1, NULL, NULL, 0);
772                 }
773                 tsk->clear_child_tid = NULL;
774         }
775 }
776
777 /*
778  * Allocate a new mm structure and copy contents from the
779  * mm structure of the passed in task structure.
780  */
781 struct mm_struct *dup_mm(struct task_struct *tsk)
782 {
783         struct mm_struct *mm, *oldmm = current->mm;
784         int err;
785
786         if (!oldmm)
787                 return NULL;
788
789         mm = allocate_mm();
790         if (!mm)
791                 goto fail_nomem;
792
793         memcpy(mm, oldmm, sizeof(*mm));
794         mm_init_cpumask(mm);
795
796         /* Initializing for Swap token stuff */
797         mm->token_priority = 0;
798         mm->last_interval = 0;
799
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801         mm->pmd_huge_pte = NULL;
802 #endif
803
804         if (!mm_init(mm, tsk))
805                 goto fail_nomem;
806
807         if (init_new_context(tsk, mm))
808                 goto fail_nocontext;
809
810         dup_mm_exe_file(oldmm, mm);
811
812         err = dup_mmap(mm, oldmm);
813         if (err)
814                 goto free_pt;
815
816         mm->hiwater_rss = get_mm_rss(mm);
817         mm->hiwater_vm = mm->total_vm;
818
819         if (mm->binfmt && !try_module_get(mm->binfmt->module))
820                 goto free_pt;
821
822         return mm;
823
824 free_pt:
825         /* don't put binfmt in mmput, we haven't got module yet */
826         mm->binfmt = NULL;
827         mmput(mm);
828
829 fail_nomem:
830         return NULL;
831
832 fail_nocontext:
833         /*
834          * If init_new_context() failed, we cannot use mmput() to free the mm
835          * because it calls destroy_context()
836          */
837         mm_free_pgd(mm);
838         free_mm(mm);
839         return NULL;
840 }
841
842 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
843 {
844         struct mm_struct *mm, *oldmm;
845         int retval;
846
847         tsk->min_flt = tsk->maj_flt = 0;
848         tsk->nvcsw = tsk->nivcsw = 0;
849 #ifdef CONFIG_DETECT_HUNG_TASK
850         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
851 #endif
852
853         tsk->mm = NULL;
854         tsk->active_mm = NULL;
855
856         /*
857          * Are we cloning a kernel thread?
858          *
859          * We need to steal a active VM for that..
860          */
861         oldmm = current->mm;
862         if (!oldmm)
863                 return 0;
864
865         if (clone_flags & CLONE_VM) {
866                 atomic_inc(&oldmm->mm_users);
867                 mm = oldmm;
868                 goto good_mm;
869         }
870
871         retval = -ENOMEM;
872         mm = dup_mm(tsk);
873         if (!mm)
874                 goto fail_nomem;
875
876 good_mm:
877         /* Initializing for Swap token stuff */
878         mm->token_priority = 0;
879         mm->last_interval = 0;
880
881         tsk->mm = mm;
882         tsk->active_mm = mm;
883         return 0;
884
885 fail_nomem:
886         return retval;
887 }
888
889 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
890 {
891         struct fs_struct *fs = current->fs;
892         if (clone_flags & CLONE_FS) {
893                 /* tsk->fs is already what we want */
894                 spin_lock(&fs->lock);
895                 if (fs->in_exec) {
896                         spin_unlock(&fs->lock);
897                         return -EAGAIN;
898                 }
899                 fs->users++;
900                 spin_unlock(&fs->lock);
901                 return 0;
902         }
903         tsk->fs = copy_fs_struct(fs);
904         if (!tsk->fs)
905                 return -ENOMEM;
906         return 0;
907 }
908
909 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
910 {
911         struct files_struct *oldf, *newf;
912         int error = 0;
913
914         /*
915          * A background process may not have any files ...
916          */
917         oldf = current->files;
918         if (!oldf)
919                 goto out;
920
921         if (clone_flags & CLONE_FILES) {
922                 atomic_inc(&oldf->count);
923                 goto out;
924         }
925
926         newf = dup_fd(oldf, &error);
927         if (!newf)
928                 goto out;
929
930         tsk->files = newf;
931         error = 0;
932 out:
933         return error;
934 }
935
936 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
937 {
938 #ifdef CONFIG_BLOCK
939         struct io_context *ioc = current->io_context;
940         struct io_context *new_ioc;
941
942         if (!ioc)
943                 return 0;
944         /*
945          * Share io context with parent, if CLONE_IO is set
946          */
947         if (clone_flags & CLONE_IO) {
948                 tsk->io_context = ioc_task_link(ioc);
949                 if (unlikely(!tsk->io_context))
950                         return -ENOMEM;
951         } else if (ioprio_valid(ioc->ioprio)) {
952                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
953                 if (unlikely(!new_ioc))
954                         return -ENOMEM;
955
956                 new_ioc->ioprio = ioc->ioprio;
957                 put_io_context(new_ioc);
958         }
959 #endif
960         return 0;
961 }
962
963 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
964 {
965         struct sighand_struct *sig;
966
967         if (clone_flags & CLONE_SIGHAND) {
968                 atomic_inc(&current->sighand->count);
969                 return 0;
970         }
971         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
972         rcu_assign_pointer(tsk->sighand, sig);
973         if (!sig)
974                 return -ENOMEM;
975         atomic_set(&sig->count, 1);
976         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
977         return 0;
978 }
979
980 void __cleanup_sighand(struct sighand_struct *sighand)
981 {
982         if (atomic_dec_and_test(&sighand->count)) {
983                 signalfd_cleanup(sighand);
984                 kmem_cache_free(sighand_cachep, sighand);
985         }
986 }
987
988
989 /*
990  * Initialize POSIX timer handling for a thread group.
991  */
992 static void posix_cpu_timers_init_group(struct signal_struct *sig)
993 {
994         unsigned long cpu_limit;
995
996         /* Thread group counters. */
997         thread_group_cputime_init(sig);
998
999         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1000         if (cpu_limit != RLIM_INFINITY) {
1001                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1002                 sig->cputimer.running = 1;
1003         }
1004
1005         /* The timer lists. */
1006         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1007         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1008         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1009 }
1010
1011 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013         struct signal_struct *sig;
1014
1015         if (clone_flags & CLONE_THREAD)
1016                 return 0;
1017
1018         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1019         tsk->signal = sig;
1020         if (!sig)
1021                 return -ENOMEM;
1022
1023         sig->nr_threads = 1;
1024         atomic_set(&sig->live, 1);
1025         atomic_set(&sig->sigcnt, 1);
1026         init_waitqueue_head(&sig->wait_chldexit);
1027         if (clone_flags & CLONE_NEWPID)
1028                 sig->flags |= SIGNAL_UNKILLABLE;
1029         sig->curr_target = tsk;
1030         init_sigpending(&sig->shared_pending);
1031         INIT_LIST_HEAD(&sig->posix_timers);
1032
1033         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1034         sig->real_timer.function = it_real_fn;
1035
1036         task_lock(current->group_leader);
1037         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1038         task_unlock(current->group_leader);
1039
1040         posix_cpu_timers_init_group(sig);
1041
1042         tty_audit_fork(sig);
1043         sched_autogroup_fork(sig);
1044
1045 #ifdef CONFIG_CGROUPS
1046         init_rwsem(&sig->group_rwsem);
1047 #endif
1048
1049         sig->oom_adj = current->signal->oom_adj;
1050         sig->oom_score_adj = current->signal->oom_score_adj;
1051         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1052
1053         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1054                                    current->signal->is_child_subreaper;
1055
1056         mutex_init(&sig->cred_guard_mutex);
1057
1058         return 0;
1059 }
1060
1061 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1062 {
1063         unsigned long new_flags = p->flags;
1064
1065         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1066         new_flags |= PF_FORKNOEXEC;
1067         p->flags = new_flags;
1068 }
1069
1070 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1071 {
1072         current->clear_child_tid = tidptr;
1073
1074         return task_pid_vnr(current);
1075 }
1076
1077 static void rt_mutex_init_task(struct task_struct *p)
1078 {
1079         raw_spin_lock_init(&p->pi_lock);
1080 #ifdef CONFIG_RT_MUTEXES
1081         plist_head_init(&p->pi_waiters);
1082         p->pi_blocked_on = NULL;
1083 #endif
1084 }
1085
1086 #ifdef CONFIG_MM_OWNER
1087 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1088 {
1089         mm->owner = p;
1090 }
1091 #endif /* CONFIG_MM_OWNER */
1092
1093 /*
1094  * Initialize POSIX timer handling for a single task.
1095  */
1096 static void posix_cpu_timers_init(struct task_struct *tsk)
1097 {
1098         tsk->cputime_expires.prof_exp = 0;
1099         tsk->cputime_expires.virt_exp = 0;
1100         tsk->cputime_expires.sched_exp = 0;
1101         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1102         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1103         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1104 }
1105
1106 /*
1107  * This creates a new process as a copy of the old one,
1108  * but does not actually start it yet.
1109  *
1110  * It copies the registers, and all the appropriate
1111  * parts of the process environment (as per the clone
1112  * flags). The actual kick-off is left to the caller.
1113  */
1114 static struct task_struct *copy_process(unsigned long clone_flags,
1115                                         unsigned long stack_start,
1116                                         struct pt_regs *regs,
1117                                         unsigned long stack_size,
1118                                         int __user *child_tidptr,
1119                                         struct pid *pid,
1120                                         int trace)
1121 {
1122         int retval;
1123         struct task_struct *p;
1124         int cgroup_callbacks_done = 0;
1125
1126         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1127                 return ERR_PTR(-EINVAL);
1128
1129         /*
1130          * Thread groups must share signals as well, and detached threads
1131          * can only be started up within the thread group.
1132          */
1133         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1134                 return ERR_PTR(-EINVAL);
1135
1136         /*
1137          * Shared signal handlers imply shared VM. By way of the above,
1138          * thread groups also imply shared VM. Blocking this case allows
1139          * for various simplifications in other code.
1140          */
1141         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1142                 return ERR_PTR(-EINVAL);
1143
1144         /*
1145          * Siblings of global init remain as zombies on exit since they are
1146          * not reaped by their parent (swapper). To solve this and to avoid
1147          * multi-rooted process trees, prevent global and container-inits
1148          * from creating siblings.
1149          */
1150         if ((clone_flags & CLONE_PARENT) &&
1151                                 current->signal->flags & SIGNAL_UNKILLABLE)
1152                 return ERR_PTR(-EINVAL);
1153
1154         retval = security_task_create(clone_flags);
1155         if (retval)
1156                 goto fork_out;
1157
1158         retval = -ENOMEM;
1159         p = dup_task_struct(current);
1160         if (!p)
1161                 goto fork_out;
1162
1163         ftrace_graph_init_task(p);
1164
1165         rt_mutex_init_task(p);
1166
1167 #ifdef CONFIG_PROVE_LOCKING
1168         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1169         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1170 #endif
1171         retval = -EAGAIN;
1172         if (atomic_read(&p->real_cred->user->processes) >=
1173                         task_rlimit(p, RLIMIT_NPROC)) {
1174                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1175                     p->real_cred->user != INIT_USER)
1176                         goto bad_fork_free;
1177         }
1178         current->flags &= ~PF_NPROC_EXCEEDED;
1179
1180         retval = copy_creds(p, clone_flags);
1181         if (retval < 0)
1182                 goto bad_fork_free;
1183
1184         /*
1185          * If multiple threads are within copy_process(), then this check
1186          * triggers too late. This doesn't hurt, the check is only there
1187          * to stop root fork bombs.
1188          */
1189         retval = -EAGAIN;
1190         if (nr_threads >= max_threads)
1191                 goto bad_fork_cleanup_count;
1192
1193         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1194                 goto bad_fork_cleanup_count;
1195
1196         p->did_exec = 0;
1197         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1198         copy_flags(clone_flags, p);
1199         INIT_LIST_HEAD(&p->children);
1200         INIT_LIST_HEAD(&p->sibling);
1201         rcu_copy_process(p);
1202         p->vfork_done = NULL;
1203         spin_lock_init(&p->alloc_lock);
1204
1205         init_sigpending(&p->pending);
1206
1207         p->utime = p->stime = p->gtime = 0;
1208         p->utimescaled = p->stimescaled = 0;
1209 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1210         p->prev_utime = p->prev_stime = 0;
1211 #endif
1212 #if defined(SPLIT_RSS_COUNTING)
1213         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1214 #endif
1215
1216         p->default_timer_slack_ns = current->timer_slack_ns;
1217
1218         task_io_accounting_init(&p->ioac);
1219         acct_clear_integrals(p);
1220
1221         posix_cpu_timers_init(p);
1222
1223         do_posix_clock_monotonic_gettime(&p->start_time);
1224         p->real_start_time = p->start_time;
1225         monotonic_to_bootbased(&p->real_start_time);
1226         p->io_context = NULL;
1227         p->audit_context = NULL;
1228         if (clone_flags & CLONE_THREAD)
1229                 threadgroup_change_begin(current);
1230         cgroup_fork(p);
1231 #ifdef CONFIG_NUMA
1232         p->mempolicy = mpol_dup(p->mempolicy);
1233         if (IS_ERR(p->mempolicy)) {
1234                 retval = PTR_ERR(p->mempolicy);
1235                 p->mempolicy = NULL;
1236                 goto bad_fork_cleanup_cgroup;
1237         }
1238         mpol_fix_fork_child_flag(p);
1239 #endif
1240 #ifdef CONFIG_CPUSETS
1241         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1242         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1243         seqcount_init(&p->mems_allowed_seq);
1244 #endif
1245 #ifdef CONFIG_TRACE_IRQFLAGS
1246         p->irq_events = 0;
1247 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1248         p->hardirqs_enabled = 1;
1249 #else
1250         p->hardirqs_enabled = 0;
1251 #endif
1252         p->hardirq_enable_ip = 0;
1253         p->hardirq_enable_event = 0;
1254         p->hardirq_disable_ip = _THIS_IP_;
1255         p->hardirq_disable_event = 0;
1256         p->softirqs_enabled = 1;
1257         p->softirq_enable_ip = _THIS_IP_;
1258         p->softirq_enable_event = 0;
1259         p->softirq_disable_ip = 0;
1260         p->softirq_disable_event = 0;
1261         p->hardirq_context = 0;
1262         p->softirq_context = 0;
1263 #endif
1264 #ifdef CONFIG_LOCKDEP
1265         p->lockdep_depth = 0; /* no locks held yet */
1266         p->curr_chain_key = 0;
1267         p->lockdep_recursion = 0;
1268 #endif
1269
1270 #ifdef CONFIG_DEBUG_MUTEXES
1271         p->blocked_on = NULL; /* not blocked yet */
1272 #endif
1273 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1274         p->memcg_batch.do_batch = 0;
1275         p->memcg_batch.memcg = NULL;
1276 #endif
1277
1278         /* Perform scheduler related setup. Assign this task to a CPU. */
1279         sched_fork(p);
1280
1281         retval = perf_event_init_task(p);
1282         if (retval)
1283                 goto bad_fork_cleanup_policy;
1284         retval = audit_alloc(p);
1285         if (retval)
1286                 goto bad_fork_cleanup_policy;
1287         /* copy all the process information */
1288         retval = copy_semundo(clone_flags, p);
1289         if (retval)
1290                 goto bad_fork_cleanup_audit;
1291         retval = copy_files(clone_flags, p);
1292         if (retval)
1293                 goto bad_fork_cleanup_semundo;
1294         retval = copy_fs(clone_flags, p);
1295         if (retval)
1296                 goto bad_fork_cleanup_files;
1297         retval = copy_sighand(clone_flags, p);
1298         if (retval)
1299                 goto bad_fork_cleanup_fs;
1300         retval = copy_signal(clone_flags, p);
1301         if (retval)
1302                 goto bad_fork_cleanup_sighand;
1303         retval = copy_mm(clone_flags, p);
1304         if (retval)
1305                 goto bad_fork_cleanup_signal;
1306         retval = copy_namespaces(clone_flags, p);
1307         if (retval)
1308                 goto bad_fork_cleanup_mm;
1309         retval = copy_io(clone_flags, p);
1310         if (retval)
1311                 goto bad_fork_cleanup_namespaces;
1312         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1313         if (retval)
1314                 goto bad_fork_cleanup_io;
1315
1316         if (pid != &init_struct_pid) {
1317                 retval = -ENOMEM;
1318                 pid = alloc_pid(p->nsproxy->pid_ns);
1319                 if (!pid)
1320                         goto bad_fork_cleanup_io;
1321         }
1322
1323         p->pid = pid_nr(pid);
1324         p->tgid = p->pid;
1325         if (clone_flags & CLONE_THREAD)
1326                 p->tgid = current->tgid;
1327
1328         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1329         /*
1330          * Clear TID on mm_release()?
1331          */
1332         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1333 #ifdef CONFIG_BLOCK
1334         p->plug = NULL;
1335 #endif
1336 #ifdef CONFIG_FUTEX
1337         p->robust_list = NULL;
1338 #ifdef CONFIG_COMPAT
1339         p->compat_robust_list = NULL;
1340 #endif
1341         INIT_LIST_HEAD(&p->pi_state_list);
1342         p->pi_state_cache = NULL;
1343 #endif
1344         /*
1345          * sigaltstack should be cleared when sharing the same VM
1346          */
1347         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1348                 p->sas_ss_sp = p->sas_ss_size = 0;
1349
1350         /*
1351          * Syscall tracing and stepping should be turned off in the
1352          * child regardless of CLONE_PTRACE.
1353          */
1354         user_disable_single_step(p);
1355         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1356 #ifdef TIF_SYSCALL_EMU
1357         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1358 #endif
1359         clear_all_latency_tracing(p);
1360
1361         /* ok, now we should be set up.. */
1362         if (clone_flags & CLONE_THREAD)
1363                 p->exit_signal = -1;
1364         else if (clone_flags & CLONE_PARENT)
1365                 p->exit_signal = current->group_leader->exit_signal;
1366         else
1367                 p->exit_signal = (clone_flags & CSIGNAL);
1368
1369         p->pdeath_signal = 0;
1370         p->exit_state = 0;
1371
1372         p->nr_dirtied = 0;
1373         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1374         p->dirty_paused_when = 0;
1375
1376         /*
1377          * Ok, make it visible to the rest of the system.
1378          * We dont wake it up yet.
1379          */
1380         p->group_leader = p;
1381         INIT_LIST_HEAD(&p->thread_group);
1382
1383         /* Now that the task is set up, run cgroup callbacks if
1384          * necessary. We need to run them before the task is visible
1385          * on the tasklist. */
1386         cgroup_fork_callbacks(p);
1387         cgroup_callbacks_done = 1;
1388
1389         /* Need tasklist lock for parent etc handling! */
1390         write_lock_irq(&tasklist_lock);
1391
1392         /* CLONE_PARENT re-uses the old parent */
1393         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1394                 p->real_parent = current->real_parent;
1395                 p->parent_exec_id = current->parent_exec_id;
1396         } else {
1397                 p->real_parent = current;
1398                 p->parent_exec_id = current->self_exec_id;
1399         }
1400
1401         spin_lock(&current->sighand->siglock);
1402
1403         /*
1404          * Process group and session signals need to be delivered to just the
1405          * parent before the fork or both the parent and the child after the
1406          * fork. Restart if a signal comes in before we add the new process to
1407          * it's process group.
1408          * A fatal signal pending means that current will exit, so the new
1409          * thread can't slip out of an OOM kill (or normal SIGKILL).
1410         */
1411         recalc_sigpending();
1412         if (signal_pending(current)) {
1413                 spin_unlock(&current->sighand->siglock);
1414                 write_unlock_irq(&tasklist_lock);
1415                 retval = -ERESTARTNOINTR;
1416                 goto bad_fork_free_pid;
1417         }
1418
1419         if (clone_flags & CLONE_THREAD) {
1420                 current->signal->nr_threads++;
1421                 atomic_inc(&current->signal->live);
1422                 atomic_inc(&current->signal->sigcnt);
1423                 p->group_leader = current->group_leader;
1424                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1425         }
1426
1427         if (likely(p->pid)) {
1428                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1429
1430                 if (thread_group_leader(p)) {
1431                         if (is_child_reaper(pid))
1432                                 p->nsproxy->pid_ns->child_reaper = p;
1433
1434                         p->signal->leader_pid = pid;
1435                         p->signal->tty = tty_kref_get(current->signal->tty);
1436                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1437                         attach_pid(p, PIDTYPE_SID, task_session(current));
1438                         list_add_tail(&p->sibling, &p->real_parent->children);
1439                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1440                         __this_cpu_inc(process_counts);
1441                 }
1442                 attach_pid(p, PIDTYPE_PID, pid);
1443                 nr_threads++;
1444         }
1445
1446         total_forks++;
1447         spin_unlock(&current->sighand->siglock);
1448         write_unlock_irq(&tasklist_lock);
1449         proc_fork_connector(p);
1450         cgroup_post_fork(p);
1451         if (clone_flags & CLONE_THREAD)
1452                 threadgroup_change_end(current);
1453         perf_event_fork(p);
1454
1455         trace_task_newtask(p, clone_flags);
1456
1457         return p;
1458
1459 bad_fork_free_pid:
1460         if (pid != &init_struct_pid)
1461                 free_pid(pid);
1462 bad_fork_cleanup_io:
1463         if (p->io_context)
1464                 exit_io_context(p);
1465 bad_fork_cleanup_namespaces:
1466         if (unlikely(clone_flags & CLONE_NEWPID))
1467                 pid_ns_release_proc(p->nsproxy->pid_ns);
1468         exit_task_namespaces(p);
1469 bad_fork_cleanup_mm:
1470         if (p->mm)
1471                 mmput(p->mm);
1472 bad_fork_cleanup_signal:
1473         if (!(clone_flags & CLONE_THREAD))
1474                 free_signal_struct(p->signal);
1475 bad_fork_cleanup_sighand:
1476         __cleanup_sighand(p->sighand);
1477 bad_fork_cleanup_fs:
1478         exit_fs(p); /* blocking */
1479 bad_fork_cleanup_files:
1480         exit_files(p); /* blocking */
1481 bad_fork_cleanup_semundo:
1482         exit_sem(p);
1483 bad_fork_cleanup_audit:
1484         audit_free(p);
1485 bad_fork_cleanup_policy:
1486         perf_event_free_task(p);
1487 #ifdef CONFIG_NUMA
1488         mpol_put(p->mempolicy);
1489 bad_fork_cleanup_cgroup:
1490 #endif
1491         if (clone_flags & CLONE_THREAD)
1492                 threadgroup_change_end(current);
1493         cgroup_exit(p, cgroup_callbacks_done);
1494         delayacct_tsk_free(p);
1495         module_put(task_thread_info(p)->exec_domain->module);
1496 bad_fork_cleanup_count:
1497         atomic_dec(&p->cred->user->processes);
1498         exit_creds(p);
1499 bad_fork_free:
1500         free_task(p);
1501 fork_out:
1502         return ERR_PTR(retval);
1503 }
1504
1505 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1506 {
1507         memset(regs, 0, sizeof(struct pt_regs));
1508         return regs;
1509 }
1510
1511 static inline void init_idle_pids(struct pid_link *links)
1512 {
1513         enum pid_type type;
1514
1515         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1516                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1517                 links[type].pid = &init_struct_pid;
1518         }
1519 }
1520
1521 struct task_struct * __cpuinit fork_idle(int cpu)
1522 {
1523         struct task_struct *task;
1524         struct pt_regs regs;
1525
1526         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1527                             &init_struct_pid, 0);
1528         if (!IS_ERR(task)) {
1529                 init_idle_pids(task->pids);
1530                 init_idle(task, cpu);
1531         }
1532
1533         return task;
1534 }
1535
1536 /*
1537  *  Ok, this is the main fork-routine.
1538  *
1539  * It copies the process, and if successful kick-starts
1540  * it and waits for it to finish using the VM if required.
1541  */
1542 long do_fork(unsigned long clone_flags,
1543               unsigned long stack_start,
1544               struct pt_regs *regs,
1545               unsigned long stack_size,
1546               int __user *parent_tidptr,
1547               int __user *child_tidptr)
1548 {
1549         struct task_struct *p;
1550         int trace = 0;
1551         long nr;
1552
1553         /*
1554          * Do some preliminary argument and permissions checking before we
1555          * actually start allocating stuff
1556          */
1557         if (clone_flags & CLONE_NEWUSER) {
1558                 if (clone_flags & CLONE_THREAD)
1559                         return -EINVAL;
1560                 /* hopefully this check will go away when userns support is
1561                  * complete
1562                  */
1563                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1564                                 !capable(CAP_SETGID))
1565                         return -EPERM;
1566         }
1567
1568         /*
1569          * Determine whether and which event to report to ptracer.  When
1570          * called from kernel_thread or CLONE_UNTRACED is explicitly
1571          * requested, no event is reported; otherwise, report if the event
1572          * for the type of forking is enabled.
1573          */
1574         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1575                 if (clone_flags & CLONE_VFORK)
1576                         trace = PTRACE_EVENT_VFORK;
1577                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1578                         trace = PTRACE_EVENT_CLONE;
1579                 else
1580                         trace = PTRACE_EVENT_FORK;
1581
1582                 if (likely(!ptrace_event_enabled(current, trace)))
1583                         trace = 0;
1584         }
1585
1586         p = copy_process(clone_flags, stack_start, regs, stack_size,
1587                          child_tidptr, NULL, trace);
1588         /*
1589          * Do this prior waking up the new thread - the thread pointer
1590          * might get invalid after that point, if the thread exits quickly.
1591          */
1592         if (!IS_ERR(p)) {
1593                 struct completion vfork;
1594
1595                 trace_sched_process_fork(current, p);
1596
1597                 nr = task_pid_vnr(p);
1598
1599                 if (clone_flags & CLONE_PARENT_SETTID)
1600                         put_user(nr, parent_tidptr);
1601
1602                 if (clone_flags & CLONE_VFORK) {
1603                         p->vfork_done = &vfork;
1604                         init_completion(&vfork);
1605                         get_task_struct(p);
1606                 }
1607
1608                 wake_up_new_task(p);
1609
1610                 /* forking complete and child started to run, tell ptracer */
1611                 if (unlikely(trace))
1612                         ptrace_event(trace, nr);
1613
1614                 if (clone_flags & CLONE_VFORK) {
1615                         if (!wait_for_vfork_done(p, &vfork))
1616                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1617                 }
1618         } else {
1619                 nr = PTR_ERR(p);
1620         }
1621         return nr;
1622 }
1623
1624 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1625 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1626 #endif
1627
1628 static void sighand_ctor(void *data)
1629 {
1630         struct sighand_struct *sighand = data;
1631
1632         spin_lock_init(&sighand->siglock);
1633         init_waitqueue_head(&sighand->signalfd_wqh);
1634 }
1635
1636 void __init proc_caches_init(void)
1637 {
1638         sighand_cachep = kmem_cache_create("sighand_cache",
1639                         sizeof(struct sighand_struct), 0,
1640                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1641                         SLAB_NOTRACK, sighand_ctor);
1642         signal_cachep = kmem_cache_create("signal_cache",
1643                         sizeof(struct signal_struct), 0,
1644                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1645         files_cachep = kmem_cache_create("files_cache",
1646                         sizeof(struct files_struct), 0,
1647                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1648         fs_cachep = kmem_cache_create("fs_cache",
1649                         sizeof(struct fs_struct), 0,
1650                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1651         /*
1652          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1653          * whole struct cpumask for the OFFSTACK case. We could change
1654          * this to *only* allocate as much of it as required by the
1655          * maximum number of CPU's we can ever have.  The cpumask_allocation
1656          * is at the end of the structure, exactly for that reason.
1657          */
1658         mm_cachep = kmem_cache_create("mm_struct",
1659                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1660                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1661         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1662         mmap_init();
1663         nsproxy_cache_init();
1664 }
1665
1666 /*
1667  * Check constraints on flags passed to the unshare system call.
1668  */
1669 static int check_unshare_flags(unsigned long unshare_flags)
1670 {
1671         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1672                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1673                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1674                 return -EINVAL;
1675         /*
1676          * Not implemented, but pretend it works if there is nothing to
1677          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1678          * needs to unshare vm.
1679          */
1680         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1681                 /* FIXME: get_task_mm() increments ->mm_users */
1682                 if (atomic_read(&current->mm->mm_users) > 1)
1683                         return -EINVAL;
1684         }
1685
1686         return 0;
1687 }
1688
1689 /*
1690  * Unshare the filesystem structure if it is being shared
1691  */
1692 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1693 {
1694         struct fs_struct *fs = current->fs;
1695
1696         if (!(unshare_flags & CLONE_FS) || !fs)
1697                 return 0;
1698
1699         /* don't need lock here; in the worst case we'll do useless copy */
1700         if (fs->users == 1)
1701                 return 0;
1702
1703         *new_fsp = copy_fs_struct(fs);
1704         if (!*new_fsp)
1705                 return -ENOMEM;
1706
1707         return 0;
1708 }
1709
1710 /*
1711  * Unshare file descriptor table if it is being shared
1712  */
1713 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1714 {
1715         struct files_struct *fd = current->files;
1716         int error = 0;
1717
1718         if ((unshare_flags & CLONE_FILES) &&
1719             (fd && atomic_read(&fd->count) > 1)) {
1720                 *new_fdp = dup_fd(fd, &error);
1721                 if (!*new_fdp)
1722                         return error;
1723         }
1724
1725         return 0;
1726 }
1727
1728 /*
1729  * unshare allows a process to 'unshare' part of the process
1730  * context which was originally shared using clone.  copy_*
1731  * functions used by do_fork() cannot be used here directly
1732  * because they modify an inactive task_struct that is being
1733  * constructed. Here we are modifying the current, active,
1734  * task_struct.
1735  */
1736 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1737 {
1738         struct fs_struct *fs, *new_fs = NULL;
1739         struct files_struct *fd, *new_fd = NULL;
1740         struct nsproxy *new_nsproxy = NULL;
1741         int do_sysvsem = 0;
1742         int err;
1743
1744         err = check_unshare_flags(unshare_flags);
1745         if (err)
1746                 goto bad_unshare_out;
1747
1748         /*
1749          * If unsharing namespace, must also unshare filesystem information.
1750          */
1751         if (unshare_flags & CLONE_NEWNS)
1752                 unshare_flags |= CLONE_FS;
1753         /*
1754          * CLONE_NEWIPC must also detach from the undolist: after switching
1755          * to a new ipc namespace, the semaphore arrays from the old
1756          * namespace are unreachable.
1757          */
1758         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1759                 do_sysvsem = 1;
1760         err = unshare_fs(unshare_flags, &new_fs);
1761         if (err)
1762                 goto bad_unshare_out;
1763         err = unshare_fd(unshare_flags, &new_fd);
1764         if (err)
1765                 goto bad_unshare_cleanup_fs;
1766         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1767         if (err)
1768                 goto bad_unshare_cleanup_fd;
1769
1770         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1771                 if (do_sysvsem) {
1772                         /*
1773                          * CLONE_SYSVSEM is equivalent to sys_exit().
1774                          */
1775                         exit_sem(current);
1776                 }
1777
1778                 if (new_nsproxy) {
1779                         switch_task_namespaces(current, new_nsproxy);
1780                         new_nsproxy = NULL;
1781                 }
1782
1783                 task_lock(current);
1784
1785                 if (new_fs) {
1786                         fs = current->fs;
1787                         spin_lock(&fs->lock);
1788                         current->fs = new_fs;
1789                         if (--fs->users)
1790                                 new_fs = NULL;
1791                         else
1792                                 new_fs = fs;
1793                         spin_unlock(&fs->lock);
1794                 }
1795
1796                 if (new_fd) {
1797                         fd = current->files;
1798                         current->files = new_fd;
1799                         new_fd = fd;
1800                 }
1801
1802                 task_unlock(current);
1803         }
1804
1805         if (new_nsproxy)
1806                 put_nsproxy(new_nsproxy);
1807
1808 bad_unshare_cleanup_fd:
1809         if (new_fd)
1810                 put_files_struct(new_fd);
1811
1812 bad_unshare_cleanup_fs:
1813         if (new_fs)
1814                 free_fs_struct(new_fs);
1815
1816 bad_unshare_out:
1817         return err;
1818 }
1819
1820 /*
1821  *      Helper to unshare the files of the current task.
1822  *      We don't want to expose copy_files internals to
1823  *      the exec layer of the kernel.
1824  */
1825
1826 int unshare_files(struct files_struct **displaced)
1827 {
1828         struct task_struct *task = current;
1829         struct files_struct *copy = NULL;
1830         int error;
1831
1832         error = unshare_fd(CLONE_FILES, &copy);
1833         if (error || !copy) {
1834                 *displaced = NULL;
1835                 return error;
1836         }
1837         *displaced = task->files;
1838         task_lock(task);
1839         task->files = copy;
1840         task_unlock(task);
1841         return 0;
1842 }